1
|
Jacobs MR, Good CE, Abdelhamed AM, Mack AR, Bethel CR, Marshall SH, Hujer AM, Hujer KM, Patel R, van Duin D, Fowler VG, Rhoads DD, Six DA, Moeck G, Uehara T, Papp-Wallace KM, Bonomo RA. ARGONAUT-IV: susceptibility of carbapenemase-producing Klebsiella pneumoniae to the oral bicyclic boronate β-lactamase inhibitor ledaborbactam combined with ceftibuten. Antimicrob Agents Chemother 2024; 68:e0112724. [PMID: 39475259 PMCID: PMC11619242 DOI: 10.1128/aac.01127-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/18/2024] [Indexed: 12/06/2024] Open
Abstract
Ledaborbactam (formerly VNRX-5236), a bicyclic boronate β-lactamase inhibitor with activity against class A, C, and D β-lactamases, is under development as an orally bioavailable etzadroxil prodrug (VNRX-7145) in combination with ceftibuten for the treatment of urinary tract infections. At ceftibuten breakpoints of ≤1 mg/L (EUCAST) and ≤8 mg/L (CLSI), 92.5% and 99.0%, respectively, of 200 carbapenem-resistant Klebsiella pneumoniae isolates, predominantly K. pneumoniae carbapenemase producing, were susceptible to ceftibuten-ledaborbactam (ledaborbactam tested at a fixed concentration of 4 mg/L) compared to 4.5% and 30.5%, respectively, to ceftibuten alone.
Collapse
Affiliation(s)
- Michael R. Jacobs
- Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Caryn E. Good
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Andrew R. Mack
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Steven H. Marshall
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Andrea M. Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristine M. Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Vance G. Fowler
- Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Daniel D. Rhoads
- Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - David A. Six
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | - Greg Moeck
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | | | - Krisztina M. Papp-Wallace
- Case Western Reserve University, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Biochemistry, Pharmacology, Proteomics and Bioinformatics Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
2
|
Sher EK, Džidić-Krivić A, Sesar A, Farhat EK, Čeliković A, Beća-Zećo M, Pinjic E, Sher F. Current state and novel outlook on prevention and treatment of rising antibiotic resistance in urinary tract infections. Pharmacol Ther 2024; 261:108688. [PMID: 38972453 DOI: 10.1016/j.pharmthera.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Antibiotic-resistant bacteria are currently an important public health concern posing a serious threat due to their resistance to the current arsenal of antibiotics. Uropathogens Escherichia coli (UPEC), Proteus mirabilis, Klebsiella pneumoniae and Enterococcus faecalis, antibiotic-resistant gram-negative bacteria, cause serious cases of prolonged UTIs, increasing healthcare costs and potentially even leading to the death of an affected patient. This review discusses current knowledge about the increasing resistance to currently recommended antibiotics for UTI therapy, as well as novel therapeutic options. Traditional antibiotics are still a part of the therapy guidelines for UTIs, although they are often not effective and have serious side effects. Hence, novel drugs are being developed, such as combinations of β-lactam antibiotics with cephalosporins and carbapenems. Siderophoric cephalosporins, such as cefiderocol, have shown potential in the treatment of individuals with significant gram-negative bacterial infections, as well as aminoglycosides, fluoroquinolones and tetracyclines that are also undergoing clinical trials. The use of cranberry and probiotics is another potential curative and preventive method that has shown antimicrobial and anti-inflammatory effects. However, further studies are needed to assess the efficacy and safety of probiotics containing cranberry extract for UTI prevention and treatment. An emerging novel approach for UTI treatment is the use of immuno-prophylactic vaccines, as well as different nanotechnology solutions such as nanoparticles (NP). NP have the potential to be used as delivery systems for drugs to specific targets. Furthermore, nanotechnology could enable the development of nano antibiotics with improved features by the application of different NPs in their structure, such as gold and copper NPs. However, further high-quality research is required for the synthesis and testing of these novel molecules, such as safety evaluation and pharmacovigilance.
Collapse
Affiliation(s)
- Emina K Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Zenica 72000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ana Sesar
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Health Studies, Victoria International University, Mostar 88000, Bosnia and Herzegovina
| | - Esma K Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Croatia
| | - Amila Čeliković
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Medicine, University of Zenica, Zenica 71000, Bosnia and Herzegovina
| | - Merima Beća-Zećo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Health Studies, Victoria International University, Mostar 88000, Bosnia and Herzegovina
| | - Emma Pinjic
- Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, United States
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
3
|
Fatima N, Khalid S, Rasool N, Imran M, Parveen B, Kanwal A, Irimie M, Ciurea CI. Approachable Synthetic Methodologies for Second-Generation β-Lactamase Inhibitors: A Review. Pharmaceuticals (Basel) 2024; 17:1108. [PMID: 39338273 PMCID: PMC11434895 DOI: 10.3390/ph17091108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Some antibiotics that are frequently employed are β-lactams. In light of the hydrolytic process of β-lactamase, found in Gram-negative bacteria, inhibitors of β-lactamase (BLIs) have been produced. Examples of first-generation β-lactamase inhibitors include sulbactam, clavulanic acid, and tazobactam. Many kinds of bacteria immune to inhibitors have appeared, and none cover all the β-lactamase classes. Various methods have been utilized to develop second-generation β-lactamase inhibitors possessing new structures and facilitate the formation of diazabicyclooctane (DBO), cyclic boronate, metallo-, and dual-nature β-lactamase inhibitors. This review describes numerous promising second-generation β-lactamase inhibitors, including vaborbactam, avibactam, and cyclic boronate serine-β-lactamase inhibitors. Furthermore, it covers developments and methods for synthesizing MβL (metallo-β-lactamase inhibitors), which are clinically effective, as well as the various dual-nature-based inhibitors of β-lactamases that have been developed. Several combinations are still only used in preclinical or clinical research, although only a few are currently used in clinics. This review comprises materials on the research progress of BLIs over the last five years. It highlights the ongoing need to produce new and unique BLIs to counter the appearance of multidrug-resistant bacteria. At present, second-generation BLIs represent an efficient and successful strategy.
Collapse
Affiliation(s)
- Noor Fatima
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Bushra Parveen
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Marius Irimie
- Faculty of Medicine, Transylvania University of Brasov, 500036 Brasov, Romania
| | - Codrut Ioan Ciurea
- Faculty of Medicine, Transylvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
4
|
Paterson DL. Antibacterial agents active against Gram Negative Bacilli in phase I, II, or III clinical trials. Expert Opin Investig Drugs 2024; 33:371-387. [PMID: 38445383 DOI: 10.1080/13543784.2024.2326028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Antimicrobial resistance is a major threat to modern healthcare, and it is often regarded that the antibiotic pipeline is 'dry.' AREAS COVERED Antimicrobial agents active against Gram negative bacilli in Phase I, II, or III clinical trials were reviewed. EXPERT OPINION Nearly 50 antimicrobial agents (28 small molecules and 21 non-traditional antimicrobial agents) active against Gram-negative bacilli are currently in clinical trials. These have the potential to provide substantial improvements to the antimicrobial armamentarium, although it is known that 'leakage' from the pipeline occurs due to findings of toxicity during clinical trials. Significantly, a lack of funding for large phase III clinical trials is likely to prevent trials occurring for the indications most relevant to loss of life attributed to antimicrobial resistance such as ventilator-associated pneumonia. Non-traditional antimicrobial agents face issues in clinical development such as a lack of readily available and reliable susceptibility tests, and the potential need for superiority trials rather than non-inferiority trials. Most importantly, concrete plans must be made during clinical development for access of new antimicrobial agents to areas of the world where resistance to Gram negative bacilli is most frequent.
Collapse
Affiliation(s)
- David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
5
|
Qiao H, Michalland J, Huang Q, Zard SZ. A Versatile Route to Acyl (MIDA)Boronates. Chemistry 2023; 29:e202302235. [PMID: 37477346 DOI: 10.1002/chem.202302235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/22/2023]
Abstract
A modular approach to highly functional acyl (MIDA)boronates is described. It involves the generation of the hitherto unknown radical derived from acetyl (MIDA)boronate and its capture by various alkenes, including electronically unbiased, unactivated alkenes. In contrast to the anion of acetyl (MIDA)boronate, which has not so far been employed in synthesis, the corresponding radical is well behaved and readily produced from the novel α-xanthyl acetyl (MIDA)boronate. This shelf-stable, easily prepared solid is a convenient acyl (MIDA)boronate transfer agent that provides a direct entry to numerous otherwise inaccessible structures, including latent 1,4-dicarbonyl derivatives that can be transformed into B(MIDA) substituted pyrroles and furans. A competition experiment indicated the acyl (MIDA)boronate substituted radical to be more stable than the all-carbon acetonyl radical but somewhat less reactive in additions to alkenes.
Collapse
Affiliation(s)
- Hui Qiao
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Jean Michalland
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Qi Huang
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Samir Z Zard
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| |
Collapse
|
6
|
Peng PY, Zhang GS, Gong ML, Zhang JW, Liu XL, Gao D, Lin GQ, Li QH, Tian P. A practical preparation of bicyclic boronates via metal-free heteroatom-directed alkenyl sp 2-C‒H borylation. Commun Chem 2023; 6:176. [PMID: 37612464 PMCID: PMC10447525 DOI: 10.1038/s42004-023-00976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Bicyclic boronates play critical roles in the discovery of functional materials and antibacterial agents, especially against deadly bacterial pathogens. Their practical and convenient preparation is in high demand but with great challenge. Herein, we report an efficient strategy for the preparation of bicyclic boronates through metal-free heteroatom-directed alkenyl sp2-C‒H borylation. This synthetic approach exhibits good functional group compatibility, and the corresponding boronates bearing halides, aryls, acyclic and cyclic frameworks are obtained with high yields (43 examples, up to 95% yield). Furthermore, a gram-scale experiment is conducted, and downstream transformations of the bicyclic boronates are pursued to afford natural products, drug scaffolds, and chiral hemiboronic acid catalysts.
Collapse
Affiliation(s)
- Pei-Ying Peng
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Gui-Shan Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mei-Ling Gong
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jian-Wei Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Xi-Liang Liu
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing-Hua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
7
|
Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. Antibiotics in the clinical pipeline as of December 2022. J Antibiot (Tokyo) 2023; 76:431-473. [PMID: 37291465 PMCID: PMC10248350 DOI: 10.1038/s41429-023-00629-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The need for new antibacterial drugs to treat the increasing global prevalence of drug-resistant bacterial infections has clearly attracted global attention, with a range of existing and upcoming funding, policy, and legislative initiatives designed to revive antibacterial R&D. It is essential to assess whether these programs are having any real-world impact and this review continues our systematic analyses that began in 2011. Direct-acting antibacterials (47), non-traditional small molecule antibacterials (5), and β-lactam/β-lactamase inhibitor combinations (10) under clinical development as of December 2022 are described, as are the three antibacterial drugs launched since 2020. Encouragingly, the increased number of early-stage clinical candidates observed in the 2019 review increased in 2022, although the number of first-time drug approvals from 2020 to 2022 was disappointingly low. It will be critical to monitor how many Phase-I and -II candidates move into Phase-III and beyond in the next few years. There was also an enhanced presence of novel antibacterial pharmacophores in early-stage trials, and at least 18 of the 26 phase-I candidates were targeted to treat Gram-negative bacteria infections. Despite the promising early-stage antibacterial pipeline, it is essential to maintain funding for antibacterial R&D and to ensure that plans to address late-stage pipeline issues succeed.
Collapse
Affiliation(s)
- Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| | - Ian R Henderson
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Robert J Capon
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| |
Collapse
|
8
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
9
|
Abstract
An analysis of 156 published clinical candidates from the Journal of Medicinal Chemistry between 2018 and 2021 was conducted to identify lead generation strategies most frequently employed leading to drug candidates. As in a previous publication, the most frequent lead generation strategies resulting in clinical candidates were from known compounds (59%) followed by random screening approaches (21%). The remainder of the approaches included directed screening, fragment screening, DNA-encoded library screening (DEL), and virtual screening. An analysis of similarity was also conducted based on Tanimoto-MCS and revealed most clinical candidates were distant from their original hits; however, most shared a key pharmacophore that translated from hit-to-clinical candidate. An examination of frequency of oxygen, nitrogen, fluorine, chlorine, and sulfur incorporation in clinical candidates was also conducted. The three most similar and least similar hit-to-clinical pairs from random screening were examined to provide perspective on changes that occur that lead to successful clinical candidates.
Collapse
Affiliation(s)
- Dean G Brown
- Jnana Therapeutics, One Design Center Pl Suite 19-400, Boston, Massachusetts 02210, United States
| |
Collapse
|
10
|
Dhanda G, Acharya Y, Haldar J. Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS OMEGA 2023; 8:10757-10783. [PMID: 37008128 PMCID: PMC10061514 DOI: 10.1021/acsomega.3c00312] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 06/13/2023]
Abstract
The problem of antibiotic resistance is on the rise, with multidrug-resistant strains emerging even to the last resort antibiotics. The drug discovery process is often stalled by stringent cut-offs required for effective drug design. In such a scenario, it is prudent to delve into the varying mechanisms of resistance to existing antibiotics and target them to improve antibiotic efficacy. Nonantibiotic compounds called antibiotic adjuvants which target bacterial resistance can be used in combination with obsolete drugs for an improved therapeutic regime. The field of "antibiotic adjuvants" has gained significant traction in recent years where mechanisms other than β-lactamase inhibition have been explored. This review discusses the multitude of acquired and inherent resistance mechanisms employed by bacteria to resist antibiotic action. The major focus of this review is how to target these resistance mechanisms by the use of antibiotic adjuvants. Different types of direct acting and indirect resistance breakers are discussed including enzyme inhibitors, efflux pump inhibitors, inhibitors of teichoic acid synthesis, and other cellular processes. The multifaceted class of membrane-targeting compounds with poly pharmacological effects and the potential of host immune-modulating compounds have also been reviewed. We conclude with providing insights about the existing challenges preventing clinical translation of different classes of adjuvants, especially membrane-perturbing compounds, and a framework about the possible directions which can be pursued to fill this gap. Antibiotic-adjuvant combinatorial therapy indeed has immense potential to be used as an upcoming orthogonal strategy to conventional antibiotic discovery.
Collapse
Affiliation(s)
- Geetika Dhanda
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Yash Acharya
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
11
|
Fratoni AJ, Avery LM, Nicolau DP, Asempa TE. In vivo pharmacokinetics and pharmacodynamics of ceftibuten/ledaborbactam, a novel oral β-lactam/β-lactamase inhibitor combination. J Antimicrob Chemother 2022; 78:93-100. [PMID: 36272135 PMCID: PMC10205465 DOI: 10.1093/jac/dkac359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/05/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Oral β-lactam treatment options for MDR Enterobacterales are lacking. Ledaborbactam (formerly VNRX-5236) is a novel orally bioavailable β-lactamase inhibitor that restores ceftibuten activity against Ambler Class A-, C- and D-producing Enterobacterales. We assessed the ledaborbactam exposure needed to produce bacteriostasis against ceftibuten-resistant Enterobacterales in the presence of humanized ceftibuten exposures in the neutropenic murine thigh infection model. METHODS Twelve ceftibuten-resistant clinical isolates (six Klebsiella pneumoniae, five Escherichia coli and one Enterobacter cloacae) were utilized. Ceftibuten/ledaborbactam MICs ranged from 0.12 to 2 mg/L (ledaborbactam fixed at 4 mg/L). A ceftibuten murine dosing regimen mimicking ceftibuten 600 mg q12h human exposure was developed and administered alone and in combination with escalating exposures of ledaborbactam. The log10 cfu/thigh change at 24 h relative to 0 h controls was plotted against ledaborbactam fAUC0-24/MIC and the Hill equation was used to determine exposures associated with bacteriostasis. RESULTS The mean ± SD 0 h bacterial burden was 5.96 ± 0.24 log10 cfu/thigh. Robust growth (3.12 ± 0.93 log10 cfu/thigh) was achieved in untreated control mice. Growth of 2.51 ± 1.09 log10 cfu/thigh was observed after administration of humanized ceftibuten monotherapy. Individual isolate exposure-response relationships were strong (mean ± SD R2 = 0.82 ± 0.15). The median ledaborbactam fAUC0-24/MIC associated with stasis was 3.59 among individual isolates and 6.92 in the composite model. CONCLUSIONS Ledaborbactam fAUC0-24/MIC exposures for stasis were quantified with a ceftibuten human-simulated regimen against β-lactamase-producing Enterobacterales. This study supports the continued development of oral ceftibuten/ledaborbactam etzadroxil (formerly ceftibuten/VNRX-7145).
Collapse
Affiliation(s)
- Andrew J Fratoni
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford 06102, CT, USA
| | | | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford 06102, CT, USA
| | - Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford 06102, CT, USA
| |
Collapse
|
12
|
Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2022; 24:e56033. [PMID: 36533629 PMCID: PMC9827564 DOI: 10.15252/embr.202256033] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Thomas Hesterkamp
- Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| |
Collapse
|
13
|
Current and Emerging Treatment Options for Multidrug Resistant Escherichia coli Urosepsis: A Review. Antibiotics (Basel) 2022; 11:antibiotics11121821. [PMID: 36551478 PMCID: PMC9774639 DOI: 10.3390/antibiotics11121821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli is a versatile commensal and pathogenic member of the human microflora. As the primary causative pathogen in urosepsis, E. coli places an immense burden on healthcare systems worldwide. To further exacerbate the issue, multi drug resistance (MDR) has spread rapidly through E. coli populations, making infections more troublesome and costlier to treat. This paper aimed to review the literature concerning the development of MDR in uropathogenic E. coli (UPEC) and explore the existing evidence of current and emerging treatment strategies. While some MDR strains maybe treated with β-lactam-β-lactamase inhibitor combinations as well as cephalosporins, cephamycin, temocillin and fosfomycin, current treatment strategies for many MDR UPEC strains are reliant on carbapenems. Carbapenem overreliance may contribute to the alarming dissemination of carbapenem-resistance amongst some UPEC communities, which has ushered in a new age of difficult to treat infections. Alternative treatment options for carbapenem resistant UPEC may include novel β-lactam-β-lactamase or carbapenemase inhibitor combinations, cefiderocol, polymyxins, tigecycline, aminoglycosides or fosfomycin. For metallo-β-lactamase producing strains (e.g., NDM, IMP-4), combinations of cefazidime-avibacam with aztreonam have been used. Additionally, the emergence of new antimicrobials brings new hope to the treatment of such infections. However, continued research is required to successfully bring these into the clinic for the treatment of MDR E. coli urosepsis.
Collapse
|
14
|
El-Khoury C, Mansour E, Yuliandra Y, Lai F, Hawkins BA, Du JJ, Sundberg EJ, Sluis-Cremer N, Hibbs DE, Groundwater PW. The role of adjuvants in overcoming antibacterial resistance due to enzymatic drug modification. RSC Med Chem 2022; 13:1276-1299. [PMID: 36439977 PMCID: PMC9667779 DOI: 10.1039/d2md00263a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023] Open
Abstract
Antibacterial resistance is a prominent issue with monotherapy often leading to treatment failure in serious infections. Many mechanisms can lead to antibacterial resistance including deactivation of antibacterial agents by bacterial enzymes. Enzymatic drug modification confers resistance to β-lactams, aminoglycosides, chloramphenicol, macrolides, isoniazid, rifamycins, fosfomycin and lincosamides. Novel enzyme inhibitor adjuvants have been developed in an attempt to overcome resistance to these agents, only a few of which have so far reached the market. This review discusses the different enzymatic processes that lead to deactivation of antibacterial agents and provides an update on the current and potential enzyme inhibitors that may restore bacterial susceptibility.
Collapse
Affiliation(s)
- Christy El-Khoury
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Elissar Mansour
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Yori Yuliandra
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Felcia Lai
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Bryson A Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine Atlanta GA 30322 USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine Atlanta GA 30322 USA
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine Pittsburgh PA 15213 USA
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Paul W Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
15
|
Ceftibuten-Ledaborbactam Activity against Multidrug-Resistant and Extended-Spectrum-β-Lactamase-Positive Clinical Isolates of
Enterobacterales
from a 2018–2020 Global Surveillance Collection. Antimicrob Agents Chemother 2022; 66:e0093422. [DOI: 10.1128/aac.00934-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceftibuten-ledaborbactam etzadroxil is a cephalosporin-boronate β-lactamase inhibitor prodrug combination under development as an oral treatment for complicated urinary tract infections caused by multidrug-resistant (MDR)
Enterobacterales
producing serine β-lactamases (Ambler class A, C, and D).
In vivo
, ledaborbactam etzadroxil (formerly VNRX-7145) is cleaved to the active inhibitor ledaborbactam (formerly VNRX-5236). To more completely define the breadth of ceftibuten-ledaborbactam’s activity against important antimicrobial-resistant pathogens, we assessed its
in vitro
activity against phenotypic and genotypic subsets from a 2018–2020 global culture collection of 3,889 clinical isolates of
Enterobacterales
, including MDR organisms, extended-spectrum-β-lactamase (ESBL)-positive organisms, and organisms that are nonsusceptible and resistant to other antimicrobials.
Collapse
|
16
|
Li R, Chen X, Zhou C, Dai QQ, Yang L. Recent advances in β-lactamase inhibitor chemotypes and inhibition modes. Eur J Med Chem 2022; 242:114677. [PMID: 35988449 DOI: 10.1016/j.ejmech.2022.114677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
The effectiveness of β-lactam antibiotics is increasingly influenced by serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which can hydrolyze β-lactam antibiotics. The development of effective β-lactamase inhibitors is an important direction to extend use of β-lactam antibiotics. Although six SBL inhibitors have been approved for clinical use, but no MBL inhibitors or MBL/SBL dual-action inhibitors are available so far. Broad-spectrum targeting clinically relevant MBLs and SBLs is currently desirable, while it is not easy to achieve such a purpose owing to structural and mechanistic differences between MBLs and SBLs. In this review, we summarized recent advances of inhibitor chemotypes targeting MBLs and SBLs and their inhibition mechanisms, particularly including lead discovery and structural optimization strategies, with the aim to provide useful information for future efforts to develop new MBL and SBL inhibitors.
Collapse
Affiliation(s)
- Rong Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Xi Chen
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Cong Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Qing-Qing Dai
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China.
| |
Collapse
|
17
|
Alfei S, Schito AM. β-Lactam Antibiotics and β-Lactamase Enzymes Inhibitors, Part 2: Our Limited Resources. Pharmaceuticals (Basel) 2022; 15:476. [PMID: 35455473 PMCID: PMC9031764 DOI: 10.3390/ph15040476] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
β-lactam antibiotics (BLAs) are crucial molecules among antibacterial drugs, but the increasing emergence of resistance to them, developed by bacteria producing β-lactamase enzymes (BLEs), is becoming one of the major warnings to the global public health. Since only a small number of novel antibiotics are in development, a current clinical approach to limit this phenomenon consists of administering proper combinations of β-lactam antibiotics (BLAs) and β-lactamase inhibitors (BLEsIs). Unfortunately, while few clinically approved BLEsIs are capable of inhibiting most class-A and -C serine β-lactamases (SBLEs) and some carbapenemases of class D, they are unable to inhibit most part of the carbapenem hydrolyzing enzymes of class D and the worrying metallo-β-lactamases (MBLEs) of class B. Particularly, MBLEs are a set of enzymes that catalyzes the hydrolysis of a broad range of BLAs by a zinc-mediated mechanism, and currently no clinically available molecule capable of inhibiting MBLEs exists. Additionally, new types of alarming "superbugs", were found to produce the New Delhi metallo-β-lactamases (NDMs) encoded by increasing variants of a plasmid-mediated gene capable of rapidly spreading among bacteria of the same species and even among different species. Particularly, NDM-1 possesses a flexible hydrolysis mechanism that inactivates all BLAs, except for aztreonam. The present review provides first an overview of existing BLAs and the most clinically relevant BLEs detected so far. Then, the BLEsIs and their most common associations with BLAs already clinically applied and those still in development are reviewed.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy;
| |
Collapse
|
18
|
Recommendations to Synthetize Old and New β-Lactamases Inhibitors: A Review to Encourage Further Production. Pharmaceuticals (Basel) 2022; 15:ph15030384. [PMID: 35337181 PMCID: PMC8954882 DOI: 10.3390/ph15030384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 01/06/2023] Open
Abstract
The increasing emergence of bacteria producing β-lactamases enzymes (BLEs), able to inactivate the available β-lactam antibiotics (BLAs), causing the hydrolytic opening of their β-lactam ring, is one of the global major warnings. According to Ambler classification, BLEs are grouped in serine-BLEs (SBLEs) of class A, C, and D, and metal-BLEs (MBLEs) of class B. A current strategy to restore no longer functioning BLAs consists of associating them to β-lactamase enzymes inhibitors (BLEsIs), which, interacting with BLEs, prevent them hydrolyzing to the associated antibiotic. Worryingly, the inhibitors that are clinically approved are very few and inhibit only most of class A and C SBLEs, leaving several class D and all MBLEs of class B untouched. Numerous non-clinically approved new molecules are in development, which have shown broad and ultra-broad spectrum of action, some of them also being active on the New Delhi metal-β-lactamase-1 (NDM-1), which can hydrolyze all available BLAs except for aztreonam. To not duplicate the existing review concerning this topic, we have herein examined BLEsIs by a chemistry approach. To this end, we have reviewed both the long-established synthesis adopted to prepare the old BLEsIs, those proposed to achieve the BLEsIs that are newly approved, and those recently reported to prepare the most relevant molecules yet in development, which have shown high potency, providing for each synthesis the related reaction scheme.
Collapse
|
19
|
Reddy KR, Parkinson J, Sabet M, Tarazi Z, Boyer SH, Lomovskaya O, Griffith DC, Hecker SJ, Dudley MN. Selection of QPX7831, an Orally Bioavailable Prodrug of Boronic Acid β-Lactamase Inhibitor QPX7728. J Med Chem 2021; 64:17523-17529. [PMID: 34817182 DOI: 10.1021/acs.jmedchem.1c01722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recognition of the need for effective oral therapies to treat Gram-negative bacterial infections, efforts were directed toward identifying an oral prodrug of β-lactamase inhibitor clinical candidate QPX7728. Seventeen prodrugs were synthesized; key properties investigated were rates of cleavage to the active form in vitro, pharmacokinetics across species, and crystallinity. Compound 5-Na (QPX7831 Sodium) emerged with optimal properties across all key attributes.
Collapse
Affiliation(s)
- K Raja Reddy
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Jonathan Parkinson
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Mojgan Sabet
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Ziad Tarazi
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Serge H Boyer
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Olga Lomovskaya
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - David C Griffith
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Scott J Hecker
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| | - Michael N Dudley
- Qpex Biopharma, Inc., 6275 Nancy Ridge Drive, Suite 100, San Diego, California 92121, United States
| |
Collapse
|