1
|
Mei C, Liu Y, Liu Z, Zhi Y, Jiang Z, Lyu X, Wang H. Dysregulated Signaling Pathways in Canine Mammary Tumor and Human Triple Negative Breast Cancer: Advances and Potential Therapeutic Targets. Int J Mol Sci 2024; 26:145. [PMID: 39796003 PMCID: PMC11720488 DOI: 10.3390/ijms26010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
In 2022, human breast cancer (HBC) and canine mammary tumors (CMTs) remained the most prevalent malignant tumors worldwide, with high recurrence and lethality rates, posing a significant threat to human and dog health. The development of breast cancer involves multiple signaling pathways, highlighting the need for effective inhibitory drugs that target key proteins in these pathways. This article reviews the dysregulation of the EGFR, PI3K/AKT/mTOR, Hippo, pyroptosis, and PD-1/PD-L1 signaling pathways in HBC and CMT, as well as the corresponding drugs used to inhibit tumor growth, with the aim of providing theoretical support for the development of more efficient drugs.
Collapse
Affiliation(s)
- Chen Mei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Zhenyi Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Yan Zhi
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Zhaoling Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Xueze Lyu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongjun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| |
Collapse
|
2
|
Marzouk M, Greco S, Gbahou F, Küblbeck J, Labani N, Jockers R, Holzgrabe U, Wiesmüller L, Zlotos DP. Cancer Cells Show Higher Sensitivity to Melatonin-Tamoxifen Drug Conjugates than to Combination of Melatonin and Tamoxifen. ACS OMEGA 2024; 9:47857-47871. [PMID: 39651096 PMCID: PMC11618438 DOI: 10.1021/acsomega.4c08881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024]
Abstract
Drug conjugates of tamoxifen and melatonin linked through the amide side chain of melatonin (4a,4b) were reported as promising agents for future treatment of breast cancer, possibly reversing the adverse effects of tamoxifen. Here, we report the synthesis and pharmacological evaluation of a novel series of anticancer drug conjugates linking melatonin with tamoxifen through polymethylene spacers through the ether oxygen of melatonin (16a-c, 19a-c, 21) and compare them to the previously reported amide-linked analogues 4a and 4b. All hybrid ligands are antagonists of estrogen receptor alpha and agonists of the melatonin MT1 receptor with variable potencies. Several drug conjugates including the (CH2)4-linked analogues 4a and 16a and the (CH2)6-linked compound 16c showed higher potency to inhibit cell viability than the combination of melatonin and tamoxifen on at least one cancer cell line including MCF-7, MDA-MB-231, and HT-1080.
Collapse
Affiliation(s)
- Mohamed
Akmal Marzouk
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Würzburg 97074, Germany
| | - Sara Greco
- Department
of Obstetrics and Gynecology, Ulm University, Prittwitzstrasse 43, Ulm 89075, Germany
| | - Florence Gbahou
- Université
Paris Cité, Institut Cochin, INSERM, CNRS, Paris 75014, France
| | - Jenni Küblbeck
- A.I. Virtanen
Institute for Molecular Sciences, University
of Eastern Finland, P.O. Box 1627, Kuopio FI-70210, Finland
- School of
Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70210, Finland
| | - Nedjma Labani
- Université
Paris Cité, Institut Cochin, INSERM, CNRS, Paris 75014, France
| | - Ralf Jockers
- Université
Paris Cité, Institut Cochin, INSERM, CNRS, Paris 75014, France
| | - Ulrike Holzgrabe
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Würzburg 97074, Germany
| | - Lisa Wiesmüller
- Department
of Obstetrics and Gynecology, Ulm University, Prittwitzstrasse 43, Ulm 89075, Germany
| | - Darius P. Zlotos
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo 11835, Egypt
| |
Collapse
|
3
|
Wang T, Wang Y, Lu J, Chen J, Wang L, Ouyang Z, Ouyang W, Hu C, Weng J, Zhang JQ. Design, synthesis and bioevaluation of dual EGFR-PI3Kα inhibitors for potential treatment of NSCLC. Bioorg Chem 2024; 151:107714. [PMID: 39167867 DOI: 10.1016/j.bioorg.2024.107714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Aberrant activation or mutation of the EGFR-PI3K-Akt-mTOR signaling pathway has been implicated in a wide range of human cancers, especially non-small-cell lung cancer (NSCLC). Thus, dual inhibition of EGFR and PI3K has been investigated as a promising strategy to address acquired drug resistance resulting from the use of tyrosine kinase inhibitors. A series of dual EGFR/PI3Kα inhibitors was synthesized using pharmacophore hybridization of the third-generation EGFR inhibitor olmutinib and the PI3Kα selective inhibitor TAK-117. The optimal compound 30k showed potent kinase inhibitory activities with IC50 values of 3.6 and 30.0 nM against EGFRL858R/T790M and PI3Kα, respectively. Compound 30k exhibited a significant antiproliferative effect in NCI-H1975 cells with a higher selectivity profile than olmutinib. The potential antitumor mechanism, molecular binding modes, and in vitro metabolic stability of compound 30k were also clarified.
Collapse
Affiliation(s)
- Tingliang Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Department of Pharmacy, Liupanshui Municipal People's Hospital, Liupanshui 553000, China
| | - Yujie Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
| | - Jiangrong Lu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
| | - Junxiao Chen
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
| | - Lili Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China.
| | - Zheng Ouyang
- The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang 550003, China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550008, China
| | - Chujiao Hu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China.
| | - Jiang Weng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji-Quan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
4
|
Qi Y, Deng SM, Wang KS. Receptor tyrosine kinases in breast cancer treatment: unraveling the potential. Am J Cancer Res 2024; 14:4172-4196. [PMID: 39417188 PMCID: PMC11477839 DOI: 10.62347/kivs3169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer is a multifactorial disease driven by acquired genetic and epigenetic changes that lead to aberrant regulation of cellular signaling pathways. Receptor tyrosine kinases (RTKs), a class of critical receptors, are involved in the initiation and progression of breast cancer. RTKs are cell surface receptors with unique structures and biological characteristics, which respond to environmental signals by initiating signaling cascades such as the mitogen-activated protein kinase (MAPK) pathway, Janus kinase (JAK)/signal transducer, activator of transcription (STAT) pathway, and phosphoinositide 3-kinase (PI3K)/AKT pathway. The critical role of RTKs makes them suitable targets for breast cancer treatment. Targeted therapies against RTKs have been developed in recent years, evaluated in clinical trials, and approved for several cancer types, including breast cancer. However, breast cancer displays molecular heterogeneity and exhibits different therapeutic responses to various drug types, leading to limited effectiveness of targeted therapy against RTKs. In this review, we summarize the structural and functional characteristics of selected RTKs and discuss the mechanisms and current status of drug therapy involving different protein tyrosine kinases in breast cancer progression.
Collapse
Affiliation(s)
- Yu Qi
- Department of Pathology, School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
| | - Shu-Min Deng
- Department of Pathology, School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
| | - Kuan-Song Wang
- Department of Pathology, School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
5
|
Zou Y, Wan X, Ding Z, Tang C, Wang C, Chen X. Design, synthesis, and biological studies of nitric oxide-donating piperlongumine derivatives triggered by lysyl oxidase as anti-triple negative breast cancer agents. Fitoterapia 2024; 177:106091. [PMID: 38908760 DOI: 10.1016/j.fitote.2024.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Nitric oxide (NO) is an important gas messenger molecule with a wide range of biological functions. High concentration of NO exerts promising antitumor effects and is regarded as one of the hot spots in cancer research, that have limitations in their direct application due to its gaseous state, short half-life (seconds) and high reactivity. Lysyl oxidase (LOX) is a copper-dependent amine oxidase that is responsible for the covalent bonding between collagen and elastin and promotes tumor cell invasion and metastasis. The overexpression of LOX in triple-negative breast cancer (TNBC) makes it an attractive target for TNBC therapy. Herein, novel NO donor prodrug molecules were designed and synthesized based on the naturally derived piperlongumine (PL) skeleton, which can be selectively activated by LOX to release high concentrations of NO and PL derivatives, both of them play a synergistic role in TNBC therapy. Among them, the compound TM-1 selectively released NO in highly invasive TNBC cells (MDA-MB-231), and TM-1 was also confirmed as a potential TNBC cell line inhibitor with an inhibitory concentration of 2.274 μM. Molecular docking results showed that TM-1 had a strong and selective binding affinity with LOX protein.
Collapse
Affiliation(s)
- Yu Zou
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xin Wan
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zedan Ding
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chunyang Tang
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuan Wang
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xia Chen
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
6
|
Kazimir A, Götze T, Lönnecke P, Murganić B, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Exploring Raloxifene-Based Metallodrugs: A Versatile Vector Combined with Platinum(II), Palladium(II) and Nickel(II) Dichlorides and Carborates against Triple-Negative Breast Cancer. ChemMedChem 2024; 19:e202400006. [PMID: 38642018 DOI: 10.1002/cmdc.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/22/2024]
Abstract
Triple-negative breast cancer (TNBC) poses challenges in therapy due to the absence of target expression such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Frequently, the treatment of TNBC involves the combination of several therapeutics. However, an enhanced therapeutic effect can be also achieved within a single molecule. The efficacy of raloxifene can be improved by designing a raloxifene-based hybrid drug bearing a 2,2'-bipyridine moiety (2). Integration of platinum(II), palladium(II), and nickel(II) complexes into this structure dramatically changed the cytotoxicity. The platinum(II) dichloride complex 3 did not demonstrate any activity, while palladium(II) and nickel(II) dichloride complexes 4 and 5 exhibited various cytotoxic behavior towards different types of hormone-receptor positive (HR+) cancer and TNBC cell lines. The replacement of the two chlorido ligands in 3-5 with a dicarbollide (carborate) ion [C2B9H11]2- resulted in reduced activity of compounds 6, 7, and 8. However, the palladacarborane complex 7 demonstrated higher selectivity towards TNBC. Furthermore, the mechanism of action was shifted from cytotoxic to explicitly cytostatic with detectable proliferation arrest and accelerated aging, characterized by senescence-associated phenotype of TNBC cells. This study provides valuable insights into the development of hybrid therapeutics against TNBC.
Collapse
Affiliation(s)
- Aleksandr Kazimir
- new address, Institute for Drug Discovery, Leipzig University, Leipzig, Brüderstraße 34, 04103, Germany
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, Leipzig, 04103, Germany
| | - Tom Götze
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, Leipzig, 04103, Germany
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, Leipzig, 04103, Germany
| | - Blagoje Murganić
- Institute of Nuclear Sciences "Vinča", University of Belgrade, 12-14 Mike Petrovića Street, Belgrade, 11351, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade University, Bul. despota Stefana 142, Belgrade, 11060, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade University, Bul. despota Stefana 142, Belgrade, 11060, Serbia
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, Leipzig, 04103, Germany
| |
Collapse
|
7
|
Shagufta, Ahmad I, Nelson DJ, Hussain MI, Nasar NA. Potential of covalently linked tamoxifen hybrids for cancer treatment: recent update. RSC Med Chem 2024; 15:1877-1898. [PMID: 38911170 PMCID: PMC11187546 DOI: 10.1039/d3md00632h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
Cancer is a complex disease and the second leading cause of death globally, and breast cancer is still a leading cause of cancer death in women. Tamoxifen is the most commonly used drug for breast cancer (ER-positive) treatment and chemoprevention, saving the lives of millions of patients every year. In addition, the tamoxifen template has been explored extensively for the development of selective estrogen receptor modulators (SERMs) applicable in breast cancer, osteoporosis, and postmenopausal symptom treatment. Numerous anticancer drugs, including tamoxifen, are in use, but the complexity and heterogeneous nature of cancer complicate the effect of conventional targeted drugs, leading to adverse reactions and resistance. One of the significant approaches to overcome these shortcomings is drug hybrids, generated by covalently linking two or more active pharmacophores. These drug hybrids are remarkably effective in acting on multiple drug targets with higher selectivity and specificity. In recent years, several tamoxifen hybrids have been discovered as potential candidates for cancer treatment. The review highlights the recent progress in developing anticancer hybrids, including organometallic, fluorescent, photocaged, and novel ligand-based tamoxifen hybrids. It also demonstrates the significance of merging various pharmacophores with tamoxifen to produce more potent, precise, and effective anticancer agents. The study offers valuable knowledge to researchers working on cancer research with the hope of enhancing drug potency and reducing drug toxicity to improve cancer patients' lives.
Collapse
Affiliation(s)
- Shagufta
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| | - Irshad Ahmad
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| | - Donna J Nelson
- Department of Chemistry and Biochemistry, The University of Oklahoma Norman Oklahoma USA
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| |
Collapse
|
8
|
Lei C, Li Y, Yang H, Zhang K, Lu W, Wang N, Xuan L. Unraveling breast cancer prognosis: a novel model based on coagulation-related genes. Front Mol Biosci 2024; 11:1394585. [PMID: 38751445 PMCID: PMC11094261 DOI: 10.3389/fmolb.2024.1394585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Objective Breast cancer is highly heterogeneous, presenting challenges in prognostic assessment. Developing a universally applicable prognostic model could simplify clinical decision-making. This study aims to develop and validate a novel breast cancer prognosis model using coagulation-related genes with broad clinical applicability. Methods A total of 203 genes related to coagulation were obtained from the KEGG database, and the mRNA data of 1,099 tumor tissue samples and 572 samples of normal tissue were retrieved from the TCGA-BRCA cohort and GTEx databases. The R package "limma" was utilized to detect variations in gene expression related to coagulation between the malignancies and normal tissue. A model was constructed in the TCGA cohort through a multivariable Cox regression analysis, followed by validation using the GSE42568 dataset as the testing set. Constructing a nomogram incorporating clinical factors to enhance the predictive capacity of the model. Utilizing the ESTIMATE algorithm to investigate the immune infiltration levels in groups with deferent risk. Performing drug sensitivity analysis using the "oncoPredict" package. Results A risk model consisting of six coagulation-associated genes (SERPINA1, SERPINF2, C1S, CFB, RASGRP1, and TLN2) was created and successfully tested for validation. Identified were 6 genes that serve as protective factors in the model's development. Kaplan-Meier curves revealed a worse prognosis in the high-risk group compared to the low-risk group. The ROC analysis showed that the model accurately forecasted the overall survival (OS) of breast cancer patients at 1, 3, and 5 years. Nomogram accompanied by calibration curves can also provide better guidance for clinical decision-making. The low-risk group is more likely to respond well to immunotherapy, whereas the high-risk group may show improved responses to Gemcitabine treatment. Furthermore, individuals in distinct risk categories displayed different responses to various medications within the identical therapeutic category. Conclusion We established a breast cancer prognostic model incorporating six coagulation-associated genes and explored its clinical utility. This model offers valuable insights for clinical decision-making and drug selection in breast cancer patients, contributing to personalized and precise treatment advancements.
Collapse
Affiliation(s)
- Chuqi Lei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaiyu Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Lu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianchang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Xiong S, Song K, Xiang H, Luo G. Dual-target inhibitors based on ERα: Novel therapeutic approaches for endocrine resistant breast cancer. Eur J Med Chem 2024; 270:116393. [PMID: 38588626 DOI: 10.1016/j.ejmech.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Estrogen receptor alpha (ERα), a nuclear transcription factor, is a well-validated therapeutic target for more than 70% of all breast cancers (BCs). Antagonizing ERα either by selective estrogen receptor modulators (SERMs) or selective estrogen receptor degraders (SERDs) forms the foundation of endocrine therapy and has achieved great success in the treatment of ERα positive (ERα+) BCs. Unfortunately, despite initial effectiveness, endocrine resistance eventually emerges in up to 30% of ERα+ BC patients and remains a significant medical challenge. Several mechanisms implicated in endocrine resistance have been extensively studied, including aberrantly activated growth factor receptors and downstream signaling pathways. Hence, the crosstalk between ERα and another oncogenic signaling has led to surge of interest to develop combination therapies and dual-target single agents. This review briefly introduces the synergisms between ERα and another anticancer target and summarizes the recent advances of ERα-based dual-targeting inhibitors from a medicinal chemistry perspective. Accordingly, their rational design strategies, structure-activity relationships (SARs) and biological activities are also dissected to provide some perspectives on future directions for ERα-based dual target drug discovery in BC therapy.
Collapse
Affiliation(s)
- Shuangshuang Xiong
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Wang Y, Huang A, Chen L, Sun F, Zhao M, Zhang M, Xie Y, Xu S, Li M, Hong L, Li G, Wang R. Design and synthesis of dual BRD4/Src inhibitors for treatment of triple-negative breast cancer. Eur J Med Chem 2024; 264:116009. [PMID: 38070430 DOI: 10.1016/j.ejmech.2023.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is an extremely aggressive tumor with limited treatment options and effectiveness. Dual-target inhibitors capable of simultaneously suppressing invasion may represent a promising therapeutic approach for TNBC. In this work, we developed a series of dual BRD4/Src inhibitors by connecting JQ1 and dasatinib using various linkers and evaluated their efficacy against TNBC both in vitro and in vivo. Among these compounds, HL403 demonstrated IC50 values of 133 nM for BRD4 inhibition and 4.5 nM for Src inhibition. Most importantly, HL403 not only exhibited potent anti-proliferative capabilities, but also effectively suppressed the invasion of MDA-MB-231 cells in vitro. Finally, the anti-tumor efficacy of HL403 was validated in a mouse MDA-MB-231 xenograft tumor model, achieving a tumor growth inhibition rate (TGI) of 70.7 %, which was superior to the combination of JQ1 and dasatinib (TGI = 54.0 %). Our research provides a promising and feasible new strategy for improving the treatment of TNBC.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Aima Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Fan Sun
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Man Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Ming Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Yubao Xie
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Shiyu Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Rui Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China; Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
11
|
Xu Z, Wang X, Sun W, Xu F, Kou H, Hu W, Zhang Y, Jiang Q, Tang J, Xu Y. RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biol 2023; 68:102952. [PMID: 37944384 PMCID: PMC10641764 DOI: 10.1016/j.redox.2023.102952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/21/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Tamoxifen (TAM) resistance remains a major obstacle in the treatment of advanced breast cancer (BCa). In addition to the competitive inhibition of the estrogen receptor (ER) signaling pathway, damping of mitochondrial function by increasing reactive oxygen species (ROS) is critical for enhancing TAM pharmacodynamics. Here, we showed that RelB contributes to TAM resistance by inhibiting TAM-provoked ferroptosis. TAM-induced ROS level promoted ferroptosis in TAM-sensitive cells, but the effect was alleviated in TAM-resistant cells with high constitutive levels of RelB. Mechanistically, RelB inhibited ferroptosis by transcriptional upregulating glutathione peroxidase 4 (GPX4). Consequently, elevating RelB and GPX4 in sensitive cells increased TAM resistance, and conversely, depriving RelB and GPX4 in resistant cells decreased TAM resistance. Furthermore, suppression of RelB transcriptional activation resensitized TAM-resistant cells by enhancing ferroptosis in vitro and in vivo. The inactivation of GPX4 in TAM-resistant cells consistently resensitized TAM by increasing ferroptosis-mediated cell death. Together, this study uncovered that inhibition of ferroptosis contributes to TAM resistance of BCa via RelB-upregulated GPX4.
Collapse
Affiliation(s)
- Zhi Xu
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China; Phase 1 Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiumei Wang
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Wenbo Sun
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Fan Xu
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Affiliated Cancer Hospital, Nanjing Medical University, 42 Baiziting Avenue, Nanjing, 210009, China
| | - Hengyuan Kou
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Weizi Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Yanyan Zhang
- Affiliated Cancer Hospital, Nanjing Medical University, 42 Baiziting Avenue, Nanjing, 210009, China
| | - Qin Jiang
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China.
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yong Xu
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China; Affiliated Cancer Hospital, Nanjing Medical University, 42 Baiziting Avenue, Nanjing, 210009, China.
| |
Collapse
|
12
|
Masci D, Naro C, Puxeddu M, Urbani A, Sette C, La Regina G, Silvestri R. Recent Advances in Drug Discovery for Triple-Negative Breast Cancer Treatment. Molecules 2023; 28:7513. [PMID: 38005235 PMCID: PMC10672974 DOI: 10.3390/molecules28227513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most heterogeneous and aggressive breast cancer subtypes with a high risk of death on recurrence. To date, TNBC is very difficult to treat due to the lack of an effective targeted therapy. However, recent advances in the molecular characterization of TNBC are encouraging the development of novel drugs and therapeutic combinations for its therapeutic management. In the present review, we will provide an overview of the currently available standard therapies and new emerging therapeutic strategies against TNBC, highlighting the promises that newly developed small molecules, repositioned drugs, and combination therapies have of improving treatment efficacy against these tumors.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Chiara Naro
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Claudio Sette
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| |
Collapse
|
13
|
Sinatra L, Vogelmann A, Friedrich F, Tararina MA, Neuwirt E, Colcerasa A, König P, Toy L, Yesiloglu TZ, Hilscher S, Gaitzsch L, Papenkordt N, Zhai S, Zhang L, Romier C, Einsle O, Sippl W, Schutkowski M, Gross O, Bendas G, Christianson DW, Hansen FK, Jung M, Schiedel M. Development of First-in-Class Dual Sirt2/HDAC6 Inhibitors as Molecular Tools for Dual Inhibition of Tubulin Deacetylation. J Med Chem 2023; 66:14787-14814. [PMID: 37902787 PMCID: PMC10641818 DOI: 10.1021/acs.jmedchem.3c01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
Dysregulation of both tubulin deacetylases sirtuin 2 (Sirt2) and the histone deacetylase 6 (HDAC6) has been associated with the pathogenesis of cancer and neurodegeneration, thus making these two enzymes promising targets for pharmaceutical intervention. Herein, we report the design, synthesis, and biological characterization of the first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. Using biochemical in vitro assays and cell-based methods for target engagement, we identified Mz325 (33) as a potent and selective inhibitor of both target enzymes. Inhibition of both targets was further confirmed by X-ray crystal structures of Sirt2 and HDAC6 in complex with building blocks of 33. In ovarian cancer cells, 33 evoked enhanced effects on cell viability compared to single or combination treatment with the unconjugated Sirt2 and HDAC6 inhibitors. Thus, our dual Sirt2/HDAC6 inhibitors are important new tools to study the consequences and the therapeutic potential of dual inhibition of tubulin deacetylation.
Collapse
Affiliation(s)
- Laura Sinatra
- Institute
for Drug Discovery, Medical Faculty, Leipzig
University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Anja Vogelmann
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Florian Friedrich
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Margarita A. Tararina
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emilia Neuwirt
- Institute
of Neuropathology, Medical Center−University of Freiburg, Faculty
of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
- CIBSS−Centre
for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Arianna Colcerasa
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Philipp König
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lara Toy
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Talha Z. Yesiloglu
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
| | - Sebastian Hilscher
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
- Department
of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry
and Biotechnology, Martin-Luther-University
Halle-Wittenberg, 06120 Halle, Germany
| | - Lena Gaitzsch
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Niklas Papenkordt
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Shiyang Zhai
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lin Zhang
- Institute
of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Christophe Romier
- Institut
de Génétique et de Biologie Moléculaire et Cellulaire
(IGBMC), Université de Strasbourg,
CNRS UMR 7104, Inserm UMR-S 1258, 1 rue Laurent Fries, F-67400 Illkirch, France
| | - Oliver Einsle
- Institute
of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Wolfgang Sippl
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
| | - Mike Schutkowski
- Department
of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry
and Biotechnology, Martin-Luther-University
Halle-Wittenberg, 06120 Halle, Germany
| | - Olaf Gross
- Institute
of Neuropathology, Medical Center−University of Freiburg, Faculty
of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
- CIBSS−Centre
for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Center
for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
| | - Gerd Bendas
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - David W. Christianson
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Finn K. Hansen
- Institute
for Drug Discovery, Medical Faculty, Leipzig
University, Brüderstraße 34, 04103 Leipzig, Germany
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Manfred Jung
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
14
|
Meyer C, McCoy M, Li L, Posner B, Westover KD. LIMS-Kinase provides sensitive and generalizable label-free in vitro measurement of kinase activity using mass spectrometry. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101599. [PMID: 38213501 PMCID: PMC10783653 DOI: 10.1016/j.xcrp.2023.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Measurements of kinase activity are important for kinase-directed drug development, analysis of inhibitor structure and function, and understanding mechanisms of drug resistance. Sensitive, accurate, and miniaturized assay methods are crucial for these investigations. Here, we describe a label-free, high-throughput mass spectrometry-based assay for studying individual kinase enzymology and drug discovery in a purified system, with a focus on validated drug targets as benchmarks. We demonstrate that this approach can be adapted to many known kinase substrates and highlight the benefits of using mass spectrometry to measure kinase activity in vitro, including increased sensitivity. We speculate that this approach to measuring kinase activity will be generally applicable across most of the kinome, enabling research on understudied kinases and kinase drug discovery.
Collapse
Affiliation(s)
- Cynthia Meyer
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Melissa McCoy
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Lianbo Li
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Bruce Posner
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Kenneth D. Westover
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- X (formerly Twitter): @KENWESTOVER
- Lead contact
| |
Collapse
|
15
|
La YT, Yan YJ, Li X, Zhang Y, Sun YX, Dong WK. Coordination-Driven Salamo-Salen-Salamo-Type Multinuclear Transition Metal(II) Complexes: Synthesis, Structure, Luminescence, Transformation of Configuration, and Nuclearity Induced by the Acetylacetone Anion. Inorg Chem 2023. [PMID: 37311103 DOI: 10.1021/acs.inorgchem.3c01149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A flexible polydentate Salamo-Salen-Salamo hybrid ligand H4L was designed and synthesized, which has rich pockets (salamo and salen pockets) so that it may have fascinating coordination patterns with transition metal(II) ions. Four multinuclear transition metal(II) complexes, novel butterfly-shaped homotetranuclear [Ni4(L)(μ1-OAc)2(μ1,3-OAc)2(H2O)0.5(CH3CH2OH)3.5]·4CH3CH2OH (1), helical homotrinuclear [Zn3(L)(μ1-OAc)2]·2CH3CH2OH (2), double-helical homotrinuclear [Cu2(H2L)2]·2CH3CN (3), and mononuclear [Ni(H2L)]·1.5CH3COCH3 (4), have been synthesized and characterized by single-crystal X-ray diffraction. The effects of different anions [OAc- and (O2C5H7)2-] on the complexation behavior of H4L with transition metal(II) ions were studied by UV-vis spectrophotometry. The fluorescent properties of the four complexes were studied with zebrafish, which are expected to be a potential light-emitting material. Ultimately, interaction region indicator (IRI) valuations, Hirshfeld surface analyses, density functional theory (DFT & TD-DFT), electrostatic potential analyses (ESP), and simulations were carried out to further demonstrate the weak interactions and electronic properties of the free ligand and its four complexes.
Collapse
Affiliation(s)
- Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Xun Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| |
Collapse
|
16
|
Shagufta, Ahmad I. Therapeutic significance of molecular hybrids for breast cancer research and treatment. RSC Med Chem 2023; 14:218-238. [PMID: 36846377 PMCID: PMC9945856 DOI: 10.1039/d2md00356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Worldwide, breast cancer is still a leading cause of cancer death in women. Indeed, over the years, several anti-breast cancer drugs have been developed; however, the complex heterogeneous nature of breast cancer disease reduces the applicability of conventional targeted therapies with the upsurge in side effects and multi-drug resistance. Molecular hybrids generated by a combination of two or more active pharmacophores emerged as a promising approach in recent years for the design and synthesis of anti-breast cancer drugs. The hybrid anti-breast cancer molecules are well known for their several advantages compared to the parent moiety. These hybrid forms of anti-breast cancer molecules demonstrated remarkable effects in blocking different pathways contributing to the pathogenies of breast cancer and improved specificity. In addition, these hybrids are patient compliant with reduced side effects and multi-drug resistance. The literature revealed that molecular hybrids are applied to discover and develop novel hybrids for various complex diseases. This review article highlights the recent progress (∼2018-2022) in developing molecular hybrids, including linked, merged, and fused hybrids, as promising anti-breast cancer agents. Furthermore, their design principles, biological potential, and future perspective are discussed. The provided information will lead to the development of novel anti-breast cancer hybrids with excellent pharmacological profiles in the future.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| | - Irshad Ahmad
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| |
Collapse
|
17
|
Anticancer Drug Conjugates Incorporating Estrogen Receptor Ligands. Pharmaceutics 2022; 15:pharmaceutics15010067. [PMID: 36678697 PMCID: PMC9866829 DOI: 10.3390/pharmaceutics15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Hormone-dependent cancers, such as certain types of breast cancer are characterized by over-expression of estrogen receptors (ERs). Anticancer drug conjugates combining ER ligands with other classes of anticancer agents may not only benefit from dual action at both anti-cancer targets but also from selective delivery of cytotoxic agents to ER-positive tumor cells resulting in less toxicity and adverse effects. Moreover, they could also take advantage of overcoming resistance typical for anti-hormonal monotherapy such as tamoxifen. In this review, we discuss the design, structures and pharmacological effects of numerous series of drug conjugates containing ER ligands such as selective ER modulators (tamoxifen, 4-hydroxytamoxifen, endoxifen), selective ER degraders (ICI-164384) and ER agonists (estradiol) linked to diverse anti-cancer agents including histone-deacetylase inhibitors, DNA-alkylating agents, antimitotic agents and epidermal growth factor receptor inhibitors.
Collapse
|
18
|
Kong M, Yu X, Zheng Q, Zhang S, Guo W. Oncogenic roles of LINC01234 in various forms of human cancer. Biomed Pharmacother 2022; 154:113570. [PMID: 36030582 DOI: 10.1016/j.biopha.2022.113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) plays an essential role in various malignant neoplasia. As a newly identified lncRNA, LINC01234 is abnormally expressed in several types of cancers and promotes the development of cancers. Accumulating evidence indicates that overexpression of LINC01234 is associated with poor clinical outcomes. Moreover, LINC01234 modulates many cellular events as a putative proto-oncogene, including proliferation, migration, invasion, apoptosis, cell cycle progression, and EMT. In terms of molecular mechanism, LINC01234 regulates gene expression by acting as ceRNA, participating in signaling pathways, interacting with proteins and other molecules, and encoding polypeptide. It reveals that LINC01234 may serve as a potential biomarker for cancer diagnosis, treatment, and prognosis. This review summarizes the expression pattern, biological function, and molecular mechanism of LINC01234 in human cancer and discusses its potential clinical utility.
Collapse
Affiliation(s)
- Minyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China.
| |
Collapse
|
19
|
Peng J, Pei S, Cui Y, Xia Y, Huang Y, Wu X, Zheng M, Weng M, Han X, Fu H, Yang L, Zhou W, Fu Z, Wang S, Xie H. Comparative analysis of transient receptor potential channel 5 opposite strand-induced gene expression patterns and protein-protein interactions in triple-negative breast cancer. Oncol Lett 2022; 24:259. [PMID: 35765270 PMCID: PMC9219028 DOI: 10.3892/ol.2022.13379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/04/2022] [Indexed: 11/06/2022] Open
Abstract
In patients with triple-negative breast cancer (TNBC), high tumour mutation burden and aberrant oncogene expression profiles are some of the causes of poor prognosis. Therefore, it is necessary to identify aberrantly expressed oncogenes, since they have the potential to serve as therapeutic targets. Transient receptor potential channel 5 opposite strand (TRPC5OS) has been previously shown to function as a novel tumour inducer. However, the underlying mechanism of TRPC5OS function in TNBC remain to be elucidated. Therefore, in the present study TRPC5OS expression was first measured in tissue samples of patients with TNBC and a panel of breast cancer cell lines (ZR-75-1, MDA-MB-453, SK-BR-3, JIMT-1, BT474 and HCC1937) by using qRT-PCR and Western blotting. Subsequently, the possible effects of TRPC5OS on MDA-MB-231 cells proliferation were determined using Cell Counting Kit-8 and 5-Ethynyl-2′-deoxyuridine assays after Lentiviral transfection of MDA-MB-231. In addition, potential interaction partners of TRPC5OS were explored using liquid chromatography-mass spectrometry (LC-MS)/MS. Gene expression patterns following TRPC5OS overexpression were also detected in MDA-MB-231 cells by using High-throughput sequencing. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis were then used to systematically verify the potential interactions among the TRPC5OS-regulated genes. The potential relationship between TRPC5OS-interacting proteins and gene expression patterns were studied using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis. TRPC5OS expression was found to be significantly higher in TNBC tumour tissues and breast cancer cell lines compared with luminal tumour tissues and ZR-75-1. In addition, the overexpression of TRPC5OS significantly increased cell proliferation. High-throughput sequencing results revealed that 5,256 genes exhibited differential expression following TRPC5OS overexpression, including 3,269 upregulated genes and 1,987 downregulated genes. GO analysis results indicated that the functions of these differentially expressed genes were enriched in the categories of ‘cell division’ and ‘cell proliferation’ regulation. KEGG analysis showed that the TRPC5OS-regulated genes were associated with processes of ‘homologous recombination’ and ‘TNF signalling pathways’. Subsequently, 17 TRPC5OS-interacting proteins were found using LC-MS/MS and STRING analysis. The most important protein among interacting proteins was ENO1 which was associated with glycolysis and regulated proliferation of cancer. In summary, data from the present study suggest that TRPC5OS overexpression can increase TNBC cell proliferation and ENO1 may be a potential target protein mediated by TRPC5OS. Therefore, TRPC5OS may serve as a novel therapeutic target for TNBC.
Collapse
Affiliation(s)
- Jinghui Peng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Breast Disease Laboratory, Women and Children Central Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Breast Disease Laboratory, Women and Children Central Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yangyang Cui
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yiqin Xia
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yue Huang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaowei Wu
- Breast Disease Laboratory, Women and Children Central Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingjie Zheng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Miaomiao Weng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xu Han
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Breast Disease Laboratory, Women and Children Central Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongtao Fu
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Breast Disease Laboratory, Women and Children Central Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lili Yang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenbin Zhou
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyi Fu
- Breast Disease Laboratory, Women and Children Central Laboratory, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
20
|
Synthesis and antitumor activity evaluation in vitro of 4-aminoquinazoline derivatives containing 1,3,4-thiadiazole. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|