1
|
Mangini L, Lawrence R, Lopez ME, Graham TC, Bauer CR, Nguyen H, Su C, Ramphal J, Crawford BE, Hartl TA. Galactokinase 1 is the source of elevated galactose-1-phosphate and cerebrosides are modestly reduced in a mouse model of classic galactosemia. JIMD Rep 2024; 65:280-294. [PMID: 38974607 PMCID: PMC11224506 DOI: 10.1002/jmd2.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Classic galactosemia (CG) arises from loss-of-function mutations in the Galt gene, which codes for the enzyme galactose-1-phosphate uridylyltransferase (GALT), a central component in galactose metabolism. The neonatal fatality associated with CG can be prevented by galactose dietary restriction, but for decades it has been known that limiting galactose intake is not a cure and patients often have lasting complications. Even on a low-galactose diet, GALT's substrate galactose-1-phosphate (Gal1P) is elevated and one hypothesis is that elevated Gal1P is a driver of pathology. Here we show that Gal1P levels were elevated above wildtype (WT) in Galt mutant mice, while mice doubly mutant for Galt and the gene encoding galactokinase 1 (Galk1) had normal Gal1P levels. This indicates that GALK1 is necessary for the elevated Gal1P in CG. Another hypothesis to explain the pathology is that an inability to metabolize galactose leads to diminished or disrupted galactosylation of proteins or lipids. Our studies reveal that levels of a subset of cerebrosides-galactosylceramide 24:1, sulfatide 24:1, and glucosylceramide 24:1-were modestly decreased compared to WT. In contrast, gangliosides were unaltered. The observed reduction in these 24:1 cerebrosides may be relevant to the clinical pathology of CG, since the cerebroside galactosylceramide is an important structural component of myelin, the 24:1 species is the most abundant in myelin, and irregularities in white matter, of which myelin is a constituent, have been observed in patients with CG. Therefore, impaired cerebroside production may be a contributing factor to the brain damage that is a common clinical feature of the human disease.
Collapse
Affiliation(s)
- Linley Mangini
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Roger Lawrence
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Manuel E. Lopez
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Timothy C. Graham
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Christopher R. Bauer
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Hang Nguyen
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Cheng Su
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - John Ramphal
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Brett E. Crawford
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Tom A. Hartl
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| |
Collapse
|
2
|
Hermans ME, van Weeghel M, Vaz FM, Ferdinandusse S, Hollak CEM, Huidekoper HH, Janssen MCH, van Kuilenburg ABP, Pras-Raves ML, Wamelink MMC, Wanders RJA, Welsink-Karssies MM, Bosch AM. Multi-omics in classical galactosemia: Evidence for the involvement of multiple metabolic pathways. J Inherit Metab Dis 2022; 45:1094-1105. [PMID: 36053831 DOI: 10.1002/jimd.12548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022]
Abstract
Classical galactosemia (CG) is one of the more frequent inborn errors of metabolism affecting approximately 1:40.000 people. Despite a life-saving galactose-restricted diet, patients develop highly variable long-term complications including intellectual disability and movement disorders. The pathophysiology of these complications is still poorly understood and development of new therapies is hampered by a lack of valid prognostic biomarkers. Multi-omics approaches may discover new biomarkers and improve prediction of patient outcome. In the current study, (semi-)targeted mass-spectrometry based metabolomics and lipidomics were performed in erythrocytes of 40 patients with both classical and variant phenotypes and 39 controls. Lipidomics did not show any significant changes or deficiencies. The metabolomics analysis revealed that CG does not only compromise the Leloir pathway, but also involves other metabolic pathways including glycolysis, the pentose phosphate pathway, and nucleotide metabolism in the erythrocyte. Moreover, the energy status of the cell appears to be compromised, with significantly decreased levels of ATP and ADP. This possibly is the consequence of two different mechanisms: impaired formation of ATP from ADP possibly due to reduced flux though the glycolytic pathway and trapping of phosphate in galactose-1-phosphate (Gal-1P) which accumulates in CG. Our findings are in line with the current notion that the accumulation of Gal-1P plays a key role in the pathophysiology of CG not only by depletion of intracellular phosphate levels but also by decreasing metabolite abundance downstream in the glycolytic pathway and affecting other pathways. New therapeutic options for CG could be directed towards the restoration of intracellular phosphate homeostasis.
Collapse
Affiliation(s)
- Merel E Hermans
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- United for Metabolic Diseases, The Netherlands
| | - Sacha Ferdinandusse
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Carla E M Hollak
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Mia L Pras-Raves
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Mirjam M C Wamelink
- Department of Clinical Chemistry, Metabolic Unit, Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Mendy M Welsink-Karssies
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| | - Annet M Bosch
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| |
Collapse
|