1
|
Ishii T, Kobayakawa T, Matsuda K, Nigorikawa K, Bolah P, Noborio A, Tsuji K, Ohashi N, Yoshimura K, Nomura W, Mitsuya H, Maeda K, Tamamura H. Discovery of Potent DAG-Lactone Derivatives as HIV Latency Reversing Agents. ACS Infect Dis 2024; 10:2250-2261. [PMID: 38771724 DOI: 10.1021/acsinfecdis.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Toward human immunodeficiency virus type-1 (HIV-1) cure, cells latently infected with HIV-1 must be eliminated from people living with HIV-1. We previously developed a protein kinase C (PKC) activator, diacylglycerol (DAG)-lactone derivative 3, with high HIV-1 latency-reversing activity, based on YSE028 (2) as a lead compound and found that the activity was correlated with binding affinity for PKC and stability against esterase-mediated hydrolysis. Here, we synthesized new DAG-lactone derivatives not only containing a tertiary ester group or an isoxazole surrogate but also several symmetric alkylidene moieties to improve HIV-1 latency reversing activity. Compound 9a, with a dimethyl group at the α-position of the ester group, exerted twice higher HIV-1 latency reversing activity than compound 3, and compound 26, with the isoxazole moiety, was significantly active. In addition, DAG-lactone derivatives with moderate hydrophobicity and potent biostability showed high biological activity.
Collapse
Affiliation(s)
- Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kouki Matsuda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Kagoshima 890-8544, Japan
| | - Kiyomi Nigorikawa
- Department of Genome and Biomolecular Engineering for Drug Discovery, School of Pharmaceutical Sciences and Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima 734-8553, Japan
| | - Peter Bolah
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Airi Noborio
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Kagoshima 890-8544, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kazuhisa Yoshimura
- Institute of Public Health, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Wataru Nomura
- Department of Genome and Biomolecular Engineering for Drug Discovery, School of Pharmaceutical Sciences and Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima 734-8553, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo 162-8655, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Kagoshima 890-8544, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
2
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Das J, You Y, Mathukumalli K, Ann J, Lee J, Marquez VE. Activation of Munc13-1 by Diacylglycerol (DAG)-Lactones. Biochemistry 2023; 62:2717-2726. [PMID: 37651159 DOI: 10.1021/acs.biochem.3c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Munc13-1 is a key protein necessary for vesicle fusion and neurotransmitter release in the brain. Diacylglycerol (DAG)/phorbol ester binds to its C1 domain in the plasma membrane and activates it. The C1 domain of Munc13-1 and protein kinase C (PKC) are homologous in terms of sequence and structure. In order to identify small-molecule modulators of Munc13-1 targeting the C1 domain, we studied the effect of three DAG-lactones, (R,Z)-(2-(hydroxymethyl)-4-(3-isobutyl-5-methylhexylidene)-5-oxotetrahydrofuran-2-yl)methyl pivalate (JH-131e-153), (E)-(2-(hydroxymethyl)-4-(3-isobutyl-5-methylhexylidene)-5-oxotetrahydrofuran-2-yl)methyl pivalate (AJH-836), and (E)-(2-(hydroxymethyl)-4-(4-nitrobenzylidene)-5-oxotetrahydrofuran-2-yl)methyl 4-(dimethylamino)benzoate (130C037), on Munc13-1 activation using the ligand-induced membrane translocation assay. JH-131e-153 showed higher activation than AJH-836, and 130C037 was not able to activate Munc13-1. To understand the role of the ligand-binding site residues in the activation process, three alanine mutants were generated. For AJH-836, the order of activation was wild-type (WT) Munc13-1 > R592A > W588A > I590A. For JH-131e-153, the order of activation was WT > I590 ≈ R592A ≈ W588A. Overall, the Z isomer of DAG-lactones showed higher potency than the E isomer and Trp-588, Ile-590, and Arg-592 were important for its binding. When comparing the activation of Munc13-1 and PKC, the order of activation for JH-131e-153 was PKCα > Munc13-1 > PKCε and for AJH-836, the order of activation was PKCε > PKCα > Munc13-1. Molecular docking supported higher binding of JH-131e-153 than AJH-836 with the Munc13-1 C1 domain. Our results suggest that DAG-lactones have the potential to modulate neuronal processes via Munc13-1 and can be further developed for therapeutic intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Kavya Mathukumalli
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Jihyae Ann
- College of Pharmacy, Seoul National University, Building 143, Room 507, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Jeewoo Lee
- College of Pharmacy, Seoul National University, Building 143, Room 507, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Victor E Marquez
- Center for Cancer Research, Chemical Biology Laboratory, NCI-Frederick, 376 Boyles Street, Frederick, Maryland 21702, United States
| |
Collapse
|
4
|
Ishii T, Kobayakawa T, Matsuda K, Tsuji K, Ohashi N, Nakahata S, Noborio A, Yoshimura K, Mitsuya H, Maeda K, Tamamura H. Synthesis and evaluation of DAG-lactone derivatives with HIV-1 latency reversing activity. Eur J Med Chem 2023; 256:115449. [PMID: 37224601 PMCID: PMC10683555 DOI: 10.1016/j.ejmech.2023.115449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Cells latently infected with human immunodeficiency virus type 1 (HIV-1) prevent people living with HIV-1 from obtaining a cure to the infectious disease. Latency reversing agents (LRAs) such as protein kinase C (PKC) activators and histone deacetylase (HDAC) inhibitors can reactivate cells latently infected with HIV-1. Several trials based on treatment with HDAC inhibitors alone, however, failed to reduce the number of latent HIV-1 reservoirs. Herein, we have focused on a diacylglycerol (DAG)-lactone derivative, YSE028 (1), which is a PKC activator with latency reversing activity and no significant cytotoxicity. Caspase-3 activation of YSE028 (1) led to cell apoptosis, specifically in HIV-1 latently infected cells. Structure-activity relationship studies of YSE028 (1) have produced several useful derivatives. Among these, compound 2 is approximately ten times more potent than YSE028 (1) in reactivation of cells latently infected with HIV-1. The activity of DAG-lactone derivatives was correlated with the binding affinity for PKC and the stability against esterase-mediated hydrolysis.
Collapse
Affiliation(s)
- Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kouki Matsuda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan; AIDS Clinical Center, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Nami Ohashi
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Airi Noborio
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Kazuhisa Yoshimura
- Institute of Public Health, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States; Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan.
| |
Collapse
|
5
|
Mbonye U, Kizito F, Karn J. New insights into transcription elongation control of HIV-1 latency and rebound. Trends Immunol 2023; 44:60-71. [PMID: 36503686 DOI: 10.1016/j.it.2022.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Antiretroviral therapy reduces circulating HIV-1 to undetectable amounts but does not eliminate the virus due to the persistence of a stable reservoir of latently infected cells. The reservoir is maintained both by proliferation of latently infected cells and by reseeding from reactivated cells. A major challenge for the field is to find safe and effective methods to eliminate this source of rebounding HIV-1. Studies on the molecular mechanisms leading to HIV-1 latency and reactivation are being transformed using latency models in primary and patient CD4+ T cells. These studies have revealed the central role played by the biogenesis of the transcription elongation factor P-TEFb (Positive Transcription Elongation Factor b) and its recruitment to proviral HIV-1, for the maintenance of viral latency and the control of viral reactivation.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Fredrick Kizito
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|