1
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Li G, Li J, Tian Y, Zhao Y, Pang X, Yan A. Machine learning-based classification models for non-covalent Bruton's tyrosine kinase inhibitors: predictive ability and interpretability. Mol Divers 2024; 28:2429-2447. [PMID: 37479824 DOI: 10.1007/s11030-023-10696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton's tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors from the Reaxys and ChEMBL databases, removing compounds with covalent bonds and duplicates to obtain a dataset of 3895 inhibitors of non-covalent. These inhibitors were characterized using MACCS fingerprints and Morgan fingerprints, and four traditional machine learning algorithms (decision trees (DT), random forests (RF), support vector machines (SVM), and extreme gradient boosting (XGBoost)) were used to build 16 classification models. In addition, four deep learning models were developed using deep neural networks (DNN). The best model, Model D_4, which was built using XGBoost and MACCS fingerprints, achieved an accuracy of 94.1% and a Matthews correlation coefficient (MCC) of 0.75 on the test set. To provide interpretable explanations, we employed the SHAP method to decompose the predicted values into the contributions of each feature. We also used K-means dimensionality reduction and hierarchical clustering to visualize the clustering effects of molecular structures of the inhibitors. The results of this study were validated using crystal structures, and we found that the interaction between the BTK amino acid residue and the important features of clustered scaffold was consistent with the known properties of the complex crystal structures. Overall, our models demonstrated high predictive ability and a qualitative model can be converted to a quantitative model to some extent by SHAP, making them valuable for guiding the design of new BTK inhibitors with desired activity.
Collapse
Affiliation(s)
- Guo Li
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Jiaxuan Li
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Yujia Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Yunyang Zhao
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Xiaoyang Pang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Yu M, Wang X, Tang Y, Wang L, Hu X, Weng Q, Wang J, Cui S. Discovery of Novel Azaindoles as Potent and Selective PI3Kδ Inhibitors for Treatment of Multiple Sclerosis. J Med Chem 2024; 67:9628-9644. [PMID: 38754045 DOI: 10.1021/acs.jmedchem.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system and the unmet need for MS treatment demands new therapeutic development. Particularly, PI3Kδ is a high-value target for autoimmune disease, while the investigation of PI3Kδ inhibitors for MS therapy is relatively scarce. Herein, we report a novel class of azaindoles as PI3Kδ inhibitors for MS treatment. Compound 31, designed via nitrogen bioisosterism, displayed excellent PI3Kδ inhibitory activity and selectivity. In vitro assay showed that 31 exhibited superior activity on T lymphocytes to inhibit the proliferation of CD4+, CD8+, and CD3+ T cells. In the experimental autoimmune encephalomyelitis (EAE) model, 31 showed a comparable therapeutical efficacy with Dexamethasone to significantly ameliorate EAE symptoms. Mechanistic studies showed that compound 31 could significantly inhibit the PI3K/AKT/mTOR signaling pathway and inhibited T-cell proliferation and differentiation. Overall, this work provides a new structural PI3Kδ inhibitor and a new vision for MS therapy.
Collapse
Affiliation(s)
- Mengyao Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xian Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongmei Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longling Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Qinjie Weng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
| | - Jiajia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Ruyet L, Roblick C, Häfliger J, Wang ZX, Stoffels TJ, Daniliuc CG, Gilmour R. Catalytic Ring Expanding Difluorination: An Enantioselective Platform to Access β,β-Difluorinated Carbocycles. Angew Chem Int Ed Engl 2024; 63:e202403957. [PMID: 38482736 DOI: 10.1002/anie.202403957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Cyclic β,β-difluoro-carbonyl compounds have a venerable history as drug discovery leads, but limitations in the synthesis arsenal continue to impede chemical space exploration. This challenge is particularly acute in the arena of fluorinated medium rings where installing the difluoromethylene unit subtly alters the ring conformation by expanding the internal angle (∠C-CF2-C>∠C-CH2-C): this provides a handle to modulate physicochemistry (e.g. pKa). To reconcile this disparity, a highly modular ring expansion has been devised that leverages simple α,β-unsaturated esters and amides, and processes them to one-carbon homologated rings with concomitant geminal difluorination (6 to 10 membered rings, up to 95 % yield). This process is a rare example of the formal difluorination of an internal alkene and is enabled by sequential I(III)-enabled O-activation. Validation of enantioselective catalysis in the generation of unprecedented medium ring scaffolds is reported (up to 93 : 7 e.r.) together with X-ray structural analyses and product derivatization.
Collapse
Affiliation(s)
- Louise Ruyet
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Christoph Roblick
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Joel Häfliger
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Zi-Xuan Wang
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Tobias Jürgen Stoffels
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
5
|
Himmelbauer M, Bajrami B, Basile R, Capacci A, Chen T, Choi CK, Gilfillan R, Gonzalez-Lopez de Turiso F, Gu C, Hoemberger M, Johnson DS, Jones JH, Kadakia E, Kirkland M, Lin EY, Liu Y, Ma B, Magee T, Mantena S, Marx IE, Metrick CM, Mingueneau M, Murugan P, Muste CA, Nadella P, Nevalainen M, Parker Harp CR, Pattaropong V, Pietrasiewicz A, Prince RJ, Purgett TJ, Santoro JC, Schulz J, Sciabola S, Tang H, Vandeveer HG, Wang T, Yousaf Z, Helal CJ, Hopkins BT. Discovery and Preclinical Characterization of BIIB129, a Covalent, Selective, and Brain-Penetrant BTK Inhibitor for the Treatment of Multiple Sclerosis. J Med Chem 2024; 67:8122-8140. [PMID: 38712838 PMCID: PMC11129193 DOI: 10.1021/acs.jmedchem.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
Multiple sclerosis (MS) is a chronic disease with an underlying pathology characterized by inflammation-driven neuronal loss, axonal injury, and demyelination. Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase and member of the TEC family of kinases, is involved in the regulation, migration, and functional activation of B cells and myeloid cells in the periphery and the central nervous system (CNS), cell types which are deemed central to the pathology contributing to disease progression in MS patients. Herein, we describe the discovery of BIIB129 (25), a structurally distinct and brain-penetrant targeted covalent inhibitor (TCI) of BTK with an unprecedented binding mode responsible for its high kinome selectivity. BIIB129 (25) demonstrated efficacy in disease-relevant preclinical in vivo models of B cell proliferation in the CNS, exhibits a favorable safety profile suitable for clinical development as an immunomodulating therapy for MS, and has a low projected total human daily dose.
Collapse
Affiliation(s)
- Martin
K. Himmelbauer
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bekim Bajrami
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Rebecca Basile
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Andrew Capacci
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - TeYu Chen
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Colin K. Choi
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Rab Gilfillan
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | | | - Chungang Gu
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Marc Hoemberger
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas S. Johnson
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - J. Howard Jones
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ekta Kadakia
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Melissa Kirkland
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Edward Y. Lin
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ying Liu
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bin Ma
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Tom Magee
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Srinivasa Mantena
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Isaac E. Marx
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Claire M. Metrick
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Mingueneau
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Paramasivam Murugan
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Cathy A. Muste
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Prasad Nadella
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Marta Nevalainen
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Chelsea R. Parker Harp
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Vatee Pattaropong
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Alicia Pietrasiewicz
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Robin J. Prince
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Thomas J. Purgett
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joseph C. Santoro
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jurgen Schulz
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Simone Sciabola
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Hao Tang
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - H. George Vandeveer
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ti Wang
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Zain Yousaf
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Christopher J. Helal
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian T. Hopkins
- Biogen Research and Development, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
6
|
Li R, Lei Y, Rezk A, Diego A Espinoza, Wang J, Feng H, Zhang B, Barcelos IP, Zhang H, Yu J, Huo X, Zhu F, Yang C, Tang H, Goldstein AC, Banwell BL, Hakonarson H, Xu H, Mingueneau M, Sun B, Li H, Bar-Or A. Oxidative phosphorylation regulates B cell effector cytokines and promotes inflammation in multiple sclerosis. Sci Immunol 2024; 9:eadk0865. [PMID: 38701189 DOI: 10.1126/sciimmunol.adk0865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.
Collapse
Affiliation(s)
- Rui Li
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yanting Lei
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ayman Rezk
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diego A Espinoza
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jing Wang
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Huiru Feng
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Bo Zhang
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Isabella P Barcelos
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hang Zhang
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jing Yu
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xinrui Huo
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Fangyi Zhu
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Changxin Yang
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hao Tang
- MS Research Unit, Biogen, Cambridge, MA 02142, USA
| | - Amy C Goldstein
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brenda L Banwell
- Division of Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongwei Xu
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | | | - Bo Sun
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- MS Research Unit, Biogen, Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Airas L, Bermel RA, Chitnis T, Hartung HP, Nakahara J, Stuve O, Williams MJ, Kieseier BC, Wiendl H. A review of Bruton's tyrosine kinase inhibitors in multiple sclerosis. Ther Adv Neurol Disord 2024; 17:17562864241233041. [PMID: 38638671 PMCID: PMC11025433 DOI: 10.1177/17562864241233041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/29/2024] [Indexed: 04/20/2024] Open
Abstract
Bruton's tyrosine kinase (BTK) inhibitors are an emerging class of therapeutics in multiple sclerosis (MS). BTK is expressed in B-cells and myeloid cells, key progenitors of which include dendritic cells, microglia and macrophages, integral effectors of MS pathogenesis, along with mast cells, establishing the relevance of BTK inhibitors to diverse autoimmune conditions. First-generation BTK inhibitors are currently utilized in the treatment of B-cell malignancies and show efficacy in B-cell modulation. B-cell depleting therapies have shown success as disease-modifying treatments (DMTs) in MS, highlighting the potential of BTK inhibitors for this indication; however, first-generation BTK inhibitors exhibit a challenging safety profile that is unsuitable for chronic use, as required for MS DMTs. A second generation of highly selective BTK inhibitors has shown efficacy in modulating MS-relevant mechanisms of pathogenesis in preclinical as well as clinical studies. Six of these BTK inhibitors are undergoing clinical development for MS, three of which are also under investigation for chronic spontaneous urticaria (CSU), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Phase II trials of selected BTK inhibitors for MS showed reductions in new gadolinium-enhancing lesions on magnetic resonance imaging scans; however, the safety profile is yet to be ascertained in chronic use. Understanding of the safety profile is developing by combining safety insights from the ongoing phase II and III trials of second-generation BTK inhibitors for MS, CSU, RA and SLE. This narrative review investigates the potential of BTK inhibitors as an MS DMT, the improved selectivity of second-generation inhibitors, comparative safety insights established thus far through clinical development programmes and proposed implications in female reproductive health and in long-term administration.
Collapse
Affiliation(s)
- Laura Airas
- Division of Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Robert A. Bermel
- Mellen Center for MS, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Harvard Medical School, Boston, MA, USA
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Neurology Section, VA North Texas Health Care System, Dallas, TX, USA
- Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Bernd C. Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Novartis Pharma AG, Basel, Switzerland
| | - Heinz Wiendl
- Department of Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A 1, Muenster 48149, Germany
| |
Collapse
|
8
|
Huang G, Hucek D, Cierpicki T, Grembecka J. Applications of oxetanes in drug discovery and medicinal chemistry. Eur J Med Chem 2023; 261:115802. [PMID: 37713805 DOI: 10.1016/j.ejmech.2023.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Devon Hucek
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Huang J, Ma Z, Yang Z, He Z, Bao J, Peng X, Liu Y, Chen T, Cai S, Chen J, Zeng Z. Discovery of Ibrutinib-based BTK PROTACs with in vivo anti-inflammatory efficacy by inhibiting NF-κB activation. Eur J Med Chem 2023; 259:115664. [PMID: 37487306 DOI: 10.1016/j.ejmech.2023.115664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
As a critical upstream regulator of nuclear factor-κB (NF-κB) activation, Bruton's tyrosine kinase (BTK) has been identified to be an effective therapeutic target for the treatment of acute or chronic inflammatory diseases. Herein, we describe the design, synthesis and structure-activity-relationship analysis of a novel series of Ibrutinib-based BTK PROTACs by recruiting Cereblon (CRBN) ligase. Among them, compound 15 was identified as the most potent degrader with a DC50 of 3.18 nM, significantly better than the positive control MT802 (DC50 of 63.31 nM). Compound 15 could also degrade BTK protein in Lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and suppress the mRNA expression and secretion of proinflammatory cytokines such as IL-1β and IL-6 by inhibiting NF-κB activation. Furthermore, compound 15 reduced inflammatory responses in a mouse zymosan-induced peritonitis (ZIP) model. Our findings demonstrated for the first time that targeting BTK degradation by PROTACs might be an alternative option for the treatment of inflammatory disorders, and compound 15 represents one of the most efficient BTK PROTACs (DC50 = 3.18 nM; Dmax = 99.90%; near 100% degradation at 8 h) reported so far and could serve as a lead compound for further investigation as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Junli Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zeli Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zichao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zengzhu He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jingna Bao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Yao Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
10
|
Abstract
The oxetane ring is an emergent, underexplored motif in drug discovery that shows attractive properties such as low molecular weight, high polarity, and marked three-dimensionality. Oxetanes have garnered further interest as isosteres of carbonyl groups and as molecular tools to fine-tune physicochemical properties of drug compounds such as pKa, LogD, aqueous solubility, and metabolic clearance. This perspective highlights recent applications of oxetane motifs in drug discovery campaigns (2017-2022), with emphasis on the effect of the oxetane on medicinally relevant properties and on the building blocks used to incorporate the oxetane ring. Based on this analysis, we provide an overview of the potential benefits of appending an oxetane to a drug compound, as well as potential pitfalls, challenges, and future directions.
Collapse
Affiliation(s)
- Juan J. Rojas
- Department of Chemistry,
Imperial College London, Molecular Sciences
Research Hub, White City
Campus, Wood Lane, London W12 0BZ, U.K.
| | - James A. Bull
- Department of Chemistry,
Imperial College London, Molecular Sciences
Research Hub, White City
Campus, Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
11
|
Yedla P, Babalghith AO, Andra VV, Syed R. PROTACs in the Management of Prostate Cancer. Molecules 2023; 28:molecules28093698. [PMID: 37175108 PMCID: PMC10179857 DOI: 10.3390/molecules28093698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer treatments with targeted therapy have gained immense interest due to their low levels of toxicity and high selectivity. Proteolysis-Targeting Chimeras (PROTACs) have drawn special attention in the development of cancer therapeutics owing to their unique mechanism of action, their ability to target undruggable proteins, and their focused target engagement. PROTACs selectively degrade the target protein through the ubiquitin-proteasome system, which describes a different mode of action compared to conventional small-molecule inhibitors or even antibodies. Among different cancer types, prostate cancer (PC) is the most prevalent non-cutaneous cancer in men. Genetic alterations and the overexpression of several genes, such as FOXA1, AR, PTEN, RB1, TP53, etc., suppress the immune response, resulting in drug resistance to conventional drugs in prostate cancer. Since the progression of ARV-110 (PROTAC for PC) into clinical phases, the focus of research has quickly shifted to protein degraders targeting prostate cancer. The present review highlights an overview of PROTACs in prostate cancer and their superiority over conventional inhibitors. We also delve into the underlying pathophysiology of the disease and explain the structural design and linkerology strategies for PROTAC molecules. Additionally, we touch on the various targets for PROTAC in prostate cancer, including the androgen receptor (AR) and other critical oncoproteins, and discuss the future prospects and challenges in this field.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology Hospitals, Gachibowli, Hyderabad 500082, India
| | - Ahmed O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Vindhya Vasini Andra
- Department of Medical Oncology, Omega Hospitals, Gachibowli, Hyderabad 500032, India
| | - Riyaz Syed
- Department of Chemiinformatics, Centella Scientific, JHUB, Jawaharlal Nehru Technological University, Hyderabad 500085, India
| |
Collapse
|
12
|
Guo Y, Hu N, Liu Y, Zhang W, Yu D, Shi G, Zhang B, Yin L, Wei M, Yuan X, Luo L, Wang F, Song X, Xin L, Wei Q, Li Y, Guo Y, Chen S, Zhang T, Zhang S, Zhou X, Zhang C, Su D, Liu J, Cheng Z, Zhang J, Xing H, Sun H, Li X, Zhao Y, He M, Wu Y, Guo Y, Sun X, Tian A, Zhou C, Young S, Liu X, Wang L, Wang Z. Discovery of BGB-8035, a Highly Selective Covalent Inhibitor of Bruton's Tyrosine Kinase for B-Cell Malignancies and Autoimmune Diseases. J Med Chem 2023; 66:4025-4044. [PMID: 36912866 DOI: 10.1021/acs.jmedchem.2c01938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Bruton's tyrosine kinase (BTK) plays an essential role in B-cell receptor (BCR)-mediated signaling as well as the downstream signaling pathway for Fc receptors (FcRs). Targeting BTK for B-cell malignancies by interfering with BCR signaling has been clinically validated by some covalent inhibitors, but suboptimal kinase selectivity may lead to some adverse effects, which also makes the clinical development of autoimmune disease therapy more challenging. The structure-activity relationship (SAR) starting from zanubrutinib (BGB-3111) leads to a series of highly selective BTK inhibitors, in which BGB-8035 is located in the ATP binding pocket and has similar hinge binding to ATP but exhibits high selectivity over other kinases (EGFR, Tec, etc.). With an excellent pharmacokinetic profile as well as demonstrated efficacy studies in oncology and autoimmune disease models, BGB-8035 has been declared a preclinical candidate. However, BGB-8035 showed an inferior toxicity profile compared to that of BGB-3111.
Collapse
Affiliation(s)
- Yunhang Guo
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Nan Hu
- Department of In Vivo Pharmacology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Ye Liu
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Wei Zhang
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Desheng Yu
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Gongyin Shi
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Bo Zhang
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Longbo Yin
- Department of In Vivo Pharmacology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Min Wei
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Xi Yuan
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Lusong Luo
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Fan Wang
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Xiaomin Song
- Department of In Vivo Pharmacology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Lei Xin
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Qiang Wei
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Yong Li
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Ying Guo
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Shuaishuai Chen
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Taichang Zhang
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Shuo Zhang
- Department of In Vivo Pharmacology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Xing Zhou
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Cuining Zhang
- Department of Nonclinical Safety Assessment, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Dan Su
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Junhua Liu
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Zhenzhen Cheng
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Jiye Zhang
- Department of In Vivo Pharmacology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Haimei Xing
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Hanzi Sun
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Xin Li
- Department of Nonclinical Safety Assessment, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Yuan Zhao
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Min He
- Department of In Vivo Pharmacology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Yue Wu
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Yin Guo
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Xuebing Sun
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Alice Tian
- Department of Nonclinical Safety Assessment, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Changyou Zhou
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Steve Young
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Xuesong Liu
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Lai Wang
- Department of In Vivo Pharmacology, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| | - Zhiwei Wang
- Department of Medicinal Chemistry, BeiGene (Beijing) Co., Ltd., Beijing 102206, P.R. China
| |
Collapse
|
13
|
Najmi A, Thangavel N, Mohanan AT, Qadri M, Albratty M, Ashraf SE, Saleh SF, Nayeem M, Mohan S. Structural Complementarity of Bruton’s Tyrosine Kinase and Its Inhibitors for Implication in B-Cell Malignancies and Autoimmune Diseases. Pharmaceuticals (Basel) 2023; 16:ph16030400. [PMID: 36986499 PMCID: PMC10051736 DOI: 10.3390/ph16030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a critical component in B-cell receptor (BCR) signaling and is also expressed in haematogenic and innate immune cells. Inhibition of BTK hyperactivity is implicated in B-cell malignancies and autoimmune diseases. This review derives the structural complementarity of the BTK-kinase domain and its inhibitors from recent three-dimensional structures of inhibitor-bound BTK in the protein data bank (PDB). Additionally, this review analyzes BTK-mediated effector responses of B-cell development and antibody production. Covalent inhibitors contain an α, β-unsaturated carbonyl moiety that forms a covalent bond with Cys481, stabilizing αC-helix in inactive-out conformation which inhibits Tyr551 autophosphorylation. Asn484, located two carbons far from Cys481, influences the stability of the BTK-transition complex. Non-covalent inhibitors engage the BTK-kinase domain through an induced-fit mechanism independent of Cys481 interaction and bind to Tyr551 in the activation kink resulting in H3 cleft, determining BTK selectivity. Covalent and non-covalent binding to the kinase domain of BTK shall induce conformational changes in other domains; therefore, investigating the whole-length BTK conformation is necessary to comprehend BTK’s autophosphorylation inhibition. Knowledge about the structural complementarity of BTK and its inhibitors supports the optimization of existing drugs and the discovery of drugs for implication in B-cell malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Correspondence: (N.T.); (S.M.)
| | | | - Marwa Qadri
- Department of Pharmacology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Medical Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Safeena Eranhiyil Ashraf
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Safaa Fathy Saleh
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Maryam Nayeem
- Department of Pharmacology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
- Substance Abuse and Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
- Correspondence: (N.T.); (S.M.)
| |
Collapse
|
14
|
Vandeveer GH, Arduini RM, Baker DP, Barry K, Bohnert T, Bowden-Verhoek JK, Conlon P, Cullen PF, Guan B, Jenkins TJ, Liao SY, Lin L, Liu YT, Marcotte D, Mertsching E, Metrick CM, Negrou E, Powell N, Scott D, Silvian LF, Hopkins BT. Discovery of structural diverse reversible BTK inhibitors utilized to develop a novel in vivo CD69 and CD86 PK/PD mouse model. Bioorg Med Chem Lett 2023; 80:129108. [PMID: 36538993 DOI: 10.1016/j.bmcl.2022.129108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
For the past two decades, BTK a tyrosine kinase and member of the Tec family has been a drug target of significant interest due to its potential to selectively treat various B cell-mediated diseases such as CLL, MCL, RA, and MS. Owning to the challenges encountered in identifying drug candidates exhibiting the potency block B cell activation via BTK inhibition, the pharmaceutical industry has relied on the use of covalent/irreversible inhibitors to address this unmet medical need. Herein, we describe a medicinal chemistry campaign to identify structurally diverse reversible BTK inhibitors originating from HITS identified using a fragment base screen. The leads were optimized to improve the potency and in vivo ADME properties resulting in a structurally distinct chemical series used to develop and validate a novel in vivo CD69 and CD86 PD assay in rodents.
Collapse
Affiliation(s)
| | | | | | - Kevin Barry
- Medicinal Chemistry, Cambridge, MA 02142, USA
| | - Tonika Bohnert
- Drug Metabolism & Pharmacokinetics, Cambridge, MA 02142, USA
| | | | | | | | - Bing Guan
- Medicinal Chemistry, Cambridge, MA 02142, USA
| | | | - Shu-Yu Liao
- Biophysics and Structural Biology, Cambridge, MA 02142, USA
| | - Lin Lin
- Technical development, Cambridge, MA 02142, USA
| | | | | | | | | | - Ella Negrou
- Immunology, Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Noel Powell
- Medicinal Chemistry, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
15
|
Comparison of Intermolecular Interactions of Irreversible and Reversible Inhibitors with Bruton’s Tyrosine Kinase via Molecular Dynamics Simulations. Molecules 2022; 27:molecules27217451. [DOI: 10.3390/molecules27217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a key protein from the TEC family and is involved in B-cell lymphoma occurrence and development. Targeting BTK is therefore an effective strategy for B-cell lymphoma treatment. Since previous studies on BTK have been limited to structure-function analyses of static protein structures, the dynamics of conformational change of BTK upon inhibitor binding remain unclear. Here, molecular dynamics simulations were conducted to investigate the molecular mechanisms of association and dissociation of a reversible (ARQ531) and irreversible (ibrutinib) small-molecule inhibitor to/from BTK. The results indicated that the BTK kinase domain was found to be locked in an inactive state through local conformational changes in the DFG motif, and P-, A-, and gatekeeper loops. The binding of the inhibitors drove the outward rotation of the C-helix, resulting in the upfolded state of Trp395 and the formation of the salt bridge of Glu445-Arg544, which maintained the inactive conformation state. Met477 and Glu475 in the hinge region were found to be the key residues for inhibitor binding. These findings can be used to evaluate the inhibitory activity of the pharmacophore and applied to the design of effective BTK inhibitors. In addition, the drug resistance to the irreversible inhibitor Ibrutinib was mainly from the strong interaction of Cys481, which was evidenced by the mutational experiment, and further confirmed by the measurement of rupture force and rupture times from steered molecular dynamics simulation. Our results provide mechanistic insights into resistance against BTK-targeting drugs and the key interaction sites for the development of high-quality BTK inhibitors. The steered dynamics simulation also offers a means to rapidly assess the binding capacity of newly designed inhibitors.
Collapse
|
16
|
Carnero Contentti E, Correale J. Current Perspectives: Evidence to Date on BTK Inhibitors in the Management of Multiple Sclerosis. Drug Des Devel Ther 2022; 16:3473-3490. [PMID: 36238195 PMCID: PMC9553159 DOI: 10.2147/dddt.s348129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system leading to demyelination and neurodegeneration. Basic and translational studies have shown that B cells and myeloid cells are critical players for the development and course of the disease. Bruton's tyrosine kinase (BTK) is essential for B cell receptor-mediated B cell activation and for normal B cell development and maturation. In addition to its role in B cells, BTK is also involved in several functions of myeloid cells. Although significant number of disease-modifying treatments (DMTs) have been approved for clinical use in MS patients, novel targeted therapies should be studied in refractory patients and patients with progressive forms of the disease. On the basis of its role in B cells and myeloid cells, BTK inhibitors can provide attractive therapeutic benefits for MS. In this article, we review the main effects of BTK inhibitors on different cell types involved in the pathogenesis of MS and summarise recent advances in the development of BTK inhibitors as novel therapeutic approaches in different MS clinical trials. Available data regarding the efficacy and safety of these drugs are described.
Collapse
Affiliation(s)
| | - Jorge Correale
- Department of Neurology, Fleni, Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquimíca Biológicas (IQUIFIB), Buenos Aires, Argentina
| |
Collapse
|
17
|
Alu A, Lei H, Han X, Wei Y, Wei X. BTK inhibitors in the treatment of hematological malignancies and inflammatory diseases: mechanisms and clinical studies. J Hematol Oncol 2022; 15:138. [PMID: 36183125 PMCID: PMC9526392 DOI: 10.1186/s13045-022-01353-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is an essential component of multiple signaling pathways that regulate B cell and myeloid cell proliferation, survival, and functions, making it a promising therapeutic target for various B cell malignancies and inflammatory diseases. Five small molecule inhibitors have shown remarkable efficacy and have been approved to treat different types of hematological cancers, including ibrutinib, acalabrutinib, zanubrutinib, tirabrutinib, and orelabrutinib. The first-in-class agent, ibrutinib, has created a new era of chemotherapy-free treatment of B cell malignancies. Ibrutinib is so popular and became the fourth top-selling cancer drug worldwide in 2021. To reduce the off-target effects and overcome the acquired resistance of ibrutinib, significant efforts have been made in developing highly selective second- and third-generation BTK inhibitors and various combination approaches. Over the past few years, BTK inhibitors have also been repurposed for the treatment of inflammatory diseases. Promising data have been obtained from preclinical and early-phase clinical studies. In this review, we summarized current progress in applying BTK inhibitors in the treatment of hematological malignancies and inflammatory disorders, highlighting available results from clinical studies.
Collapse
Affiliation(s)
- Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Geladaris A, Torke S, Weber MS. Bruton's Tyrosine Kinase Inhibitors in Multiple Sclerosis: Pioneering the Path Towards Treatment of Progression? CNS Drugs 2022; 36:1019-1030. [PMID: 36178589 PMCID: PMC9550714 DOI: 10.1007/s40263-022-00951-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/03/2022]
Abstract
In multiple sclerosis (MS) persisting disability can derive from acute relapses or, alternatively, from slow and steady deterioration, termed chronic progression. Emerging data suggest that the latter process occurs largely independent from relapse activity or development of new central nervous system (CNS) inflammatory lesions. Pathophysiologically, acute relapses develop as a consequence of de novo CNS infiltration of immune cells, while MS progression appears to be driven by a CNS-trapped inflammatory circuit between CNS-established hematopoietic cells as well as CNS-resident cells, such as microglia, astrocytes, and oligodendrocytes. Within the last decades, powerful therapies have been developed to control relapse activity in MS. All of these agents were primarily designed to systemically target the peripheral immune system and/or to prevent CNS infiltration of immune cells. Based on the above described dichotomy of MS pathophysiology, it is understandable that these agents only exert minor effects on progression and that novel targets within the CNS have to be utilized to control MS progression independent of relapse activity. In this regard, one promising strategy may be the inhibition of the enzyme Bruton's tyrosine kinase (BTK), which is centrally involved in the activation of B cells as well as myeloid cells, such as macrophages and microglia. In this review, we discuss where and to what extent BTK is involved in the immunological and molecular cascades driving MS progression. We furthermore summarize all mechanistic, preclinical, and clinical data on the various BTK inhibitors (evobrutinib, tolebrutinib, fenebrutinib, remibrutinib, orelabrutinib, BIIB091) that are currently in development for treatment of MS, with a particular focus on the potential ability of either drug to control MS progression.
Collapse
Affiliation(s)
- Anastasia Geladaris
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 37075, Göttingen, Germany
| | - Sebastian Torke
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Experimental and Clinical Research Center of the Charité, University Medical Center and the Max-Dellbrück-Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology, 37075, Göttingen, Germany.
- Department of Neurology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
19
|
Yan Z, Gu F, Wang Z, Meng J, Tao X, Dai Q, Wang W, Liu M, Wang Z. Safety and efficacy of tyrosine kinase inhibitors for the treatment of multiple sclerosis: A systematic review and meta-analysis from randomized controlled trials. Front Neurol 2022; 13:933123. [PMID: 36226084 PMCID: PMC9548566 DOI: 10.3389/fneur.2022.933123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background Multiple sclerosis (MS), an autoimmune disease, is characterized by inflammatory demyelinating lesions in the white matter of the central nervous system. Drugs targeting tyrosine kinase, a critical component of immune cell receptor signaling, have been developed to treat MS. However, the exact efficacy and safety of tyrosine kinase inhibitors (TKIs) are still controversial, and comprehensive analysis with a high level of evidence is needed. Methods Medline, Embase, Cochrane Library, and Clinicaltrials.gov for randomized controlled trials (RCTs) evaluating TKIs versus placebo for MS were searched up to April 1st, 2022. The risk ratio (RR) and mean difference (MD) or standard mean difference (SMD) were analyzed using dichotomous outcomes and continuous outcomes, respectively, with a random effect model. Results A total of 1,043 patients derived from four clinical trials were included to investigate the efficacy and safety of TKI therapy for MS. According to our analysis, TKIs decreased the cumulative number of gadolinium-enhancing lesions on T1-weighted MRI with the application of high dose (SMD = −0.61, 95% CI: −0.93 to −0.30, P = 0.0001). Meanwhile, TKIs prevented the expanded disability status scale (EDSS) from rising (MD = −0.10, 95% CI: −0.19 to −0.00, P = 0.046). In terms of MS relapse, TKIs have not revealed an obvious statistical difference compared with placebo (RR = 0.96, 95% CI: 0.55–1.65, P = 0.8755). However, more adverse events seem to occur in the TKIs group, both for adverse events (RR = 1.12, 95% CI: 1.05–1.19, P = 0.0009) and serious adverse events (RR = 1.91, 95% CI: 1.30–2.81, P = 0.001). Conclusion Tyrosine kinase inhibitors have shown promise in treating MS. Generally, TKIs that attain the effective dose demonstrate definite efficacy and have tolerable side effects. More clinical trials and validation are needed, and we anticipate that TKIs will be a viable alternative for MS patients.
Collapse
Affiliation(s)
- Zeya Yan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiahao Meng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyu Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiling Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meirong Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Meirong Liu
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Zhong Wang
| |
Collapse
|