1
|
Mangunuru HPR, Terrab L, Janganati V, Kalikinidi NR, Tenneti S, Natarajan V, Shada ADR, Naini SR, Gajula P, Lee D, Samankumara LP, Mamunooru M, Jayaraman A, Sahani RL, Yin J, Hewa-Rahinduwage CC, Gangu A, Chen A, Wang Z, Desai B, Yue TY, Wannere CS, Armstrong JD, Donsbach KO, Sirasani G, Gupton BF, Qu B, Senanayake CH. Synthesis of Chiral 1,2-Amino Alcohol-Containing Compounds Utilizing Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of Unprotected α-Ketoamines. J Org Chem 2024; 89:6085-6099. [PMID: 38648720 DOI: 10.1021/acs.joc.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Herein, we disclose a facile synthetic strategy to access an important class of drug molecules that contain chiral 1,2-amino alcohol functionality utilizing highly effective ruthenium-catalyzed asymmetric transfer hydrogenation of unprotected α-ketoamines. Recently, the COVID-19 pandemic has caused a crisis of shortage of many important drugs, especially norepinephrine and epinephrine, for the treatment of anaphylaxis and hypotension because of the increased demand. Unfortunately, the existing technologies are not fulfilling the worldwide requirement due to the existing lengthy synthetic protocols that require additional protection and deprotection steps. We identified a facile synthetic protocol via a highly enantioselective one-step process for epinephrine and a two-step process for norepinephrine starting from unprotected α-ketoamines 1b and 1a, respectively. This newly developed enantioselective ruthenium-catalyzed asymmetric transfer hydrogenation was extended to the synthesis of many 1,2-amino alcohol-containing drug molecules such as phenylephrine, denopamine, norbudrine, and levisoprenaline, with enantioselectivities of >99% ee and high isolated yields.
Collapse
Affiliation(s)
- Hari P R Mangunuru
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Leila Terrab
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Venumadhav Janganati
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | | | - Srinivasarao Tenneti
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Vasudevan Natarajan
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Arun D R Shada
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Santhosh Reddy Naini
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Praveen Gajula
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Daniel Lee
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Lalith P Samankumara
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Manasa Mamunooru
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Aravindan Jayaraman
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rajkumar Lalji Sahani
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Jinya Yin
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | | | - Aravind Gangu
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Anji Chen
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Zhirui Wang
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Bimbisar Desai
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Tai Y Yue
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Chaitanya S Wannere
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Joseph D Armstrong
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Kai O Donsbach
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Gopal Sirasani
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - B Frank Gupton
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Bo Qu
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Chris H Senanayake
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| |
Collapse
|
2
|
Xing G, Li Z, Zhi Z, Yi C, Zhang R, Yang H, Zhang Y, Lin B, Liu Y, Pan L, Cheng M. Discovery and Identification of Novel 5-Hydroxy-4 H-benzo[1,4]oxazin-3-one Derivatives as Potent β 2-Adrenoceptor Agonists through Structure-Based Design, Synthesis, and Biological Evaluation. J Med Chem 2024; 67:2986-3003. [PMID: 38347756 DOI: 10.1021/acs.jmedchem.3c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Although β2-agonists are crucial for treatment of chronic respiratory diseases, optimizing β2-agonistic activity and selectivity remains essential for achieving favorable therapeutic outcomes. A structure-based molecular design workflow was employed to discover a novel class of β2 agonists featuring a 5-hydroxy-4H-benzo[1,4]oxazin-3-one scaffold, which potently stimulated β2 adrenoceptors (β2-ARs). Screening for the β2-agonistic activity and selectivity led to the identification of compound A19 (EC50 = 3.7 pM), which functioned as a partial β2-agonist in HEK-293 cells containing endogenous β2-ARs. Compound A19 exhibited significant relaxant effects, rapid onset time (Ot50 = 2.14 min), and long duration of action (>12 h) on isolated guinea pig tracheal strips, as well as advantageous pharmacokinetic characteristics in vivo, rendering A19 suitable for inhalation administration. Moreover, A19 suppressed the upregulation of inflammatory cytokines and leukocytes and improved lung function in a rat model of COPD, thereby indicating that A19 is a potential β2 agonist candidate for further study.
Collapse
Affiliation(s)
- Gang Xing
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenli Li
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhengxing Zhi
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ce Yi
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruiwen Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huali Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuyang Zhang
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Pan
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|