1
|
Sun X, Wu Q, Bu H, Pei Y, Guan D, Guo S, Zhou J, Zhang H. Design, synthesis and biological evaluation of MNK-PROTACs. Mol Divers 2024; 28:3783-3800. [PMID: 38498082 DOI: 10.1007/s11030-023-10776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 03/19/2024]
Abstract
Mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) can regulate cellular mRNA translation by controlling the phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E), which plays an important role in tumor initiation, development, and metastasis. Although small-molecule MNK inhibitors have made significant breakthroughs in the treatment of various malignancies, their clinical application can be limited by drug resistance, target selectivity and other factors. The strategy of MNK-PROTACs which selectively degrades MNK kinases provides a new approach for developing small-molecule drugs for related diseases. In this study, DS33059, a small-molecule compound modified based on the ongoing clinical trials drug ETC-206, was chosen as the target protein ligand. A series of novel MNK-PROTACs were designed, synthesized and evaluated biological activity. Several compounds showed good inhibitory activities against MNK1/2. Besides, compounds exhibited moderate to excellent anti-proliferative activity in A549 and TMD-8 cells in vitro. In particular, compound II-5 significantly inhibited A549 (IC50 = 1.79 μM) and TMD-8 (IC50 = 1.07 μM) cells. The protein degradation assay showed that compound II-5 had good capability to degrade MNK1. The MNK-PROTACs strategy represents a new direction in treating tumors and deserves further exploration.
Collapse
Affiliation(s)
- Xue Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Qingyun Wu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yifeng Pei
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Dezhong Guan
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Shi Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
2
|
Madrid L, Pinto‐Díez C, Muñoz‐Moreno L, García‐Hernández M, González VM, Mata JDL, Martin ME, Ortega P. Cationic Carbosilane Dendrimers for Apmnkq2 Aptamer Transfection in Breast Cancer: An Alternative to Traditional Transfectants. Macromol Biosci 2024. [DOI: 10.1002/mabi.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Indexed: 12/12/2024]
Abstract
AbstractTransfection efficiency is a critical parameter in gene therapy and molecular biology, representing the success rate at which nucleic acids are introduced and expressed in target cells. The combination of aptamers with nanotechnology‐based delivery systems has demonstrated remarkable improvements in the transfection efficiency of therapeutic agents and holds significant potential for advancing gene therapy and the development of targeted treatments for various diseases, including cancer. In this work, cationic carbosilane dendritic systems are presented as an alternative to commercial transfection agents, demonstrating an increase in transfection efficiency when used for the internalization of apMNKQ2, an aptamer selected against a target in cancer. Their potential therapeutic use has been evaluated in breast cancer cell lines, MDA‐MB‐468 and MDA‐MB‐231, studying the cytotoxicity of the nanoconjugate, the internalization process, and its effect on cellular migration processes.
Collapse
Affiliation(s)
- Laura Madrid
- Universidad de Alcalá Department of Organic and Inorganic Chemistry Research Institute in Chemistry “Andrés M. del Río” (IQAR) Chamartín Madrid 28805 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Madrid 28029 Spain
| | | | - Laura Muñoz‐Moreno
- Universidad de Alcalá Department of Biology of Systems Biochemistry and Molecular Biology Unit Madrid Madrid 28805 Spain
| | - Marta García‐Hernández
- Grupo de Aptámeros Departamento de Bioquímica‐Investigación Hospital Universitario Ramón y Cajal Fuencarral‐El Pardo Madrid 28034 Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS) Fuencarral‐El Pardo Madrid 28034 Spain
| | - Víctor M. González
- Grupo de Aptámeros Departamento de Bioquímica‐Investigación Hospital Universitario Ramón y Cajal Fuencarral‐El Pardo Madrid 28034 Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS) Fuencarral‐El Pardo Madrid 28034 Spain
| | - Javier de la Mata
- Universidad de Alcalá Department of Organic and Inorganic Chemistry Research Institute in Chemistry “Andrés M. del Río” (IQAR) Chamartín Madrid 28805 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Madrid 28029 Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS) Fuencarral‐El Pardo Madrid 28034 Spain
| | - M. Elena Martin
- Grupo de Aptámeros Departamento de Bioquímica‐Investigación Hospital Universitario Ramón y Cajal Fuencarral‐El Pardo Madrid 28034 Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS) Fuencarral‐El Pardo Madrid 28034 Spain
| | - Paula Ortega
- Universidad de Alcalá Department of Organic and Inorganic Chemistry Research Institute in Chemistry “Andrés M. del Río” (IQAR) Chamartín Madrid 28805 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Madrid 28029 Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS) Fuencarral‐El Pardo Madrid 28034 Spain
| |
Collapse
|
3
|
Sharma S, Singh M, Chiranjivi AK, Dadwal A, Ahmed S, Asthana S, Das S. Structural insights into trypanosomatid Mnk kinase orthologues (kMnks) suggest altered mechanism in the kinase domain. Int J Biol Macromol 2024; 277:134428. [PMID: 39097052 DOI: 10.1016/j.ijbiomac.2024.134428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Mitogen-activated protein kinase (MAPK) interacting protein kinases (Mnk1 and Mnk2) mediated phosphorylation of the eukaryotic initiation factor eIF4E is an important translation initiation control, in Mnk-mediated oncogenic activity and other disease conditions. Thus, Mnk kinases are an important target for therapy. Trypanosomatids are a class of kinetoplastids, some of which are protozoan parasites and cause diseases in humans. While protein translation initiation is well understood in eukaryotes and prokaryotes, there is a lack of sufficient structural information of this process in trypanosomatids. Here, we report that trypanosomatids have one orthologue of Mnk kinase with low overall sequence homology but high homology in the kinase domain and an additional C-terminal domain containing putative calmodulin binding site(s). We show that while many of the domains and motifs are conserved, homology modeling/structure prediction, docking analysis and molecular dynamics simulation studies suggest that trypanosomatid kMnk kinases, kinase domains are present in DFG-in conformation as opposed to the auto-inhibited DFD-out conformation of un-phosphorylated human Mnk1. Furthermore, we observed that several regulatory features are different in trypanosomatid kMnk kinases. Our study indicates that mechanism and regulation in the kinase domain of trypanosomatid kMnks are likely to be altered, and that they can be important drug targets.
Collapse
Affiliation(s)
- Shilpa Sharma
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | - Mrityunjay Singh
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | | | - Anica Dadwal
- Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | - Shubbir Ahmed
- Centralized Core Research Facility (CCRF), All India Institute of Medical Science (AIIMS), New Delhi 110029, India
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India.
| | - Supratik Das
- Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India.
| |
Collapse
|
4
|
Wang R, Huang Y, Shao K, Yan J, Sun Q. High Expression of miR-6785-5p in the Serum Exosomes of Psoriasis Patients Alleviates Psoriasis-Like Skin Damage by Interfering with the MNK2/p-eIF4E Axis in Keratinocytes. Inflammation 2024; 47:1585-1599. [PMID: 38472599 DOI: 10.1007/s10753-024-01995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation and inflammation. MiRNAs and serum exosomes participate in the pathogenesis of many diseases. The objective of this study is to explore the function of miR-6785-5p in psoriatic keratinocytes and its upstream and downstream mechanisms. For our study, we employed qRT-PCR and fluorescence in situ hybridization to evaluate miR-6785-5p in psoriatic keratinocytes and conducted a microRNA microarray for identifying differentially expressed miRNAs in patient serum exosomes. We then cocultured keratinocytes with these exosomes, using immunofluorescence staining and qRT-PCR to assess uptake and miR-6785-5p overexpression. We explored miR-6785-5p's role through transfection with specific mimics and inhibitors and confirmed MNK2 as its target using a luciferase assay. MNK2's function was further examined using siRNA technology. Lastly, we applied an imiquimod-induced psoriasis mouse model, also employing siRNA, to investigate MNK2's role in psoriasis. MiR-6785-5p demonstrates a notable overexpression in the keratinocytes of psoriasis patients as well as in their serum exosomes. These keratinocytes actively uptake the miR-6785-5p-enriched serum exosomes. Functionally, miR-6785-5p appears to alleviate psoriasis-like skin damage, observable both in vitro and in vivo, by downregulating MNK2 expression. Psoriasis keratinocytes uptake serum exosomes highly expressing miR-6785-5p. MiR-6785-5p inhibits the abnormal proliferation and inflammatory state of keratinocytes by reducing MNK2 expression and interfering with the MNK2/p-eIF4E axis.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yingjian Huang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Kaixin Shao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Jianjun Yan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
Tan B, Yang G, Su L, Zhou J, Wu Y, Liang C, Lai Y. MiR-125b targeted regulation of MKNK2 inhibits multiple myeloma proliferation and invasion. Am J Transl Res 2024; 16:3366-3375. [PMID: 39114709 PMCID: PMC11301515 DOI: 10.62347/qwgs2351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND An increasing number of studies demonstrate that abnormal miRNA expression contributes to the advancement of many tumors. Nonetheless, the potential role of miR-125b in multiple myeloma (MM) remains unknown. OBJECTIVES To explore the potential effects and mechanism of miR-125b in MM. METHODS Real-time quantitative PCR was used to measure the expression levels of miR-125b and MKNK2 in a variety of MM samples. Colony formation and cell counting Kit-8 (CCK-8) assays were used to assess cell proliferation, the transwell assay was used to evaluate the cell invasion capability, and dual luciferase reporter gene assay and Western blot were used to examine the interaction between miR-125b and MKNK2. RESULTS The levels of miR-125b were higher in MM tissue samples, alongside increased expression of MKNK2. There was a negative correlation between MKNK2 and miR-125b expression in MM tissues. MKNK2 was identified as a direct target gene of miR-125b in MM cells. Overexpression of miR-125b suppressed MM cell growth, colony formation, and invasion. In addition, MKNK2 was found to mediate the effects of miR-125b on cell proliferation, colony formation, and invasion in MM. CONCLUSIONS miR-125b acts as a suppressive factor in multiple myeloma and can affect the malignant behavior of MM by regulating the expression of MKNK2.
Collapse
Affiliation(s)
- Binbin Tan
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Gaohui Yang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Liangyan Su
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Jicheng Zhou
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Yinying Wu
- Department of Blood Transfusion, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Chunfeng Liang
- Department of Blood Transfusion, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Yongrong Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| |
Collapse
|
6
|
Xing K, Zhang H, Wang S, Li J, Mu Z, Zhang L, Zuo S, Wang Y, Li S, Wu B, Jing Y, Wen J, Liu D, Huang M, Zhao L. Design, synthesis and biological evaluation of 4-(indolin-1-yl)-6-substituted-pyrido[3,2-d]pyrimidine derivatives as Mnk1/2 inhibitors. Eur J Med Chem 2024; 272:116499. [PMID: 38759457 DOI: 10.1016/j.ejmech.2024.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The Mnk-eIF4E axis plays a crucial role in tumor development, and inhibiting Mnk kinases is a promising approach for cancer therapy. Starting with fragment WS23, a series of 4-(indolin-1-yl)-6-substituted-pyrido[3,2-d]pyrimidine derivatives were designed and synthesized. Among these derivatives, compound 15b showed the highest potency with IC50 values of 0.8 and 1.5 nM against Mnk1 and Mnk2, respectively. Additionally, it demonstrated good selectivity among 30 selected kinases. 15b significantly suppressed MOLM-13 and K562 cell lines growth and caused cell cycle arrest. Furthermore, the Western blot assay revealed that 15b effectively downregulated the downstream proteins p-eIF4E, Mcl-1, and c-myc. Additionally, 15b exhibited remarkable stability in rat plasma and rat and human microsomes. In vivo anti-tumor activity study suggested that treatment with 15b suppressed tumor growth in LL/2 syngeneic models. These findings highlight the potential of 15b as a novel and potent Mnks inhibitor, which deserves further investigation.
Collapse
Affiliation(s)
- Kun Xing
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huimin Zhang
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuxiang Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinghuan Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiying Mu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lanxin Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuwei Zuo
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuetong Wang
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shujun Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Boyang Wu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongkui Jing
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiachen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
7
|
Yuan X, Guan D, Chen C, Guo S, Wu H, Bu H, Yang CY, Wang M, Zhou J, Zhang H. Development of an Imidazopyridazine-Based MNK1/2 Inhibitor for the Treatment of Lymphoma. J Med Chem 2024; 67:5437-5457. [PMID: 38564512 DOI: 10.1021/acs.jmedchem.3c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The mitogen-activated protein kinase-interacting protein kinases (MNKs) are the only kinases known to phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which plays a significant role in cap-dependent translation. Dysregulation of the MNK/eIF4E axis has been found in various solid tumors and hematological malignancies, including diffuse large B-cell lymphoma (DLBCL). Herein, structure-activity relationship studies and docking models determined that 20j exhibits excellent MNK1/2 inhibitory activity, stability, and hERG safety. 20j exhibits strong and broad antiproliferative activity against different cancer cell lines, especially GCB-DLBCL DOHH2. 20j suppresses the phosphorylation of eIF4E in Hela cells (IC50 = 90.5 nM) and downregulates the phosphorylation of eIF4E and 4E-BP1 in A549 cells. In vivo studies first revealed that ibrutinib enhances the antitumor effect of 20j without side effects in a DOHH2 xenograft model. This study provided a solid foundation for the future development of a MNK inhibitor for GCB-DLBCL treatment.
Collapse
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | - Dezhong Guan
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Chao Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Shi Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Hanshu Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
8
|
Li Q, Ke L, Yu D, Xu H, Zhang Z, Yu R, Jiang T, Guo YW, Su M, Jin X. Discovery of D25, a Potent and Selective MNK Inhibitor for Sepsis-Associated Acute Spleen Injury. J Med Chem 2024; 67:3167-3189. [PMID: 38315032 DOI: 10.1021/acs.jmedchem.3c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Mitogen-activated protein kinase-interacting protein kinases (MNKs) and phosphorylate eukaryotic initiation factor 4E (p-eIF4E) play a critical role in regulating mRNA translation and protein synthesis associated with the development of cancer, metabolism, and inflammation. This study undertakes the modification of a 4-(3-(piperidin-4-yl)-1H-pyrazol-5-yl)pyridine structure, leading to the discovery of 4-(3-(piperidin-4-yl)-1H-pyrazol-5-yl)-1H-pyrrolo[2,3-b]pyridine (D25) as a potent and selective MNK inhibitor. D25 demonstrated inhibitory activity, with IC50 values of 120.6 nM for MNK1 and 134.7 nM for MNK2, showing exceptional selectivity. D25 inhibited the expression of pro-inflammation cytokines in RAW264.7 cells, such as inducible NO synthase, cyclooxygenase-2, and interleukin-6 (IL-6). In the lipopolysaccharide-induced sepsis mouse model, D25 significantly reduced p-eIF4E in spleen tissue and decreased the expression of tumor necrosis factor α, interleukin-1β, and IL-6, and it also reduced the production of reactive oxygen species, resulting in improved organ injury caused by inflammation. This suggests that D25 may provide a potential treatment for sepsis and sepsis-associated acute spleen injury.
Collapse
Affiliation(s)
- Qiang Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Linmao Ke
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Dandan Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Han Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zixuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rilei Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tao Jiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Mingzhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xin Jin
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
9
|
Nagaraj S, Stankiewicz-Drogon A, Darzynkiewicz E, Wojda U, Grzela R. miR-483-5p orchestrates the initiation of protein synthesis by facilitating the decrease in phosphorylated Ser209eIF4E and 4E-BP1 levels. Sci Rep 2024; 14:4237. [PMID: 38378793 PMCID: PMC10879198 DOI: 10.1038/s41598-024-54154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Eukaryotic initiation factor 4E (eIF4E) is a pivotal protein involved in the regulatory mechanism for global protein synthesis in both physiological and pathological conditions. MicroRNAs (miRNAs) play a significant role in regulating gene expression by targeting mRNA. However, the ability of miRNAs to regulate eIF4E and its phosphorylation remains relatively unknown. In this study, we predicted and experimentally verified targets for miR-483-5p, including eukaryotic translation initiation factor eIF4E and its binding proteins, 4E-BPs, that regulate protein synthesis. Using the Web of Science database, we identified 28 experimentally verified miR-483-5p targets, and by the TargetScan database, we found 1818 predicted mRNA targets, including EIF4E, EIF4EBP1, and EIF4EBP2. We verified that miR-483-5p significantly reduced ERK1 and MKNK1 mRNA levels in HEK293 cells. Furthermore, we discovered that miR-483-5p suppressed EIF4EBP1 and EIF4EBP2, but not EIF4E. Finally, we found that miR-483-5p reduced the level of phosphorylated eIF4E (pSer209eIF4E) but not total eIF4E. In conclusion, our study suggests that miR-483-5p's multi-targeting effect on the ERK1/ MKNK1 axis modulates the phosphorylation state of eIF4E. Unlike siRNA, miRNA can have multiple targets in the pathway, and thereby exploring the role of miR-483-5p in various cancer models may uncover therapeutic options.
Collapse
Affiliation(s)
- Siranjeevi Nagaraj
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Edward Darzynkiewicz
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland.
| | - Renata Grzela
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland.
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| |
Collapse
|
10
|
Luo H, Huang S. Inhibition of MNK pathway sensitizes nasopharyngeal carcinoma to radiotherapy. Anticancer Drugs 2024; 35:155-162. [PMID: 37694854 DOI: 10.1097/cad.0000000000001542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Improving the clinical management of nasopharyngeal carcinoma (NPC) is an unmet need owing to the high incidence of treatment failure caused by radioresistance. In our study, we observed increased phosphorylation of translation initiation factor 4E (eIF4E), regulated by MAP kinase-interacting kinase (MNK), in NPC cells following irradiation treatment. Using siRNA to deplete MNK, we found that radiation-induced eIF4E phosphorylation was eliminated, NPC cell sensitivity to radiation was enhanced, and radioresistant NPC cell viability was reduced. Furthermore, we tested three pharmacological MNK inhibitors (eFT508, CGP57380, and cercosporamide) and found that they were effective against radioresistant NPC cells and synergized with irradiation. In-vivo experiments confirmed that eFT508, at a tolerable dose, inhibited the growth of radioresistant NPC and synergized with radiation in a radiosensitive NPC xenograft model. Our research highlights the activation of MNK-mediated survival mechanisms in NPC in response to radiotherapy and the potential of combining radiation with MNK inhibitors as a sensitizing strategy. Notably, eFT508 is currently being investigated in clinical trials for cancer treatment, and our findings may prompt the initiation of clinical trials using eFT508 in radioresistant NPC patients.
Collapse
Affiliation(s)
- Honglan Luo
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang
| | - Shiyong Huang
- Department of Otorhinolaryngology & Head and Neck Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
11
|
Mulens-Arias V, Portilla Y, Pérez-Yagüe S, Ferreras-Martín R, Martín ME, González VM, Barber DF. An electrostatically conjugated-functional MNK1 aptamer reverts the intrinsic antitumor effect of polyethyleneimine-coated iron oxide nanoparticles in vivo in a human triple-negative cancer xenograft. Cancer Nanotechnol 2023; 14:64. [DOI: 10.1186/s12645-023-00204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/25/2023] [Indexed: 12/12/2024] Open
Abstract
Abstract
Background
Triple-negative breast cancer (TNBC) remains a difficult breast cancer subtype to treat as it exhibits a particularly aggressive behavior. The dysregulation of distinct signaling pathways underlies this aggressive behavior, with an overactivation of MAP kinase interacting kinases (MNKs) promoting tumor cell behavior, and driving proliferation and migration. Therefore, MNK1 is an excellent target to impair the progression of TNBC and indeed, an MNK1-specific aptamer has proved to be efficient in inhibiting TBNC cell proliferation in vitro. Although polyethyleneimine-coated iron oxide nanoparticles (PEI–IONPs) have been used as transfection and immunomodulating agents, no study has yet addressed the benefits of using these nanoparticles as a magnetic carrier for the delivery of a functional aptamer.
Results
Here, we tested the antitumor effect of a PEI–IONP complexed to the functional MNK1b-specific aptamer in vitro and in vivo. We demonstrated that these apMNKQ2@PEI–IONP nanoconjugates delivered three times more apMNKQ2 to MDA-MB-231 cells than the aptamer alone, and that this enhanced intracellular delivery of the aptamer had consequences for MNK1 signaling, reducing the amount of MNK1 and its target the phospho(Ser209)-eukaryotic initiation factor 4E (eIF4E). As a result, a synergistic effect of the apMNKQ2 and PEI–IONPs was observed that inhibited MDA-MB-231 cell migration, probably in association with an increase in the serum and glucocorticoid-regulated kinase-1 (SGK1) and the phospho(Thr346)-N-myc down-regulated gene 1 (NDRG1). However, intravenous administration of the apMNKQ2 alone did not significantly impair tumor growth in vivo, whereas the PEI–IONP alone did significantly inhibit tumor growth. Significantly, tumor growth was not inhibited when the apMNKQ2@PEI–IONP nanocomplex was administered, possibly due to fewer IONPs accumulating in the tumor. This apMNKQ2-induced reversion of the intrinsic antitumor effect of the PEI–IONPs was abolished when an external magnetic field was applied at the tumor site, promoting IONP accumulation.
Conclusions
Electrostatic conjugation of the apMNKQ2 aptamer with PEI–IONPs impedes the accumulation of the latter in tumors, which appears to be necessary for PEI–IONPs to exert their antitumor activity.
Graphical Abstract
Collapse
|
12
|
Li S, Chen JS, Li X, Bai X, Shi D. MNK, mTOR or eIF4E-selecting the best anti-tumor target for blocking translation initiation. Eur J Med Chem 2023; 260:115781. [PMID: 37669595 DOI: 10.1016/j.ejmech.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Overexpression of eIF4E is common in patients with various solid tumors and hematologic cancers. As a potential anti-cancer target, eIF4E has attracted extensive attention from researchers. At the same time, mTOR kinases inhibitors and MNK kinases inhibitors, which are directly related to regulation of eIF4E, have been rapidly developed. To explore the optimal anti-cancer targets among MNK, mTOR, and eIF4E, this review provides a detailed classification and description of the anti-cancer activities of promising compounds. In addition, the structures and activities of some dual-target inhibitors are briefly described. By analyzing the different characteristics of the inhibitors, it can be concluded that MNK1/2 and eIF4E/eIF4G interaction inhibitors are superior to mTOR inhibitors. Simultaneous inhibition of MNK and eIF4E/eIF4G interaction may be the most promising anti-cancer method for targeting translation initiation.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Jia-Shu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| |
Collapse
|
13
|
Fernandez A, Monsen PJ, Platanias LC, Schiltz GE. Medicinal chemistry approaches to target the MNK-eIF4E axis in cancer. RSC Med Chem 2023; 14:1060-1087. [PMID: 37360400 PMCID: PMC10285747 DOI: 10.1039/d3md00121k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Aberrant translation of proteins that promote cell proliferation is an essential factor that defines oncogenic processes and cancer. The process for ribosomal translation of proteins from mRNA requires an essential initiation step which is controlled by the protein eIF4E, which binds the RNA 5'-cap and forms the eIF4F complex that subsequently translates protein. Typically, eIF4E is activated by phosphorylation on Ser209 by MNK1 and MNK2 kinases. Substantial work has shown that eIF4E and MNK1/2 are dysregulated in many cancers and this axis has therefore become an active area of interest for developing new cancer therapeutics. This review summarizes and discusses recent work to develop small molecules that target different steps in the MNK-eIF4E axis as potential cancer therapeutics. The aim of this review is to cover the breadth of different molecular approaches being taken and the medicinal chemistry basis for their optimization and testing as new cancer therapeutics.
Collapse
Affiliation(s)
- Ann Fernandez
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Paige J Monsen
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago IL 60611 USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center Chicago IL 60612 USA
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine Chicago IL 60611 USA
| |
Collapse
|
14
|
Liu N, Zhang R, Shi Q, Jiang H, Zhou Q. Intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy. Bioorg Chem 2023; 136:106550. [PMID: 37121105 DOI: 10.1016/j.bioorg.2023.106550] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
The drugs targeting the PD-1/PD-L1 pathway have gained abundant clinical applications for cancer immunotherapy. However, only a part of patients benefit from such immunotherapy. Thus, brilliant novel tactic to increase the response rate of patients is on the agenda. Nanocarriers, particularly the rationally designed intelligent delivery systems with controllable therapeutic agent release ability and improved tumor targeting capacity, are firmly recommended. In light of this, state-of-the-art nanocarriers that are responsive to tumor-specific microenvironments (internal stimuli, including tumor acidic microenvironment, high level of GSH and ROS, specifically upregulated enzymes) or external stimuli (e.g., light, ultrasound, radiation) and release the target immunomodulators at tumor sites feature the advantages of increased anti-tumor potency but decreased off-target toxicity. Given the fantastic past achievements and the rapid developments in this field, the future is promising. In this review, intelligent delivery platforms targeting the PD-1/PD-L1 axis are attentively appraised. Specifically, mechanisms of the action of these stimuli-responsive drug release platforms are summarized to raise some guidelines for prior PD-1/PD-L1-based nanocarrier designs. Finally, the conclusion and outlook in intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Qiang Shi
- Moji-Nano Technology Co. Ltd., Yantai 264006, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China.
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China; Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300038, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
15
|
Carrión-Marchante R, Pinto-Díez C, Klett-Mingo JI, Palacios E, Barragán-Usero M, Pérez-Morgado MI, Pascual-Mellado M, Alcalá S, Ruiz-Cañas L, Sainz B, González VM, Martín ME. An Aptamer against MNK1 for Non-Small Cell Lung Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15041273. [PMID: 37111758 PMCID: PMC10146192 DOI: 10.3390/pharmaceutics15041273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Its late diagnosis and consequently poor survival make necessary the search for new therapeutic targets. The mitogen-activated protein kinase (MAPK)-interacting kinase 1 (MNK1) is overexpressed in lung cancer and correlates with poor overall survival in non-small cell lung cancer (NSCLC) patients. The previously identified and optimized aptamer from our laboratory against MNK1, apMNKQ2, showed promising results as an antitumor drug in breast cancer in vitro and in vivo. Thus, the present study shows the antitumor potential of apMNKQ2 in another type of cancer where MNK1 plays a significant role, such as NSCLC. The effect of apMNKQ2 in lung cancer was studied with viability, toxicity, clonogenic, migration, invasion, and in vivo efficacy assays. Our results show that apMNKQ2 arrests the cell cycle and reduces viability, colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT) processes in NSCLC cells. In addition, apMNKQ2 reduces tumor growth in an A549-cell line NSCLC xenograft model. In summary, targeting MNK1 with a specific aptamer may provide an innovative strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Rebeca Carrión-Marchante
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | | | - José Ignacio Klett-Mingo
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Esther Palacios
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miriam Barragán-Usero
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M Isabel Pérez-Morgado
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Manuel Pascual-Mellado
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sonia Alcalá
- Department of Cancer, Instituto de Investigaciones-Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Ruiz-Cañas
- Department of Cancer, Instituto de Investigaciones-Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Bruno Sainz
- Department of Cancer, Instituto de Investigaciones-Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer-CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Víctor M González
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M Elena Martín
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
16
|
Montiel-Dávalos A, Ayala Y, Hernández G. The dark side of mRNA translation and the translation machinery in glioblastoma. Front Cell Dev Biol 2023; 11:1086964. [PMID: 36994107 PMCID: PMC10042294 DOI: 10.3389/fcell.2023.1086964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Among the different types of cancer affecting the central nervous system (CNS), glioblastoma (GB) is classified by the World Health Organization (WHO) as the most common and aggressive CNS cancer in adults. GB incidence is more frequent among persons aged 45–55 years old. GB treatments are based on tumor resection, radiation, and chemotherapies. The current development of novel molecular biomarkers (MB) has led to a more accurate prediction of GB progression. Moreover, clinical, epidemiological, and experimental studies have established genetic variants consistently associated with the risk of suffering GB. However, despite the advances in these fields, the survival expectancy of GB patients is still shorter than 2 years. Thus, fundamental processes inducing tumor onset and progression remain to be elucidated. In recent years, mRNA translation has been in the spotlight, as its dysregulation is emerging as a key cause of GB. In particular, the initiation phase of translation is most involved in this process. Among the crucial events, the machinery performing this phase undergoes a reconfiguration under the hypoxic conditions in the tumor microenvironment. In addition, ribosomal proteins (RPs) have been reported to play translation-independent roles in GB development. This review focuses on the research elucidating the tight relationship between translation initiation, the translation machinery, and GB. We also summarize the state-of-the-art drugs targeting the translation machinery to improve patients’ survival. Overall, the recent advances in this field are shedding new light on the dark side of translation in GB.
Collapse
|
17
|
Huang Y, Luo J, Zhang Y, Zhang T, Fei X, Chen L, Zhu Y, Li S, Zhou C, Xu K, Ma Y, Lin J, Zhou J. Identification of MKNK1 and TOP3A as ovarian endometriosis risk-associated genes using integrative genomic analyses and functional experiments. Comput Struct Biotechnol J 2023; 21:1510-1522. [PMID: 36851918 PMCID: PMC9957794 DOI: 10.1016/j.csbj.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023] Open
Abstract
The risk of endometriosis (EM), which is a common complex gynaecological disease, is related to genetic predisposition. However, it is unclear how genetic variants confer the risk of EM. Here, via Sherlock integrative analysis, we combined large-scale genome-wide association studies (GWAS) summary statistics on EM (N = 245,494) with a blood-based eQTL dataset (N = 1490) to identify EM risk-related genes. For validation, we leveraged two independent eQTL datasets (N = 769) for integration with the GWAS data. Thus, we prioritised 14 genes, including GIMAP4, TOP3A, and NMNAT3, which showed significant association with susceptibility to EM. We also utilised two independent methods, Multi-marker Analysis of GenoMic Annotation and S-PrediXcan, to further validate the EM risk-associated genes. Moreover, protein-protein interaction network analysis showed the 14 genes were functionally connected. Functional enrichment analyses further demonstrated that these genes were significantly enriched in metabolic and immune-related pathways. Differential gene expression analysis showed that in peripheral blood samples from patients with ovarian EM, TOP3A, MKNK1, SIPA1L2, and NUCB1 were significantly upregulated, while HOXB2, GIMAP5, and MGMT were significantly downregulated compared with their expression levels in samples from the controls. Immunohistochemistry further confirmed the increased expression levels of MKNK1 and TOP3A in the ectopic and eutopic endometrium compared to normal endometrium, while HOBX2 was downregulated in the endometrium of women with ovarian EM. Finally, in ex vivo functional experiments, MKNK1 knockdown inhibited ectopic endometrial stromal cells (EESCs) migration and invasion. TOP3A knockdown inhibited EESCs proliferation, migration, and invasion, while promoting their apoptosis. Convergent lines of evidence suggested that MKNK1 and TOP3A are novel EM risk-related genes.
Collapse
Affiliation(s)
- Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Jie Luo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Yue Zhang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Tao Zhang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Xiangwei Fei
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Liqing Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Yingfan Zhu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Songyue Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Caiyun Zhou
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Kaihong Xu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Yunlong Ma
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University 325027 Wenzhou, Zhejiang Province, PR China
| | - Jun Lin
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, PR China
| |
Collapse
|
18
|
Jin X, Qiu T, Xie J, Wei X, Wang X, Yu R, Proud C, Jiang T. Using Imidazo[2,1- b][1,3,4]thiadiazol Skeleton to Design and Synthesize Novel MNK Inhibitors. ACS Med Chem Lett 2023; 14:83-91. [PMID: 36655132 PMCID: PMC9841594 DOI: 10.1021/acsmedchemlett.2c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Mitogen-activated protein kinase-interacting protein kinases (MNKs) phosphorylate eukaryotic initiation factor 4E (eIF4E) and regulate the processes of cell proliferation, cell cycle, and migration and invasion of cancer cells. Selectively inhibiting the activity of MNKs could be effective in treating cancers. In this study, we report a series of novel MNK inhibitors with an imidazo[2,1-b][1,3,4]thiadiazol scaffold, from which, compound 18 inhibited the phosphorylation of eIF4E in various cancer cell lines potently. Compound 18 was more potent against MNK2 than MNK1, and decreased the levels of cyclin-B1, cyclin-D3, and MMP-3 in A549 and MDA-MB-231 cells, impaired cell growth and colony formation, arrested the cell cycle in the G0/G1 phase, and inhibited cell migration and the secretion of TNF-α, MCP-1, and IL-8 from A549 cells. It represents a starting compound to design further inhibitors that selectively target MNKs and apply in other diseases.
Collapse
Affiliation(s)
- Xin Jin
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- Shandong
Laboratory of Yantai Drug Discovery, Bohai
Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Tingting Qiu
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Jianling Xie
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
| | - Xianfeng Wei
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Xuemin Wang
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- School
of Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rilei Yu
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Christopher Proud
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- School
of Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tao Jiang
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| |
Collapse
|
19
|
Mazewski C, Platanias LC. MNK Proteins as Therapeutic Targets in Leukemia. Onco Targets Ther 2023; 16:283-295. [PMID: 37113687 PMCID: PMC10128080 DOI: 10.2147/ott.s370874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In leukemia, resistance to therapy is a major concern for survival. MAPK-interacting kinases (MNKs) have been identified as important activators of oncogenic-related signaling and may be mediators of resistance. Recent studies in leukemia models, especially acute myeloid leukemia (AML), have focused on targeting MNKs together with other inhibitors or treating chemotherapy-resistant cells with MNK inhibitors. The preclinical demonstrations of the efficacy of MNK inhibitors in these combination formats would suggest a promising potential for use in clinical trials. Optimizing MNK inhibitors and testing in leukemia models is actively being pursued and may have important implications for the future. These studies are furthering the understanding of the mechanisms of MNKs in cancer which could translate to clinical studies.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Correspondence: Candice Mazewski; Leonidas C Platanias, Email ;
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
20
|
Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
21
|
Yu M, Sun Y, Shan X, Yang F, Chu G, Chen Q, Han L, Guo Z, Wang G. Therapeutic overexpression of miR-92a-2-5p ameliorated cardiomyocyte oxidative stress injury in the development of diabetic cardiomyopathy. Cell Mol Biol Lett 2022; 27:85. [PMID: 36209049 PMCID: PMC9548149 DOI: 10.1186/s11658-022-00379-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Diabetic cardiomyopathy (DCM) results from pathological changes in cardiac structure and function caused by diabetes. Excessive oxidative stress is an important feature of DCM pathogenesis. MicroRNAs (miRNAs) are key regulators of oxidative stress in the cardiovascular system. In the present study, we screened for the expression of oxidative stress-responsive miRNAs in the development of DCM. Furthermore, we aimed to explore the mechanism and therapeutic potential of miR-92a-2-5p in preventing diabetes-induced myocardial damage. Methods An experimental type 2 diabetic (T2DM) rat model was induced using a high-fat diet and low-dose streptozotocin (30 mg/kg). Oxidative stress injury in cardiomyocytes was induced by high glucose (33 mmol/L). Oxidative stress-responsive miRNAs were screened by quantitative real-time PCR. Intervention with miR-92a-2-5p was accomplished by tail vein injection of agomiR in vivo or adenovirus transfection in vitro. Results The expression of miR-92a-2-5p in the heart tissues was significantly decreased in the T2DM group. Decreased miR-92a-2-5p expression was also detected in high glucose-stimulated cardiomyocytes. Overexpression of miR-92a-2-5p attenuated cardiomyocyte oxidative stress injury, as demonstrated by increased glutathione level, and reduced reactive oxygen species accumulation, malondialdehyde and apoptosis levels. MAPK interacting serine/threonine kinase 2 (MKNK2) was verified as a novel target of miR-92a-2-5p. Overexpression of miR-92a-2-5p in cardiomyocytes significantly inhibited MKNK2 expression, leading to decreased phosphorylation of p38-MAPK signaling, which, in turn, ameliorated cardiomyocyte oxidative stress injury. Additionally, diabetes-induced myocardial damage was significantly alleviated by the injection of miR-92a-2-5p agomiR, which manifested as a significant improvement in myocardial remodeling and function. Conclusions miR-92a-2-5p plays an important role in cardiac oxidative stress, and may serve as a therapeutic target in DCM. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00379-9.
Collapse
Affiliation(s)
- Manli Yu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yangyong Sun
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xinghua Shan
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Guojun Chu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qian Chen
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Lin Han
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Guokun Wang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
22
|
Fu L, Chen S, He G, Chen Y, Liu B. Targeting Extracellular Signal-Regulated Protein Kinase 1/2 (ERK1/2) in Cancer: An Update on Pharmacological Small-Molecule Inhibitors. J Med Chem 2022; 65:13561-13573. [PMID: 36205714 DOI: 10.1021/acs.jmedchem.2c01244] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular signal-regulated protein kinase 1/2 (ERK1/2), the only known substrate of MEK1/2, is located downstream of the RAS-RAF-MEK-ERK (MAPK) pathway and is associated with the abnormal activation and poor prognosis of cancer. To date, several small-molecule inhibitors of RAS, RAF, and MEK have been reported to make rapid advances in cancer therapy; however, acquired resistance still occurs, thereby weakening the therapeutic efficacy of these inhibitors. Recently, selective inhibition of ERK1/2 has been regarded as a potential cancer therapeutic strategy that can not only effectively block the MAPK pathway but also overcome drug resistance caused by upstream mutations in RAS, RAF, and MEK. Herein, we summarize the oncogenic roles, key signaling network, and the single- and dual-target inhibitors of ERK1/2 in preclinical and clinical trials. Together, these inspiring findings shed new light on the discovery of more small-molecule inhibitors of ERK1/2 as candidate drugs to improve cancer therapeutics.
Collapse
Affiliation(s)
- Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Gu He
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Design, Synthesis and Evaluation of Novel Phorbazole C Derivatives as MNK Inhibitors through Virtual High-Throughput Screening. Mar Drugs 2022; 20:md20070429. [PMID: 35877722 PMCID: PMC9319845 DOI: 10.3390/md20070429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
MNKs (mitogen-activated protein kinase-interacting protein kinases) phosphorylate eIF4E at Ser209 to control the translation of certain mRNAs and regulate the process of cell proliferation, cell migration and invasion, etc. Development of MNK inhibitors would be an effective treatment for related diseases. We used the MarineChem3D database to identify hit compounds targeting the protein MNK1 and MNK2 through high-throughput screening. Compounds from the phorbazole family showed good interactions with MNK1, and phorbazole C was selected as our hit compound. By analyzing the binding mode, we designed and synthesized 29 derivatives and evaluated their activity against MNKs, of which, six compounds showed good inhibition to MNKs. We also confirmed three interactions between this kind of compound and MNK1, which are vital for the activity. In conclusion, we report series of novel MNK inhibitors inspired from marine natural products and their relative structure–activity relationship. This will provide important information for further developing MNK inhibitors based on this kind of structure.
Collapse
|