1
|
Kazuta N, Nakashima K, Watanabe H, Ono M. Effect of Linker Entities on Pharmacokinetics of 111In-Labeled Prostate-Specific Membrane Antigen-Targeting Ligands with an Albumin Binder. ACS Pharmacol Transl Sci 2024; 7:2401-2413. [PMID: 39144550 PMCID: PMC11320743 DOI: 10.1021/acsptsci.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024]
Abstract
In the field of radiopharmaceutical development targeting cancer, an albumin binder (ALB) is commonly used to improve accumulation of radioligands in tumors because it has high binding affinity for albumin and extends the circulation time of radioligands. The further development of ALB-containing radioligands is also expected to regulate their pharmacokinetics. In this study, we newly designed and synthesized [111In]In-PNT-DA1 derivatives, prostate-specific membrane antigen (PSMA)-targeting radioligands including a functional linker (d-glutamic acid or 4-(aminomethyl)benzoic acid), and evaluated the relationships among the structure, albumin-binding affinity, and pharmacokinetics. These derivatives showed a different binding affinity for albumin by the introduction of a linker. Biodistribution studies revealed that the introduction of a linker affects the pharmacokinetics of each derivative. The biodistribution studies also suggested that moderate albumin-binding affinity enhances the tumor/kidney ratio of the derivative. SPECT imaging using [111In]In-PNT-DA3 with the highest tumor/kidney ratio among [111In]In-PNT-DA1 derivatives led to clear visualization of a PSMA-positive LNCaP tumor. The results suggest that the appropriate introduction of linker entities may be necessary to improve the pharmacokinetics of PSMA-targeting radioligands.
Collapse
Affiliation(s)
- Nobuki Kazuta
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Sakyo-ku 606-8501, Japan
| | - Kazuma Nakashima
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Sakyo-ku 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Sakyo-ku 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Sakyo-ku 606-8501, Japan
| |
Collapse
|
2
|
Yamaguchi K, Kazuta N, Tsuchihashi S, Watanabe H, Ono M. Structure-affinity-pharmacokinetics relationships of 111In-labeled PSMA-targeted ligands with different albumin binders. Nucl Med Biol 2024; 138-139:108945. [PMID: 39153354 DOI: 10.1016/j.nucmedbio.2024.108945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION Prostate-specific membrane antigen (PSMA) is a promising target for treating metastatic castration-resistant prostate cancer. Our previous report presented 111In- or 225Ac-labeled PSMA-NAT-DA1 (PNT-DA1) as a PSMA-targeted ligand. To improve its therapeutic efficiency, PNT-DA1 contains 4-(p-iodophenyl)butyric acid (IPBA), which is known as an albumin binder (ALB) moiety. However, few reports have examined the relationship between the chemical modification of the ALB moiety and pharmacokinetics of PSMA-targeted radioligands. To assess this relationship, we designed, synthesized, and evaluated four [111In]In-PNT-DA1 analogues with ALB moieties different from IPBA. METHODS The [111In]In-PNT-DA1 analogues were synthesized from their corresponding precursors through ligand substitution reaction. The stability of [111In]In-PNT-DA1 analogues in mouse plasma, their affinity for human serum albumin (HSA), their binding to mouse plasma proteins, and their affinity for PSMA were evaluated in vitro. The tissue distribution profile of the radioligands was assessed in biodistribution studies using LNCaP tumor-bearing nude mice. RESULTS All [111In]In-PNT-DA1 analogues were obtained at a high radiochemical yield and purity. These analogues were highly stable in mouse plasma after 24 h. The binding affinity for HSA significantly varied among the different ALB moieties. Moreover, high affinity for mouse plasma proteins was observed for all [111In]In-PNT-DA1 analogues compared with their counterparts without an ALB moiety. The affinity for PSMA was comparable for all radioligands. In the biodistribution assay, the pharmacokinetics of [111In]In-PNT-DA1 analogues varied markedly depending on the type of ALB moiety. In particular, tumor area under the curve (AUC) values were increased for radioligands with higher blood retention, while some previous studies reported that compounds with moderate blood retention exhibited the highest tumor AUC values. CONCLUSION The introduction of an appropriate ALB moiety into the ligand may lead to the development of more useful PSMA-targeted radioligands with higher tumor accumulation.
Collapse
Affiliation(s)
- Keisei Yamaguchi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nobuki Kazuta
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shohei Tsuchihashi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Kazuta N, Tsuchihashi S, Watanabe H, Ono M. Fundamental evaluation regarding the relationship between albumin-binding and tumor accumulation of PSMA-targeting radioligands. Ann Nucl Med 2024; 38:574-583. [PMID: 38676906 DOI: 10.1007/s12149-024-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE The marked success of prostate-specific membrane antigen (PSMA)-targeting radioligands with albumin binder (ALB) is attributed to the improvement of blood retention and tumor accumulation. [111In]In-PNT-DA1, our PSMA-targeting radioligand with ALB, also achieved improved tumor accumulation due to its prolonged blood retention. Although the advantage of ALBs is related to their reversible binding to albumin, the relationship between albumin-binding and tumor accumulation of PSMA-targeting radioligands remains unclear because of the lack of information about radioligands with stronger albumin-binding than ALBs. In this study, we designed and synthesized [111In]In-PNT-DM-HSA, a new radioligand that consists of a PSMA-targeting radioligand covalently bound to albumin. The pharmacokinetics of [111In]In-PNT-DM-HSA was compared with those of [111In]In-PNT-DA1 and [111In]In-PSMA-617, a non-ALB-conjugated radioligand, to evaluate the relationship between albumin-binding and tumor accumulation. METHOD The [111In]In-PNT-DM-HSA was prepared by incubation of [111In]In-PNT-DM, a PSMA-targeting radioligand including a maleimide group, and human serum albumin (HSA). The ability of [111In]In-PNT-DM-HSA was evaluated by in vitro assays. A biodistribution study using LNCaP tumor-bearing mice was conducted to compare the pharmacokinetics of [111In]In-PNT-DM-HSA, [111In]In-PNT-DA1, and [111In]In-PSMA-617. RESULTS The [111In]In-PNT-DM-HSA was obtained at a favorable radiochemical yield and high radiochemical purity. In vitro assays revealed that [111In]In-PNT-DM-HSA had fundamental characteristics as a PSMA-targeting radioligand interacting with albumin covalently. In a biodistribution study, [111In]In-PNT-DM-HSA and [111In]In-PNT-DA1 showed higher blood retention than [111In]In-PSMA-617. On the other hand, the tumor accumulation of [111In]In-PNT-DA1 was much higher than [111In]In-PNT-DM-HSA and [111In]In-PSMA-617. CONCLUSIONS These results indicate that the moderate reversible binding of ALB with albumin, not covalent binding, may play a critical role in enhancing the tumor accumulation of PSMA-targeting radioligands.
Collapse
Affiliation(s)
- Nobuki Kazuta
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Shohei Tsuchihashi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
4
|
Läppchen T, Bilinska A, Pilatis E, Menéndez E, Imlimthan S, Moon ES, Afshar-Oromieh A, Rösch F, Rominger A, Gourni E. Tailoring Fibroblast-Activation Protein Targeting for Theranostics: A Comparative Preclinical Evaluation of the 68Ga- and 177Lu-Labeled Monomeric and Dimeric Fibroblast-Activation Protein Inhibitors DOTA.SA.FAPi and DOTAGA.(SA.FAPi) 2. Molecules 2024; 29:3093. [PMID: 38999044 PMCID: PMC11243320 DOI: 10.3390/molecules29133093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND FAP radiopharmaceuticals show promise for cancer diagnosis; however, their limited tumor residency hinders treatment. This study compared two FAPi derivatives, DOTA.SA.FAPi and DOTAGA.(SA.FAPi)2, labeled with gallium-68 and lutetium-177, aiming to determine an optimum combination for creating theranostic pairs. METHODS The radiotracers were studied for lipophilicity, binding to human serum proteins, and binding to human cancer-associated fibroblasts (CAFs) in vitro, including saturation and internalization/externalization studies. PET/SPECT/CT and biodistribution studies were conducted in PC3 and U87MG xenografts for [68Ga]Ga-DOTA.SA.FAPi and [68Ga]Ga-DOTAGA.(SA.FAPi)2. [177Lu]Lu-DOTA.SA.FAPi and [177Lu]Lu-DOTAGA.(SA.FAPi)2, were evaluated in PC3 xenografts. Biodistribution studies of [68Ga]Ga-DOTA.SA.FAPi were performed in healthy male and female mice. RESULTS All radiotracers exhibited strong binding to FAP. Their internalization rate was fast while only [177Lu]Lu-DOTAGA.(SA.FAPi)2 was retained longer in CAFs. [68Ga]Ga-DOTAGA.(SA.FAPi)2 and [177Lu]Lu-DOTAGA.(SA.FAPi)2 displayed elevated lipophilicity and affinity for human serum proteins compared to [68Ga]Ga-DOTA.SA.FAPi and [177Lu]Lu-DOTA.SA.FAPi. In vivo studies revealed slower washout of [68Ga]Ga-DOTAGA.(SA.FAPi)2 within 3 h compared to [68Ga]Ga-DOTA.SA.FAPi. The tumor-to-tissue ratios of [68Ga]Ga-DOTAGA.(SA.FAPi)2 versus [68Ga]Ga-DOTA.SA.FAPi did not exhibit any significant differences. [177Lu]Lu-DOTAGA.(SA.FAPi)2 maintained a significant tumor uptake even after 96 h p.i. compared to [177Lu]Lu-DOTA.SA.FAPi. CONCLUSIONS Dimeric compounds hold promise for therapy, while monomers are better suited for diagnostics. Finding the right combination is essential for effective disease management.
Collapse
Affiliation(s)
- Tilman Läppchen
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Adrianna Bilinska
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Eirinaios Pilatis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Elena Menéndez
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Surachet Imlimthan
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Euy Sung Moon
- Department of Chemistry—TRIGA Site, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany; (E.S.M.); (F.R.)
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Frank Rösch
- Department of Chemistry—TRIGA Site, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany; (E.S.M.); (F.R.)
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| | - Eleni Gourni
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (T.L.); (A.B.); (E.P.); (E.M.); (S.I.); (A.A.-O.); (A.R.)
| |
Collapse
|
5
|
Dai D, Yu J, Gou W, Yang S, Li Y, Wang Z, Yang Z, Huang T, Li P, Zhu T, Hou W, Zhao Y, Xu W, Li Y. Novel CDK19-Targeted Radiotracers: A Potential Design Strategy to Improve the Pharmacokinetics and Tumor Uptake. J Med Chem 2024; 67:6726-6737. [PMID: 38570733 DOI: 10.1021/acs.jmedchem.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Cyclin-dependent kinase 19 (CDK19) is overexpressed in prostate cancer, making it an attractive target for both imaging and therapy. Since little is known about the optimized approach for radioligands of nuclear proteins, linker optimization strategies were used to improve pharmacokinetics and tumor absorption, including the adjustment of the length, flexibility/rigidity, and hydrophilicity/lipophilicity of linkers. Molecular docking was conducted for virtual screening and followed by IC50 determination. Both BALB/c mice and P-16 xenografts were used for tissue distribution and PET/CT imaging. The ligand 68Ga-10c demonstrated high absorption in tumor 5 min after injection and sustains long-term imaging within 3 h. Furthermore, 68Ga-10c exhibited slow clearance within the tumor and was predominantly metabolized in both the liver and kidneys, showing the potential to alleviate metabolic pressure and enhance tissue safety. Therefore, the linker optimization strategy is well suited for CDK19 and provides a reference for the radioactive ligands of other nuclear targets.
Collapse
Affiliation(s)
- Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China
- Department of Molecular Medicine, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin 300308, China
| | - Jiang Yu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Shuangmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yanli Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ziyang Wang
- Department of Molecular Medicine, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin 300308, China
| | - Zhao Yang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China
| | - Ting Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Panfeng Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Tong Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
6
|
Ono M. [Radiotheranostics Based on Chemical Control of Radioactivity Pharmacokinetics]. YAKUGAKU ZASSHI 2024; 144:291-297. [PMID: 38432939 DOI: 10.1248/yakushi.23-00168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Recently, radiotheranostics, which systematically combines diagnosis by nuclear medicine imaging and treatment by internal radiotherapy, constitutes a new modality in cancer treatment, with some clinical reports showing marked effects on cancer. We have been developing multifunctional chelates containing a target recognition unit, a radiation release unit, and a radioactivity pharmacokinetics control unit in the same molecule to develop efficient agents for cancer radiotheranostics based on chemical control of radioactivity pharmacokinetics. Using these compounds, we have achieved improved cancer accumulation and reduced renal accumulation in tumor-bearing mice, and have developed novel hybrid radiotheranostic agents that can be applied to simultaneously perform target-specific molecular imaging using γ-ray emitting radionuclides and internal radiotherapy using α-particle-emitting radionuclides. For example, 111In/225Ac-labeled PSMA-DA1, which targets prostate-specific membrane antigen (PSMA) for radiotheranostics, achieved clear in vivo imaging of PSMA in tumor-bearing mice and showed marked tumor growth inhibition. In addition to PSMA, this platform for radiotheranostics has also shown efficacy against various cancer target molecules, including carbonic anhydrase IX (CA-IX), which is highly expressed in hypoxic regions of cancer, and glucagon-like peptide-1 receptor (GLP-1R), which is highly expressed in insulinomas. This review presents these recent results of our studies on radiotheranostics for cancer.
Collapse
Affiliation(s)
- Masahiro Ono
- Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
7
|
Echigo H, Mishiro K, Munekane M, Fuchigami T, Washiyama K, Takahashi K, Kitamura Y, Wakabayashi H, Kinuya S, Ogawa K. Development of probes for radiotheranostics with albumin binding moiety to increase the therapeutic effects of astatine-211 ( 211At). Eur J Nucl Med Mol Imaging 2024; 51:412-421. [PMID: 37819452 DOI: 10.1007/s00259-023-06457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE We have developed probes for multiradionuclides radiotheranostics using RGD peptide ([67Ga]Ga-DOTA-c[RGDf(4-I)K] ([67Ga]1) and Ga-DOTA-[211At]c[RGDf(4-At)K] ([211At]2)) for clinical applications. The introduction of an albumin binding moiety (ABM), such as 4-(4-iodophenyl)-butyric acid (IPBA), that has high affinity with the blood albumin and prolongs the circulation half-life can improve the pharmacokinetics of drugs. To perform more effective targeted alpha therapy (TAT), we designed and synthesized Ga-DOTA-K([211At]APBA)-c(RGDfK) ([211At]5) with 4-(4-astatophenyl)-butyric acid (APBA), which has an astato group instead of an iodo group in IPBA. We evaluated whether APBA functions as ABM and [211At]5 is effective for TAT. In addition, we prepared 67Ga-labeled RGD peptide without ABM, [67Ga]Ga-DOTA-K-c(RGDfK) ([67Ga]3), and 125I-labeled RGD peptide with ABM, Ga-DOTA-K([125I]IPBA)-c(RGDfK) ([125I]4), to compare with [211At]5. METHODS Biodistribution experiments of [67Ga]3 without ABM, [125I]4 and [211At]5 with ABM were conducted in normal mice and U-87 MG tumor-bearing mice. In addition, two doses of [211At]5 (370 or 925 kBq) were administered to U-87 MG tumor-bearing mice to confirm the therapeutic effects. RESULTS The blood retention of [125I]4 and [211At]5 was remarkably increased compared to [67Ga]3. Also, [125I]4 and [211At]5 showed similar biodistribution and significantly greater tumor accumulation and retention compared to [67Ga]3. In addition, [211At]5 inhibited tumor growth in a dose-dependent manner. CONCLUSION The functionality of APBA as ABM like IPBA, and the usefulness of [211At]5 as the radionuclide therapy agent for TAT was revealed.
Collapse
Affiliation(s)
- Hiroaki Echigo
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yoji Kitamura
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
8
|
Hassan M, Bokhari TH, Lodhi NA, Khosa MK, Usman M. A review of recent advancements in Actinium-225 labeled compounds and biomolecules for therapeutic purposes. Chem Biol Drug Des 2023; 102:1276-1292. [PMID: 37715360 DOI: 10.1111/cbdd.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
In nuclear medicine, cancers that cannot be cured or can only be treated partially by traditional techniques like surgery or chemotherapy are killed by ionizing radiation as a form of therapeutic treatment. Actinium-225 is an alpha-emitting radionuclide that is highly encouraging as a therapeutic approach and more promising for targeted alpha therapy (TAT). Actinium-225 is the best candidate for tumor cells treatment and has physical characteristics such as high (LET) linear energy transfer (150 keV per μm), half-life (t1/2 = 9.92d), and short ranges (400-100 μm) which prevent the damage of normal healthy tissues. The introduction of various new radiopharmaceuticals and radioisotopes has significantly assisted the advancement of nuclear medicine. Ac-225 radiopharmaceuticals continuously demonstrate their potential as targeted alpha therapeutics. 225 Ac-labeled radiopharmaceuticals have confirmed their importance in medical and clinical areas by introducing [225 Ac]Ac-PSMA-617, [225 Ac]Ac-DOTATOC, [225 Ac]Ac-DOTA-substance-P, reported significantly improved response in patients with prostate cancer, neuroendocrine, and glioma, respectively. The development of these radiopharmaceuticals required a suitable buffer, incubation time, optimal pH, and reaction temperature. There is a growing need to standardize quality control (QC) testing techniques such as radiochemical purity (RCP). This review aims to summarize the development of the Ac-225 labeled compounds and biomolecules. The current state of their reported resulting clinical applications is also summarized as well.
Collapse
Affiliation(s)
- Maria Hassan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Nadeem Ahmed Lodhi
- Isotope Production Division, Pakistan institute of Nuclear Science & Technology (PINSTECH), Islamabad, Pakistan
| | | | - Muhammad Usman
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
9
|
Echavidre W, Fagret D, Faraggi M, Picco V, Montemagno C. Recent Pre-Clinical Advancements in Nuclear Medicine: Pioneering the Path to a Limitless Future. Cancers (Basel) 2023; 15:4839. [PMID: 37835533 PMCID: PMC10572076 DOI: 10.3390/cancers15194839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The theranostic approach in oncology holds significant importance in personalized medicine and stands as an exciting field of molecular medicine. Significant achievements have been made in this field in recent decades, particularly in treating neuroendocrine tumors using 177-Lu-radiolabeled somatostatin analogs and, more recently, in addressing prostate cancer through prostate-specific-membrane-antigen targeted radionuclide therapy. The promising clinical results obtained in these indications paved the way for the further development of this approach. With the continuous discovery of new molecular players in tumorigenesis, the development of novel radiopharmaceuticals, and the potential combination of theranostics agents with immunotherapy, nuclear medicine is poised for significant advancements. The strategy of theranostics in oncology can be categorized into (1) repurposing nuclear medicine agents for other indications, (2) improving existing radiopharmaceuticals, and (3) developing new theranostics agents for tumor-specific antigens. In this review, we provide an overview of theranostic development and shed light on its potential integration into combined treatment strategies.
Collapse
Affiliation(s)
- William Echavidre
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Daniel Fagret
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, CHU Grenoble Alpes, Inserm, 38000 Grenoble, France;
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| |
Collapse
|
10
|
Kazuta N, Watanabe H, Ono M. Synthesis and evaluation of 111 In-labeled tetrapeptide-based compounds as single-photon emission computed tomography imaging probes targeting granzyme B. J Labelled Comp Radiopharm 2023; 66:298-307. [PMID: 37247847 DOI: 10.1002/jlcr.4045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/28/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Granzyme B is an attractive target as a biomarker for contributing to improve the treatment with immune checkpoint inhibitor (ICI). In this study, we designed novel 111 In-labeled granzyme B-targeting single-photon emission computed tomography (SPECT) imaging probes, [111 In]IDT and [111 In]IDAT. Nonradioactive In-labeled granzyme B-targeting compounds ([nat In]IDT, [nat In]IDAT) showed the affinity for recombinant mouse granzyme B. [111 In]IDT and [111 In]IDAT were obtained with moderate radiochemical yield and high stability in mouse plasma (>95%). In a biodistribution experiment using tumor-bearing mice, [111 In]IDT and [111 In]IDAT showed moderate accumulation in tumor. Ex vivo autoradiography (ARG) indicated that the accumulation of radioactivity in tumor was correlated to expression of granzyme B confirmed by the immunohistochemical staining. These results indicated that [111 In]IDT and [111 In]IDAT showed the basic properties as granzyme B-targeting SPECT probes.
Collapse
Affiliation(s)
- Nobuki Kazuta
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Tsuchihashi S, Nakashima K, Tarumizu Y, Ichikawa H, Jinda H, Watanabe H, Ono M. Development of Novel 111In/ 225Ac-Labeled Agent Targeting PSMA for Highly Efficient Cancer Radiotheranostics. J Med Chem 2023. [PMID: 37285471 DOI: 10.1021/acs.jmedchem.3c00346] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a promising target for metastatic castration-resistant prostate cancer. We previously reported the effectiveness of PSMA-DA1 as a PSMA-targeting radiotheranostic agent containing an albumin binder moiety. To further enhance tumor uptake, we newly designed PSMA-NAT-DA1 (PNT-DA1) by the introduction of a lipophilic linker into PSMA-DA1. The PSMA affinity of [111In]In-PNT-DA1 was increased (Kd = 8.20 nM) compared with that of [111In]In-PSMA-DA1 (Kd = 89.4 nM). [111In]In-PNT-DA1 showed markedly high tumor accumulation (131.6% injected dose/g at 48 h post-injection), and [111In]In-PNT-DA1 enabled the visualization of the tumor clearly at 24 h post-injection with SPECT/CT imaging. The administration of [225Ac]Ac-PNT-DA1 (2.5 kBq) led to shrinkage of the tumor without marked toxicity, and the antitumor effects of [225Ac]Ac-PNT-DA1 were superior to those of [225Ac]Ac-PSMA-DA1 and [225Ac]Ac-PSMA-617, which is the current gold standard for PSMA-targeting 225Ac-endoradiotherapy. These results suggest that the combination of [111In]In-PNT-DA1 and [225Ac]Ac-PNT-DA1 comprises a promising method of PSMA-targeting radiotheranostics.
Collapse
Affiliation(s)
- Shohei Tsuchihashi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuma Nakashima
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuta Tarumizu
- Research Center, Nihon Medi-Physics Co., Ltd., 3-1 Sodegaura-shi, Chiba 299-0266, Japan
| | - Hiroaki Ichikawa
- Research Center, Nihon Medi-Physics Co., Ltd., 3-1 Sodegaura-shi, Chiba 299-0266, Japan
| | - Hiroki Jinda
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Gao P, Li T, Zhang K, Luo G. Recent advances in the molecular targeted drugs for prostate cancer. Int Urol Nephrol 2023; 55:777-789. [PMID: 36719528 DOI: 10.1007/s11255-023-03487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
CONTEXT Prostate cancer (PCa) is the second largest male tumor in the world and one of the most common malignant tumors in the urinary system. In recent years, the incidence rate of PCa in China has been increasing year by year. Meanwhile, refractory hormone resistance and adverse drug reactions of advanced PCa cause serious harm to patients. OBJECTIVE The present study aims to systematically review the recent advances in molecularly targeted drugs for prostate cancer and to use the retrieval and analysis of the literature library to summarize the adverse effects of different drugs so as to maximize the treatment benefits of targeted therapies. EVIDENCE ACQUISITION We performed a systematic literature search of the Medline, EMBASE, PubMed, and Cochrane databases up to March 2022 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Medical Subject Heading (MeSH) terms and keywords such as (prostate cancer) AND (molecular target drugs) AND (side effect) were used. No language restrictions were set on the search process, and all these results were processed independently by two authors. Consensus was reached through discussion once met with any disagreements. The primary endpoint was differential features between different molecular targeted drugs. Secondary endpoints were side effects of different drugs on the body and corresponding prognostic values. EVIDENCE SYNTHESIS The Cochrane Collaboration risk of bias tool was used to assess the study quality in terms of sequence generation, allocation concealment, blinding, the completeness of outcome data, selective reporting and other biases. We retrieved 332 articles, of which 49 met the criteria for inclusion. Included studies show that prostatic tumor cells, tumor neovascularization and immune checkpoints are the main means for targeted therapy. Common drugs include 177 Lu-PSMA, Olaparib, Rucaparib, Bevacizumab, Pazopanib, Sorafenib, Cabozantinib, Aflibercept, Ipilimumab, Atezolizumab, Avelumab, Durvalumab. A series of publicly available data suitable for further analysis of side effects. An over-representation analysis of these datasets revealed reasonable dosage and usage is the key to controlling the side effects of targeted drugs. Important information such as the publication year, the first author, location and outcome observation of adverse effects was extracted from the original article. If the study data has some insufficient data, contacting the corresponding authors is necessary. All the studies included prospective nonrandomized and randomized research. Retrospective reviews were also screened according to the relevant to the purpose of this study. Meeting abstracts as well as letters to the editor and editorials were excluded. STATISTICAL ANALYSIS Data analysis was based on Cochrane's risk of bias tools to obtain the quality assessment. The included randomized studies used RoB2 and non-randomized ones corresponded to ROBINS-I. Standardized mean differences (SMD) were used to determine relative risk (RR) and side effects between groups. The eggers' test was used to check the publication bias from variable information in the included studies. All p < 0.05 were considered to be significant, and 95% was set as the confidence interval. CONCLUSIONS With the approval of a variety of targeted drugs, targeted therapy will be widely used in the treatment of advanced or metastatic prostate cancer. Despite the existence of adverse reactions related to targeted drug treatment, it is still meaningful to adjust the drug dosage or treatment cycle to reduce the occurrence of adverse reactions, improving the treatment benefits of patients.
Collapse
Affiliation(s)
- Pudong Gao
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Tao Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, China
| | - Kuiyuan Zhang
- Department of Urology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
13
|
Busslinger SD, Tschan VJ, Richard OK, Talip Z, Schibli R, Müller C. [ 225Ac]Ac-SibuDAB for Targeted Alpha Therapy of Prostate Cancer: Preclinical Evaluation and Comparison with [ 225Ac]Ac-PSMA-617. Cancers (Basel) 2022; 14:5651. [PMID: 36428743 PMCID: PMC9688344 DOI: 10.3390/cancers14225651] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
In the present study, SibuDAB, an albumin-binding PSMA ligand, was investigated in combination with actinium-225 and the data were compared with those of [225Ac]Ac-PSMA-617. In vitro, [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617 showed similar tumor cell uptake and PSMA-binding affinities as their 177Lu-labeled counterparts. The in vitro binding to serum albumin in mouse and human blood plasma, respectively, was 2.8-fold and 1.4-fold increased for [225Ac]Ac-SibuDAB as compared to [177Lu]Lu-SibuDAB. In vivo, this characteristic was reflected by the longer retention of [225Ac]Ac-SibuDAB in the blood than previously seen for [177Lu]Lu-SibuDAB. Similar to [225Ac]Ac-PSMA-617, [225Ac]Ac-SibuDAB was well tolerated at 30 kBq per mouse. Differences in blood cell counts were observed between treated mice and untreated controls, but no major variations were observed between values obtained for [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617. [225Ac]Ac-SibuDAB was considerably more effective to treat PSMA-positive tumor xenografts than [225Ac]Ac-PSMA-617. Only 5 kBq per mouse were sufficient to eradicate the tumors, whereas tumor regrowth was observed for mice treated with 5 kBq [225Ac]Ac-PSMA-617 and only one out of six mice survived until the end of the study. The enhanced therapeutic efficacy of [225Ac]Ac-SibuDAB as compared to that of [225Ac]Ac-PSMA-617 and reasonable safety data qualify this novel radioligand as a candidate for targeted α-therapy of prostate cancer.
Collapse
Affiliation(s)
- Sarah D. Busslinger
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Viviane J. Tschan
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | | | - Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5/10, ETH Zurich, 8093 Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5/10, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
14
|
Lindsley C, Müller CE, Bongarzone S. Diagnostic and Therapeutic Radiopharmaceuticals. ACS Pharmacol Transl Sci 2022; 5:835-837. [PMID: 36268118 PMCID: PMC9578137 DOI: 10.1021/acsptsci.2c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Craig
W. Lindsley
- Department
of Pharmacology, Department of Chemistry, and Vanderbilt Institute
of Chemical Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christa E. Müller
- PharmaCenter
Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Salvatore Bongarzone
- Technical
Research and Development, Advanced Accelerator
Applications, a Novartis Company, via Ribes 5, Colleretto
Giacosa 10010, Italy
| |
Collapse
|
15
|
Nakashima K, Iikuni S, Watanabe H, Ono M. Application of the Chelator-Based Clickable Radiotheranostic Platform to Moderate-Molecular-Weight Ligands. ACS Med Chem Lett 2022; 13:1642-1647. [PMID: 36262405 PMCID: PMC9575180 DOI: 10.1021/acsmedchemlett.2c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
We have reported that the chelator-based clickable radiotheranostic platform, ADIBO-DOTADG-ALB (ADA), has favorable properties as a radiotheranostic platform for low-molecular-weight ligands. In this study, we evaluated the applicability of ADA to moderate-molecular-weight ligands to expand the utility of the ADA platform. As a moderate-molecular-weight ligand, we selected exendin-4, a peptide-based agonist to glucagon-like peptide-1 receptor (GLP-1R). An exendin-4-incorporated ADA derivative, exendin-4-Cys40-triazole-DOTADG-ALB (EtDA), was radiolabeled with 111In by the conjugation of exendin-4-Cys40 azide to [111In]In-ADA. The click ligation of exendin-4-Cys40 azide to [111In]In-ADA was quantitatively completed in 10 min under ambient conditions. In the in vitro cell-binding assay and albumin-binding assay, [111In]In-EtDA showed strong binding to both a GLP-1R-expressing cell and albumin. In the biodistribution assay, [111In]In-EtDA showed markedly protracted tumor uptake, which was significantly decreased by the coinjection of exendin-4-Cys40. The single photon emission computed tomography (SPECT) image of [111In]In-EtDA visualized the tumor clearly. These results indicated the utility of [111In]In-EtDA as a radiotheranostic agent, suggesting the applicability of the ADA platform to moderate-molecular-weight ligands.
Collapse
Affiliation(s)
- Kazuma Nakashima
- Department of Patho-Functional Bioanalysis,
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis,
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis,
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis,
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
Lindsley CW, Müller CE, Bongarzone S. Diagnostic and Therapeutic Radiopharmaceuticals. J Med Chem 2022; 65:12497-12499. [DOI: 10.1021/acs.jmedchem.2c01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Craig W. Lindsley
- Department of Pharmacology, Department of Chemistry, and Vanderbilt Institute of Chemical Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany
| | - Salvatore Bongarzone
- Technical Research and Development, Advanced Accelerator Applications, a Novartis Company, via Ribes 5, Colleretto Giacosa 10010, Italy
| |
Collapse
|
17
|
Iikuni S, Ohara T, Watanabe H, Ono M. Structure-Activity Relationships and Pharmacokinetics of 111In-Labeled Glucagon-like Peptide-1 Receptor-Targeting Exendin-4 Derivatives Conjugated with Albumin Binder Moieties. Mol Pharm 2022; 19:2832-2839. [PMID: 35757958 DOI: 10.1021/acs.molpharmaceut.2c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insulinomas are neuroendocrine tumors that are derived from pancreatic β-cells, and they often overexpress the glucagon-like peptide-1 receptor (GLP-1R). Radiolabeled exendin-4 derivatives have been used to noninvasively detect the GLP-1R during the diagnosis and preoperative localization of insulinomas; however, their marked renal accumulation can hinder the imaging of pancreatic tail lesions. In this study, we designed and synthesized 111In-labeled exendin-4 derivatives that possessed 4-(4-substituted phenyl)-moieties as albumin binder (ALB) moieties ([111In]In-E4DA2-4), and studied their structure-activity relationships and pharmacokinetics (as well as those of [111In]In-E4DA1, which we previously reported) to determine their usefulness as radioligands for GLP-1R imaging. 111In-labeling was performed by reacting maleimide precursors with [111In]InCl3 in 2-(N-morpholino)ethanesulfonic acid buffer, and then, the products were conjugated with exendin-4-Cys40. A saturation binding assay using GLP-1R-expressing INS-1 cells was carried out to evaluate the in vitro affinity of the radioligands for the cells. In addition, the affinity of the 111In-labeled derivatives for human serum albumin (HSA) was evaluated in an HSA-binding assay. Furthermore, an in vivo biodistribution study and single-photon emission computed tomography (SPECT) imaging were performed using INS-1 tumor-bearing mice. [111In]In-E4DA1-4 were prepared at radiochemical yields of 6-17%. In the saturation binding assay, [111In]In-E4DA1-4 showed a similar affinity for the INS-1 cells, indicating that the kind of ALB moiety used had no effect on the affinity of the exendin-4 derivatives for the cells. In the HSA-binding assay, [111In]In-E4DA1-4 all bound to HSA. In the biodistribution assay, [111In]In-E4DA1-4 exhibited marked tumor accumulation and retention. In addition, they showed lower renal accumulation than previously reported exendin-4-based radioligands without ALB moieties. The pharmacokinetics of the 111In-labeled exendin-4 derivatives varied markedly according to the kind of ALB moiety used. In particular, [111In]In-E4DA2, which contained a 4-(4-bromophenyl)butyric acid derivative as an ALB moiety, showed the highest tumor accumulation. SPECT imaging with [111In]In-E4DA2 clearly visualized INS-1 tumors with no marked accumulation in normal organs. These results provide important information that will aid the design of novel exendin-4-based radioligands targeting the GLP-1R.
Collapse
Affiliation(s)
- Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takaki Ohara
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Iikuni S, Tarumizu Y, Tsuchihashi S, Ohara T, Watanabe H, Ono M. Synthesis and Evaluation of Novel 111In-Labeled Picolinic Acid-Based Radioligands Containing an Albumin Binder for Development of a Radiotheranostic Platform. Mol Pharm 2022; 19:2725-2736. [PMID: 35758049 DOI: 10.1021/acs.molpharmaceut.2c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Picolinic acid-based metallic chelators, e.g., neunpa and octapa, have attracted much attention as promising scaffolds for radiotheranostic agents, particularly those containing larger α-emitting radiometals. Furthermore, albumin binder (ALB) moieties, which noncovalently bind to albumin, have been utilized to improve the pharmacokinetics of radioligands targeting various biomolecules. In this study, we designed and synthesized novel neunpa and octapa derivatives (Neunpa-2 and Octapa-2, respectively), which contained a prostate-specific membrane antigen (PSMA)-binding moiety (model targeting vector) and an ALB moiety. We evaluated the fundamental properties of these derivatives as radiotheranostic agents using 111In. In a cell-binding assay using LNCaP (PSMA-positive) cells, [111In]In-Neunpa-2 and [111In]In-Octapa-2 specifically bound to the LNCaP cells. In addition, a human serum albumin (HSA)-binding assay revealed that [111In]In-Neunpa-2 and [111In]In-Octapa-2 exhibited greater binding to HSA than their non-ALB-conjugated counterparts ([111In]In-Neunpa-1 and [111In]In-Octapa-1, respectively). A biodistribution assay conducted in LNCaP tumor-bearing mice showed that the introduction of the ALB moiety into the 111In-labeled neunpa and octapa derivatives resulted in markedly enhanced tumor uptake and retention of the radioligands. Furthermore, single-photon emission computed tomography imaging of LNCaP tumor-bearing mice with [111In]In-Octapa-2 produced tumor images. These results indicate that [111In]In-Octapa-2 may be a useful PSMA imaging probe and that picolinic acid-based ALB-conjugated radiometallic complexes may be promising candidates as radiotheranostic agents.
Collapse
Affiliation(s)
- Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 606-8501 Kyoto, Japan
| | - Yuta Tarumizu
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 606-8501 Kyoto, Japan
| | - Shohei Tsuchihashi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 606-8501 Kyoto, Japan
| | - Takaki Ohara
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 606-8501 Kyoto, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 606-8501 Kyoto, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 606-8501 Kyoto, Japan
| |
Collapse
|
19
|
Meng L, Fang J, Zhao L, Wang T, Yuan P, Zhao Z, Zhuang R, Lin Q, Chen H, Chen X, Zhang X, Guo Z. Rational Design and Pharmacomodulation of Protein-Binding Theranostic Radioligands for Targeting the Fibroblast Activation Protein. J Med Chem 2022; 65:8245-8257. [PMID: 35658448 DOI: 10.1021/acs.jmedchem.1c02162] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fibroblast activation protein (FAP), overexpressed on cancer-associated fibroblasts (CAFs), has become a valuable target for tumor diagnosis and therapy. However, most FAP-based radioligands show insufficient tumor uptake and retention. In this study, three novel albumin-binding FAP ligands (denoted as FSDD0I, FSDD1I, and FSDD3I) were labeled with 68Ga and 177Lu to overcome these limitations. Cell-based studies and molecular docking assays were performed to identify the specificity and protein-binding properties for FAP. Positron emission tomography (PET) scans in human hepatocellular carcinoma patient-derived xenografts (HCC-PDXs) animal models revealed longer blood retention of 68Ga-FSDD0I than 68Ga-FAPI-04, 68Ga-FSDD1I, and 68Ga-FSDD3I. Remarkably, 68Ga-FSDD3I had prominent tumor-to-nontarget (T/NT) ratios. The prominent tumor retention properties of 177Lu-FSDD0I in single photon emission computed tomography (SPECT) imaging and biodistribution studies were demonstrated. In summary, this study reports a proof-of-concept study of albumin-binding radioligands for FAP-targeted imaging and targeted radionuclide therapy (TRT).
Collapse
Affiliation(s)
- Lingxin Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Liang Zhao
- Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China.,Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Tingting Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Pu Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zuoquan Zhao
- Department of Nuclear Medicine, Cardiovascular Institute and FuWai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qin Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Haojun Chen
- Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
20
|
Iikuni S, Kamei I, Ohara T, Watanabe H, Ono M. Development of an 111In-Labeled Glucagon-Like Peptide-1 Receptor-Targeting Exendin-4 Derivative that Exhibits Reduced Renal Uptake. Mol Pharm 2022; 19:1019-1027. [PMID: 35138111 DOI: 10.1021/acs.molpharmaceut.2c00068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Insulinomas are neuroendocrine tumors that are mainly found in the pancreas. Surgical resection is currently the first-line treatment for insulinomas; thus, it is vital to preoperatively determine their locations. The marked expression of the glucagon-like peptide-1 receptor (GLP-1R) is seen in pancreatic β-cells and almost all insulinomas. Radiolabeled derivatives of exendin-4, a GLP-1R agonist, have been used with nuclear medicine imaging techniques for the in vivo detection of the GLP-1R; however, their marked renal accumulation can hinder the imaging of pancreatic tail lesions. To develop a GLP-1R imaging probe that exhibits reduced renal accumulation, we designed and synthesized a straight-chain GLP-1R-targeting radioligand, [111In]In-E4DA1, which consisted of exendin-4, DOTADG (a chelator), and an (iodophenyl)butyric acid derivative (an albumin binder [ALB]). We performed preclinical evaluations of [111In]In-E4DA1 to investigate its utility as a GLP-1R imaging probe. [111In]In-E4DA1 and [111In]In-E4D (a control compound lacking the ALB moiety) were prepared by reacting the corresponding precursors with [111In]InCl3 in buffer. Cell-binding and human serum albumin (HSA)-binding assays were performed to assess the in vitro affinity of the molecules for INS-1 (GLP-1R-positive) cells and albumin, respectively. A biodistribution assay and single-photon emission computed tomography imaging were carried out using INS-1 tumor-bearing mice. In the cell-binding assay, [111In]In-E4DA1 and [111In]In-E4D exhibited in vitro binding to INS-1 cells. In the HSA-binding assay, [111In]In-E4DA1 bound to HSA, while [111In]In-E4D showed little HSA binding. The in vivo experiments involving INS-1 tumor-bearing mice revealed that the introduction of an ALB moiety into the DOTADG-based exendin-4 derivative markedly increased the molecule's tumor accumulation while decreasing its renal accumulation. In addition, [111In]In-E4DA1 exhibited greater tumor accumulation than renal accumulation, whereas previously reported radiolabeled exendin-4 derivatives demonstrated much higher accumulation in the kidneys than in tumors. These results indicate that [111In]In-E4DA1 may be a useful GLP-1R imaging probe, as it demonstrates only slight renal accumulation.
Collapse
Affiliation(s)
- Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Ichiro Kamei
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Takaki Ohara
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
21
|
Wang Q, Lu C, Li K, Xia YM, qiu L, Lin J. Legumain-mediated self-assembly of 131I-labelled agent for targeted radiotherapy of tumor. J Mater Chem B 2022; 10:2251-2259. [DOI: 10.1039/d1tb02862f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted radionuclide therapy (TRT) has been a promising strategy for cancer therapy, which can inhibit or kill cancer cells by selectively delivering radionuclide to target tissues. Herein, a legumain-targeted therapeutic...
Collapse
|