1
|
Golcienė B, Vaickelionienė R, Endriulaitytė U, Mickevičius V, Petrikaitė V. Synthesis and effect of 4-acetylphenylamine-based imidazole derivatives on migration and growth of 3D cultures of breast, prostate and brain cancer cells. Sci Rep 2024; 14:28065. [PMID: 39543257 PMCID: PMC11564686 DOI: 10.1038/s41598-024-76533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
In this study, we have synthesized novel 4-acetophenone moiety-bearing functionalized imidazole derivatives containing S-, and N-ethyl substituents and evaluated their anticancer activity. Their anticancer activity was studied against human breast carcinoma (MDA-MB-231), human prostate carcinoma (PPC-1), and human glioblastoma (U-87). Compounds 4, 9, 14, and 22 were identified as the most promising anticancer agents from a series of imidazole derivatives. They showed the highest cytotoxicity by MTT assay against MDA-MB-231, PPC-1 and U-87 cell lines. Compounds 14 and 22 were most selective against PPC-1 and U-87 cell lines, and their EC50 values against these cell lines ranged from 3.1 to 47.2 µM. Most tested compounds showed lower activity against the triple-negative breast cancer MDA-MB-231 cell line. None of the imidazole derivatives possessed an inhibiting effect on the migration of PPC-1 and U-87 cells by 'wound' healing assay. In spheroid assay, the most promising were compounds 14 and 22, especially in PPC-1 3D cultures. They efficiently reduced both the size and the viability of PPC-1 spheroid cells.
Collapse
Affiliation(s)
- Božena Golcienė
- Kaunas University of Technology, Radvilėnų Rd. 19, Kaunas, LT-50254, Lithuania
| | - Rita Vaickelionienė
- Kaunas University of Technology, Radvilėnų Rd. 19, Kaunas, LT-50254, Lithuania
| | - Ugnė Endriulaitytė
- Lithuanian University of Health Sciences, A. Mickevičiaus St. 9, Kaunas, LT-44307, Lithuania
| | | | - Vilma Petrikaitė
- Lithuanian University of Health Sciences, A. Mickevičiaus St. 9, Kaunas, LT-44307, Lithuania.
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, Vilnius, LT-10257, Lithuania.
| |
Collapse
|
2
|
Mushtaq A, Wu P, Naseer MM. Recent drug design strategies and identification of key heterocyclic scaffolds for promising anticancer targets. Pharmacol Ther 2024; 254:108579. [PMID: 38160914 DOI: 10.1016/j.pharmthera.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Cancer, a noncommunicable disease, is the leading cause of mortality worldwide and is anticipated to rise by 75% in the next two decades, reaching approximately 25 million cases. Traditional cancer treatments, such as radiotherapy and surgery, have shown limited success in reducing cancer incidence. As a result, the focus of cancer chemotherapy has switched to the development of novel small molecule antitumor agents as an alternate strategy for combating and managing cancer rates. Heterocyclic compounds are such agents that bind to specific residues in target proteins, inhibiting their function and potentially providing cancer treatment. This review focuses on privileged heterocyclic pharmacophores with potent activity against carbonic anhydrases and kinases, which are important anticancer targets. Evaluation of ongoing pre-clinical and clinical research of heterocyclic compounds with potential therapeutic value against a variety of malignancies as well as the provision of a concise summary of the role of heterocyclic scaffolds in various chemotherapy protocols have also been discussed. The main objective of the article is to highlight key heterocyclic scaffolds involved in recent anticancer drug design that demands further attention from the drug development community to find more effective and safer targeted small-molecule anticancer agents.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany.
| |
Collapse
|
3
|
Araki K, Hara M, Hamada S, Matsumoto T, Nakamura S. Antiproliferative Activities of Cynaropicrin and Related Compounds against Cancer Stem Cells. Chem Pharm Bull (Tokyo) 2024; 72:200-208. [PMID: 38382968 DOI: 10.1248/cpb.c23-00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Glioblastoma (GBM) has a high mortality rate despite the availability of various cancer treatment options. Although cancer stem cells (CSCs) have been associated with poor prognosis and metastasis, and play an important role in the resistance to existing anticancer drugs and radiation; no CSC-targeting drugs are currently approved in clinical practice. Therefore, the development of antiproliferative agents against CSCs is urgently required. In this study, we evaluated the antiproliferative activities of 21 sesquiterpenoids against human GBM U-251 MG CSCs and U-251 MG non-CSCs. Particularly, the guaianolide sesquiterpene lactone cynaropicrin (1) showed strong antiproliferative activity against U-251 MG CSCs (IC50 = 20.4 µM) and U-251 MG non-CSCs (IC50 = 10.9 µM). Accordingly, we synthesized six derivatives of 1 and investigated their structure-activity relationships. Most of the guaianolide sesquiterpene lactones with the α-methylene-γ-butyrolactone moiety showed antiproliferative activities against U-251 MG cells. We conclude that the 5,7,5-ring and the α-methylene-γ-butyrolactone moiety are both important for antiproliferative activities against U-251 MG cells. The results of this study suggest that the α,β-unsaturated carbonyl moiety, which has recently become a research hotspot in drug discovery, is the active center of 1. Therefore, we consider 1 as a potential lead for developing novel drugs targeting CSCs.
Collapse
|
4
|
Bai Y, Liang C, Zhou J, Liu Y, Wang F, Gao J, Wu J, Hu D. Development of novel celastrol-ligustrazine hybrids as potent peroxiredoxin 1 inhibitors against lung cancer. Eur J Med Chem 2023; 259:115656. [PMID: 37499289 DOI: 10.1016/j.ejmech.2023.115656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The disruption of oxidation-reduction equilibrium through inhibiting reactive oxygen species (ROS) clearance or enhancing ROS production has emerged as a novel and promising strategy for cancer therapy. Herein, a series of celastrol-ligustrazine hybrids were designed and synthesized as effective ROS promoters, and their biological activities were further evaluated. Among them, compound 7e stood out as the most potent peroxiredoxin 1 (PRDX1) inhibitor (IC50 = 0.164 μM), which was significant super to the recognized PRDX1 inhibitor Conoidin A (IC50 = 14.80 μM) and the control compound celastrol (IC50 = 1.622 μM). Furthermore, 7e dramatically promoted intracellular ROS accumulation, and inhibited the proliferation, invasion and migration of cancer cells besides inducing apoptosis in vitro. Additionally, 7e suppressed the key signaling pathways (AKT and ERK) and promoted the expression of apoptosis-related proteins (cleaved caspase-3/8 and cleaved PARP) in A549 cells, which resulted in the prevention of tumor progression. Most importantly, compound 7e (TGI = 77.47%) showed more considerable in vivo antitumor efficacy and less toxicity than celastrol (TGI = 71.00%). Overall, this work indicates 7e as the most potential PRDX1 inhibitor and may be a promising candidate for the therapy of lung cancer.
Collapse
Affiliation(s)
- Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, 232001, China
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, 232001, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, 232001, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, 232001, China
| | - Fengxuan Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jian Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, 232001, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, 232001, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, 232001, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, 232001, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, China.
| |
Collapse
|
5
|
Duan ZK, Guo SS, Ye L, Gao ZH, Liu D, Yao GD, Song SJ, Huang XX. Discovery of Michael reaction acceptors from the leaves of Ailanthus altissima by a modified tactic. PHYTOCHEMISTRY 2023; 215:113858. [PMID: 37709157 DOI: 10.1016/j.phytochem.2023.113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Structural characteristics-guided investigation of Ailanthus altissima (Mill.) Swingle resulted in the isolation and identification of seven undescribed potential Michael reaction acceptors (1-7). Ailanlactone A (1) possesses an unusual 1,7-epoxy-11,12-seco quassinoid core. Ailanterpene B (6) was a rare guaianolide-type sesquiterpene with a 5/6/6/6-fused skeleton. Their structures were determined through extensive analysis of physiochemical and spectroscopic data, quantum chemical calculations, and single crystal X-ray crystallographic technology using Cu Kα radiation. The cytotoxic activities of isolates on HepG2 and Hep3B cells were evaluated in vitro. Encouragingly, ailanaltiolide K (4) showed significant cytotoxicity against Hep3B cells with IC50 values of 1.41 ± 0.21 μM, whose covalent binding mode was uncovered in silico.
Collapse
Affiliation(s)
- Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shan-Shan Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Li Ye
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhi-Heng Gao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Dai Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
6
|
Li J, Jia X, Qiu J, Wang M, Chen J, Jing M, Xu Y, Zheng X, Dai H. Brønsted Acid-Catalyzed Synthesis of 1,2,5-Trisubstituted Imidazoles via a Multicomponent Reaction of Vinyl Azides with Aromatic Aldehydes and Aromatic Amines. J Org Chem 2022; 87:13945-13954. [PMID: 36223536 DOI: 10.1021/acs.joc.2c01624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile and efficient approach to the synthesis of 1,2,5-trisubstituted imidazoles is developed via a multicomponent reaction under metal-free catalysis. Under Brønsted acid catalysis, the desired products can be obtained from readily available vinyl azides, aromatic aldehydes, and aromatic amines without generating any toxic waste. The convenient operations and high functional group compatibility indicate that this approach offers an attractive alternative method for the synthesis of imidazole derivatives.
Collapse
Affiliation(s)
- Jiuling Li
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Xinyu Jia
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Ju Qiu
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Min Wang
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Juan Chen
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Minghui Jing
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Yifu Xu
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Xinhua Zheng
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| | - Hongmei Dai
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, People's Republic of China
| |
Collapse
|
7
|
Li N, Li C, Zhang J, Jiang Q, Wang Z, Nie S, Gao Z, Li G, Fang H, Ren S, Li X. Discovery of semisynthetic celastrol derivatives exhibiting potent anti-ovarian cancer stem cell activity and STAT3 inhibition. Chem Biol Interact 2022; 366:110172. [PMID: 36096161 DOI: 10.1016/j.cbi.2022.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
The hallmark of ovarian cancer is its high mortality rate attributed to the existence of cancer stem cells (CSCs) subpopulations which result in therapy recurrence and metastasis. A series of C-29-substituted and/or different A/B ring of celastrol derivatives were synthesized and displayed potential inhibition against ovarian cancer cells SKOV3, A2780 and OVCAR3. Among them, compound 6c exhibited the most potent anti-proliferative activity and selectivity, gave superior anti-CSC effects through inhibition of the sphere formation and downregulation of the percentage of CD44+CD24- and ALDH+ cells. Further mechanism research demonstrated that compound 6c could attenuate the expression of STAT3 and p-STAT3. The results suggested that the inhibition of celastrol derivative 6c on ovarian cancer cells may be related to resistance to cancer stem-like characters and regulation of STAT3 pathway.
Collapse
Affiliation(s)
- Na Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Chaobo Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Juan Zhang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Qian Jiang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Zhaoxue Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Shaozhen Nie
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Zhenzhen Gao
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Guangyao Li
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Shaoda Ren
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China.
| | - Xiaojing Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
8
|
Al-Warhi T, Abualnaja M, Abu Ali OA, Althobaiti F, Alharthi F, Elsaid FG, Shati AA, Fayad E, Elghareeb D, Abu Almaaty AH, Zaki I. Synthesis and Biological Activity Screening of Newly Synthesized Trimethoxyphenyl-Based Analogues as Potential Anticancer Agents. Molecules 2022; 27:molecules27144621. [PMID: 35889493 PMCID: PMC9322052 DOI: 10.3390/molecules27144621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
A group of novel trimethoxyphenyl (TMP)-based analogues were synthesized by varying the azalactone ring of 2-(3,4-dimethoxyphenyl)-4-(3,4,5-trimethoxybenzylidene)oxazolone 1 and characterized using NMR spectral data as well as elemental microanalyses. All synthesized compounds were screened for their cytotoxic activity utilizing the hepatocellular carcinoma (HepG2) cell line. Compounds 9, 10 and 11 exhibited good cytotoxic potency with IC50 values ranging from 1.38 to 3.21 μM compared to podophyllotoxin (podo) as a reference compound. In addition, compounds 9, 10 and 11 exhibited potent inhibition of β-tubulin polymerization. DNA flow cytometry analysis of compound 9 shows cell cycle disturbance at the G2/M phase and a significant increase in Annexin-V-positive cells compared with the untreated control. Compound 9 was further studied regarding its apoptotic potential in HepG2 cells; it decreased the level of MMP and Bcl-2 as well as boosted the level of p53 and Bax compared with the control HepG2 cells.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Matokah Abualnaja
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Al Mukarrama 24381, Saudi Arabia;
| | - Ola A. Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Fayez Althobaiti
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia; (F.A.); (E.F.)
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Fahmy G. Elsaid
- Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia; (F.G.E.); (A.A.S.)
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ali A. Shati
- Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia; (F.G.E.); (A.A.S.)
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia; (F.A.); (E.F.)
| | - Doaa Elghareeb
- Department of Biology, Jumum College University, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Cairo 12619, Egypt
| | - Ali H. Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University, Port Said 42526, Egypt;
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Correspondence:
| |
Collapse
|