1
|
Wang Y, Tang Y, Liu TH, Shao L, Li C, Wang Y, Tan P. Integrative Multi-omics Analysis to Characterize Herpes Virus Infection Increases the Risk of Alzheimer's Disease. Mol Neurobiol 2024; 61:5337-5352. [PMID: 38191694 DOI: 10.1007/s12035-023-03903-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
Evidence suggests that herpes virus infection is associated with an increased risk of Alzheimer's disease (AD), and innate and adaptive immunity plays an important role in the association. Although there have been many studies, the mechanism of the association is still unclear. This study aims to reveal the underlying molecular and immune regulatory network through multi-omics data and provide support for the study of the mechanism of infection and AD in the future. Here, we found that the herpes virus infection significantly increased the risk of AD. Genes associated with the occurrence and development of AD and genetically regulated by herpes virus infection are mainly enrichment in immune-related pathways. The 22 key regulatory genes identified by machine learning are mainly immune genes. They are also significantly related to the infiltration changes of 3 immune cell in AD. Furthermore, many of these genes have previously been reported to be linked, or potentially linked, to the pathological mechanisms of both herpes virus infection and AD. In conclusion, this study contributes to the study of the mechanisms related to herpes virus infection and AD, and indicates that the regulation of innate and adaptive immunity may be an effective strategy for preventing and treating herpes virus infection and AD. Additionally, the identified key regulatory genes, whether previously studied or newly discovered, may serve as valuable targets for prevention and treatment strategies.
Collapse
Affiliation(s)
- Yongheng Wang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yaqin Tang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Lizhen Shao
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chunying Li
- Chongqing Vocational College of Resources and Environmental Protection, Chongqing, China.
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.
| | - Pengcheng Tan
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Hernandez-Lara MA, Richard J, Deshpande DA. Diacylglycerol kinase is a keystone regulator of signaling relevant to the pathophysiology of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 327:L3-L18. [PMID: 38742284 PMCID: PMC11380957 DOI: 10.1152/ajplung.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Signal transduction by G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immunoreceptors converge at the activation of phospholipase C (PLC) for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This is a point for second-messenger bifurcation where DAG via protein kinase C (PKC) and IP3 via calcium activate distinct protein targets and regulate cellular functions. IP3 signaling is regulated by multiple calcium influx and efflux proteins involved in calcium homeostasis. A family of lipid kinases belonging to DAG kinases (DGKs) converts DAG to phosphatidic acid (PA), negatively regulating DAG signaling and pathophysiological functions. PA, through a series of biochemical reactions, is recycled to produce new molecules of PIP2. Therefore, DGKs act as a central switch in terminating DAG signaling and resynthesis of membrane phospholipids precursor. Interestingly, calcium and PKC regulate the activation of α and ζ isoforms of DGK that are predominantly expressed in airway and immune cells. Thus, DGK forms a feedback and feedforward control point and plays a crucial role in fine-tuning phospholipid stoichiometry, signaling, and functions. In this review, we discuss the previously underappreciated complex and intriguing DAG/DGK-driven mechanisms in regulating cellular functions associated with asthma, such as contraction and proliferation of airway smooth muscle (ASM) cells and inflammatory activation of immune cells. We highlight the benefits of manipulating DGK activity in mitigating salient features of asthma pathophysiology and shed light on DGK as a molecule of interest for heterogeneous diseases such as asthma.
Collapse
Affiliation(s)
- Miguel A Hernandez-Lara
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Joshua Richard
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
3
|
Lu Y, Massicano AVF, Gallegos CA, Heinzman KA, Parish SW, Warram JM, Sorace AG. Evaluating the Accuracy of FUCCI Cell Cycle In Vivo Fluorescent Imaging to Assess Tumor Proliferation in Preclinical Oncology Models. Mol Imaging Biol 2022; 24:898-908. [PMID: 35650411 DOI: 10.1007/s11307-022-01739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE The primary goal of this study is to evaluate the accuracy of the fluorescence ubiquitination cell cycle indicator (FUCCI) system with fluorescence in vivo imaging compared to 3'-deoxy-3'-[18F]fluorothymidine ([18F]-FLT) positron emission tomography (PET)/computed tomography (CT) and biological validation through histology. Imaging with [18F]-FLT PET/CT can be used to noninvasively assess cancer cell proliferation and has been utilized in both preclinical and clinical studies. However, a cost-effective and straightforward method for in vivo, cell cycle targeted cancer drug screening is needed prior to moving towards translational imaging methods such as PET/CT. PROCEDURES In this study, fluorescent MDA-MB-231-FUCCI tumor growth was monitored weekly with caliper measurements and fluorescent imaging. Seven weeks post-injection, [18F]-FLT PET/CT was performed with a preclinical PET/CT, and tumors samples were harvested for histological analysis. RESULTS RFP fluorescent signal significantly correlated with tumor volume (r = 0.8153, p < 0.0001). Cell proliferation measured by GFP fluorescent imaging was correlated with tumor growth rate (r = 0.6497, p < 0.001). Also, GFP+ cells and [18F]-FLT regions of high uptake were both spatially located in the tumor borders, indicating that the FUCCI-IVIS method may provide an accurate assessment of tumor heterogeneity of cell proliferation. The quantification of total GFP signal was correlated with the sum of tumor [18F]-FLT standard uptake value (SUV) (r = 0.5361, p = 0.0724). Finally, histological analysis confirmed viable cells in the tumor and the correlation of GFP + and Ki67 + cells (r = 0.6368, p = 0.0477). CONCLUSION Fluorescent imaging of the cell cycle provides a noninvasive accurate depiction of tumor progression and response to therapy, which may benefit in vivo testing of novel cancer therapeutics that target the cell cycle.
Collapse
Affiliation(s)
- Yun Lu
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Adriana V F Massicano
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35233, USA
| | - Carlos A Gallegos
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Katherine A Heinzman
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Sean W Parish
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jason M Warram
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35233, USA.
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
4
|
Koike T. Development of Specific PET Tracers for Central Nervous System Drug Targets. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tatsuki Koike
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited
| |
Collapse
|
5
|
Aranzazu SL, Tigreros A, Arias-Gómez A, Zapata-Rivera J, Portilla J. BF 3-Mediated Acetylation of Pyrazolo[1,5- a]pyrimidines and Other π-Excedent ( N-Hetero)arenes. J Org Chem 2022; 87:9839-9850. [PMID: 35834668 DOI: 10.1021/acs.joc.2c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An operably simple microwave-assisted BF3-mediated acetylation reaction of pyrazolo[1,5-a]pyrimidines and a plausible mechanism based on density functional theory (DFT) theoretical calculations for this transformation are reported. Remarkably, and to the best of our knowledge, this is the first example of the direct acetylation for the functional pyrazolo[1,5-a]pyrimidine (PP) core. The synthesis of this essential building block is reported in high yields using mild reaction conditions, inexpensive reagents, and even substrates with electron-deficient or highly hindered groups. In addition, one of the new methyl ketones was successfully used as a substrate for producing novel and valuable bis-electrophilic compounds with yields of up to 90%. Notably, the discovered acetylation method was successfully applied in other π-excedent (N-hetero)aromatic substrates.
Collapse
|