1
|
Zeng M, Hu Y, Zhao L, Duan C, Wu H, Xu Y, Liu X, Wang Y, Jiang D, Zeng S. Design, synthesis, and pharmacological evaluation of triazine-based PI3K/mTOR inhibitors for the potential treatment of non-small cell lung cancer. Eur J Med Chem 2024; 284:117200. [PMID: 39733482 DOI: 10.1016/j.ejmech.2024.117200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
Dysregulated activation of the PI3K/AKT/mTOR pathway is crucial in the development of cancer, and disrupting it could potentially lead to cancer suppression, making it a viable strategy for cancer treatment. Here, as a consecutive work of our team, we described the identification and optimization of PI3K/mTOR inhibitors based on triazine scaffold, which exhibited potent PI3K/mTOR inhibitor activity. The systematically structure-activity relationship (SAR) results demonstrated that compound 5nh displayed high efficacy against PI3Kα and mTOR, with the IC50 values of 0.45 nM and 2.9 nM, respectively. Importantly, compared to the lead compound PKI-587, 5nh demonstrated significant inhibitory activity against non-small-cell lung cancer (NSCLC) cell lines, particularly HCC-827, with a 43-fold increase (3.5 nM vs 150 nM). Additionally, the compound showed effective inhibition against the EGFR-resistant variant HCC-827(GR) cell line. Mechanism validation demonstrated that 5nh significantly interfered with the PI3K/AKT/mTOR signaling pathway in HCC-827 cells. Furthermore, the oral pharmacokinetic properties of 5nh had been observably improved, with AUC0-t and Cmax increasing by 13-16 times at a dose of 10 mg/kg in mice. Importantly, the in vivo efficacy study demonstrated that orally treatment of 5nh led to significant tumor growth suppression, with a TGI value of 84.4 %. Collectively, our systematically medicinal chemistry campaigns suggested that 5nh, a novel oral available triazine derivative, held promise as a candidate for therapy of NSCLC by targeting the PI3K/AKT/mTOR cascade.
Collapse
Affiliation(s)
- Ming Zeng
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332005, China.
| | - Yingxuan Hu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332005, China
| | - Lan Zhao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332005, China
| | - Chengze Duan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310053, China
| | - Haifeng Wu
- Zhejiang Research Institute of Chemical Industry, Hangzhou, 310023, China
| | - Yi Xu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332005, China
| | - Xiaoguang Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332005, China
| | - Yali Wang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332005, China
| | - Dengzhao Jiang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332005, China
| | - Shenxin Zeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310053, China; School of Pharmacy, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Hajimolaali M, Dorkoosh FA, Antimisiaris SG. Review of recent preclinical and clinical research on ligand-targeted liposomes as delivery systems in triple negative breast cancer therapy. J Liposome Res 2024; 34:671-696. [PMID: 38520185 DOI: 10.1080/08982104.2024.2325963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Triple-negative breast Cancer (TNBC) is one of the deadliest types, making up about 20% of all breast cancers. Chemotherapy is the traditional manner of progressed TNBC treatment; however, it has a short-term result with a high reversibility pace. The lack of targeted treatment limited and person-dependent treatment options for those suffering from TNBC cautions to be the worst type of cancer among breast cancer patients. Consequently, appropriate treatment for this disease is considered a major clinical challenge. Therefore, various treatment methods have been developed to treat TNBC, among which chemotherapy is the most common and well-known approach recently studied. Although effective methods are chemotherapies, they are often accompanied by critical limitations, especially the lack of specific functionality. These methods lead to systematic toxicity and, ultimately, the expansion of multidrug-resistant (MDR) cancer cells. Therefore, finding novel and efficient techniques to enhance the targeting of TNBC treatment is an essential requirement. Liposomes have demonstrated that they are an effective method for drug delivery; however, among a large number of liposome-based drug delivery systems annually developed, a small number have just received authorization for clinical application. The new approaches to using liposomes target their structure with various ligands to increase therapeutic efficiency and diminish undesired side effects on various body tissues. The current study describes the most recent strategies and research associated with functionalizing the liposomes' structure with different ligands as targeted drug carriers in treating TNBCs in preclinical and clinical stages.
Collapse
Affiliation(s)
- Mohammad Hajimolaali
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sophia G Antimisiaris
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
- Institute of Chemical Engineering, Foundation for Research and Technology Hellas, FORTH/ICEHT, Patras, Greece
| |
Collapse
|
3
|
Kao WH, Liao LZ, Chen YA, Lo UG, Pong RC, Hernandez E, Chen MC, Teng CLJ, Wang HY, Tsai SCS, Kapur P, Lai CH, Hsieh JT, Lin H. SPHK1 promotes bladder cancer metastasis via PD-L2/c-Src/FAK signaling cascade. Cell Death Dis 2024; 15:678. [PMID: 39284838 PMCID: PMC11405731 DOI: 10.1038/s41419-024-07044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
SPHK1 (sphingosine kinase type 1) is characterized as a rate-limiting enzyme in sphingolipid metabolism to phosphorylate sphingosine into sphingosine-1-phosphate (S1P) that can bind to S1P receptors (S1PRs) to initiate several signal transductions leading to cell proliferation and survival of normal cell. Many studies have indicated that SPHK1 is involved in several types of cancer development, however, a little is known in bladder cancer. The TCGA database analysis was utilized for analyzing the clinical relevance of SPHK1 in bladder cancer. Through CRISPR/Cas9 knockout (KO) and constitutive activation (CA) strategies on SPHK1 in the bladder cancer cells, we demonstrated the potential downstream target could be programmed cell death 1 ligand 2 (PD-L2). On the other hand, we demonstrated that FDA-approved SPHK1 inhibitor Gilenya® (FTY720) can successfully suppress bladder cancer metastasis by in vitro and in vivo approaches. This finding indicated that SPHK1 as a potent therapeutic target for metastatic bladder cancer by dissecting the mechanism of action, SPHK1/S1P-elicited Akt/β-catenin activation promoted the induction of PD-L2 that is a downstream effector in facilitating bladder cancer invasion and migration. Notably, PD-L2 interacted with c-Src that further activates FAK. Here, we unveil the clinical relevance of SPHK1 in bladder cancer progression and the driver role in bladder cancer metastasis. Moreover, we demonstrated the inhibitory effect of FDA-approved SPHK1 inhibitor FTY720 on bladder cancer metastasis from both in vitro and in vivo models.
Collapse
Affiliation(s)
- Wei-Hsiang Kao
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li-Zhu Liao
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rey-Chen Pong
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mei-Chih Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Stella Chin-Shaw Tsai
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Superintendent Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Payal Kapur
- Urology and Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
4
|
Fan C, Lou S, Shen C, Liao J, Ni H, Chen S, Zhu Z, Hu X, Xie W, Zhao H, Cui S. Natural Product-Inspired Discovery of Naphthoquinone-Furo-Piperidine Derivatives as Novel STAT3 Inhibitors for the Treatment of Triple-Negative Breast Cancer. J Med Chem 2024; 67:15291-15310. [PMID: 39226127 DOI: 10.1021/acs.jmedchem.4c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and STAT3 has emerged as an effective drug target for TNBC treatment. Herein, we employed a scaffold-hopping strategy of natural products to develop a series of naphthoquinone-furopiperidine derivatives as novel STAT3 inhibitors. The in vitro assay showed that compound 10g possessed higher antiproliferative activity than Cryptotanshinone and Napabucasin against TNBC cell lines, along with lower toxicity and potent antitumor activity in a TNBC xenograft model. Mechanistically, 10g could inhibit the phosphorylation of STAT3 and the binding affinity was determined by the SPR assay (KD = 8.30 μM). Molecule docking studies suggested a plausible binding mode between 10g and the SH2 domain, in which the piperidine fragment and the terminal hydroxy group of 10g played an important role in demonstrating the success of this evolution strategy. These findings provide a natural product-inspired novel STAT3 inhibitor for TNBC treatment.
Collapse
Affiliation(s)
- Chengcheng Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengying Lou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenjun Shen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jialing Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Ni
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Wei Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Liu XT, Huang Y, Liu D, Jiang YC, Zhao M, Chung LH, Han XD, Zhao Y, Chen J, Coleman P, Ting KK, Tran C, Su Y, Dennis CV, Bhatnagar A, Liu K, Don AS, Vadas MA, Gorrell MD, Zhang S, Murray M, Kavurma MM, McCaughan GW, Gamble JR, Qi Y. Targeting the SphK1/S1P/PFKFB3 axis suppresses hepatocellular carcinoma progression by disrupting glycolytic energy supply that drives tumor angiogenesis. J Transl Med 2024; 22:43. [PMID: 38200582 PMCID: PMC10782643 DOI: 10.1186/s12967-023-04830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a leading life-threatening health challenge worldwide, with pressing needs for novel therapeutic strategies. Sphingosine kinase 1 (SphK1), a well-established pro-cancer enzyme, is aberrantly overexpressed in a multitude of malignancies, including HCC. Our previous research has shown that genetic ablation of Sphk1 mitigates HCC progression in mice. Therefore, the development of PF-543, a highly selective SphK1 inhibitor, opens a new avenue for HCC treatment. However, the anti-cancer efficacy of PF-543 has not yet been investigated in primary cancer models in vivo, thereby limiting its further translation. METHODS Building upon the identification of the active form of SphK1 as a viable therapeutic target in human HCC specimens, we assessed the capacity of PF-543 in suppressing tumor progression using a diethylnitrosamine-induced mouse model of primary HCC. We further delineated its underlying mechanisms in both HCC and endothelial cells. Key findings were validated in Sphk1 knockout mice and lentiviral-mediated SphK1 knockdown cells. RESULTS SphK1 activity was found to be elevated in human HCC tissues. Administration of PF-543 effectively abrogated hepatic SphK1 activity and significantly suppressed HCC progression in diethylnitrosamine-treated mice. The primary mechanism of action was through the inhibition of tumor neovascularization, as PF-543 disrupted endothelial cell angiogenesis even in a pro-angiogenic milieu. Mechanistically, PF-543 induced proteasomal degradation of the critical glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, thus restricting the energy supply essential for tumor angiogenesis. These effects of PF-543 could be reversed upon S1P supplementation in an S1P receptor-dependent manner. CONCLUSIONS This study provides the first in vivo evidence supporting the potential of PF-543 as an effective anti-HCC agent. It also uncovers previously undescribed links between the pro-cancer, pro-angiogenic and pro-glycolytic roles of the SphK1/S1P/S1P receptor axis. Importantly, unlike conventional anti-HCC drugs that target individual pro-angiogenic drivers, PF-543 impairs the PFKFB3-dictated glycolytic energy engine that fuels tumor angiogenesis, representing a novel and potentially safer therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xin Tracy Liu
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yu Huang
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Da Liu
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yingxin Celia Jiang
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Xingxing Daisy Han
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Jinbiao Chen
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Paul Coleman
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Ka Ka Ting
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Collin Tran
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yingying Su
- Sydney Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Claude Vincent Dennis
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Atul Bhatnagar
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Anthony Simon Don
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mathew Alexander Vadas
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Mark Douglas Gorrell
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Geoffrey William McCaughan
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Jennifer Ruth Gamble
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia.
| |
Collapse
|
6
|
Du Y, Gao F, Sun H, Wu C, Zhu G, Zhu M. Novel substituted 4-(Arylethynyl)-Pyrrolo[2,3-d]pyrimidines negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGlu5) Treat depressive disorder in mice. Eur J Med Chem 2023; 261:115855. [PMID: 37847955 DOI: 10.1016/j.ejmech.2023.115855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
In view of the fact that the G-protein-coupled receptors (GPCRs) sit at the top of the signaling pathways triggering a diverse range of signaling cascades towards a cellular event, GPCRs are regarded as central drug targets. mGlu5, a type of classical GPCRs, is highly expressed in the central nervous system (CNS) and responds to the neurotransmitter glutamate. Researches show that mGlu5 is a potential drug target for the treatment of depression. Up to now, multiple mGlu5 negative allosteric modulators (NAMs) have entered clinical trials, but no small molecule mGlu5 NAM has yet to reach market. Herein, we report the structural optimization and structure-activity relationship studies of a series of novel mGlu5 NAMs. Among them, the novel compound 10b is a high-affinity mGluR5 antagonist, with an IC50 value of 11.5 nM. Besides, we evaluated the anti-depressant effect of compound 10b using the chronic unpredictable mild stress (CUMS)-induced depression model. The data showed that the mice in CUMS group were featured by decreased level of serum 5-HT and increased level of serum CORT, and the expression of synaptic proteins were reduced, including GluA1, GluA2, p-PKA, BDNF and TrkB. However, those factors for identifying sensitivity to depression-like behaviors could be improved by compound 10b treatment. The preliminary toxicology evaluations indicated that compound 10b had a good safety profile in vivo. Collectively, the compound 10b represents a promising lead compound for the treatment of depressive disorder.
Collapse
Affiliation(s)
- Yonglei Du
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Hongwei Sun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Chenglin Wu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
7
|
Chao-shun W, Xiao-Li W. The impacts of SphK1 on inflammatory response and oxidative stress in LPS-induced ALI/ARDS. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231158310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
As severe conditions, acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) threaten human health. Inflammation and oxidative stress play a vital role in the pathogenesis of ALI/ARDS. Sphingosine kinase 1 (SphK1) significantly contributes to mediating inflammatory responses. Nevertheless, the impact of SphK1 on lipopolysaccharide (LPS)-triggered ALI/ARDS remains largely undetermined. In our current work, we explored the impact of SphK1 on ALI/ARDS using a mouse model. We studied whether it could reduce LPS-triggered inflammatory response and oxidative stress by suppressing SphK1 in ALI/ARDS. The mice were treated with the inhibitor of SphK1 (N,N-dimethylsphingosine, DMS) before intraperitoneal injection of LPS. Moreover, we assessed the survival rate, and several parameters, such as the lung wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and the release of inflammatory cytokines. Western blotting analysis was adopted to evaluate the levels of phosphoinositide 3-kinase (PI3K)/serine/threonine kinase (AKT) pathways. We showed that the inhibitor of SphK1 not only ameliorated LPS-stimulated lung histopathological changes and W/D ratio of lung tissue but also elevated the survival rate, the SOD activity and decreased the MDA content, MPO activity, interleukin-6 (IL-6) and tumor necrosis factor-ɑ (TNF-ɑ) production by regulating the PI3K/AKT signaling pathway in lung tissue. Taken together, SphK1 played an essential role in inflammatory responses and oxidative stress. The underlying mechanism might be linked to the activation and up-regulation of the PI3K/AKT signaling pathway in LPS-triggered ALI/ARDS.
Collapse
Affiliation(s)
- Wei Chao-shun
- Medical College of Jishou University, Jishou, P. R. China
| | - Wang Xiao-Li
- Medical College of Jishou University, Jishou, P. R. China
| |
Collapse
|
8
|
Zhi XY, Zhang Y, Li YF, Liu Y, Niu WP, Li Y, Zhang CR, Cao H, Hao XJ, Yang C. Discovery of Natural Sesquiterpene Lactone 1- O-Acetylbritannilactone Analogues Bearing Oxadiazole, Triazole, or Imidazole Scaffolds for the Development of New Fungicidal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37463456 DOI: 10.1021/acs.jafc.3c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In recent decades, natural products have been considered important resources for developing of new agrochemicals because of their novel architectures and multibioactivities. Consequently, herein, 1-O-acetylbritannilactone (ABL), a natural sesquiterpene lactone from Inula britannica L., was used as a lead for further modification to discover fungicidal candidates. Six series of ABL-based derivatives containing an oxadiazole, triazole, or imidazole moiety were designed and synthesized, and their antifungal activities were also evaluated in vitro and in vivo. Bioassay results revealed that compounds 8d, 8h, and 8j (EC50 = 61.4, 30.9, and 12.4 μg/mL, respectively) exhibited more pronounced inhibitory activity against Fusarium oxysporum than their precursor ABL (EC50 > 500 μg/mL) and positive control hymexazol (EC50 = 77.2 μg/mL). Derivatives 8d and 11j (EC50 = 19.6 and 41.5 μg/mL, respectively) exhibited more potent antifungal activity toward Cytospora mandshurica than ABL (EC50 = 68.3 μg/mL). Compound 10 exhibited excellent and broad-spectrum antifungal activity against seven phytopathogenic fungal mycelia. Particularly, the inhibitory activity of compound 10 against the mycelium of Botrytis cinerea was more than 10.8- and 2.3-fold those of ABL and hymexazol, respectively. Meanwhile, derivative 10 (IC50 = 47.7 μg/mL) displayed more pronounced inhibitory activity against the spore of B. cinerea than ABL (IC50 > 500 μg/mL) and difenoconazole (IC50 = 80.8 μg/mL). Additionally, the in vivo control efficacy of compound 10 against B. cinerea was further studied using infected tomatoes (protective effect = 58.4%; therapeutic effect = 48.7%). The preliminary structure-activity relationship analysis suggested that the introduction of the 1,3,4-oxadiazole moiety (especially the 1,3,4-oxadiazole heterocycle containing the 4-chlorophenyl, 2-furyl, or 2-pyridinyl group) on the skeleton of ABL was more likely to produce potential antifungal compounds. These findings pave the way for further design and development of ABL-based derivatives as potential antifungal agents.
Collapse
Affiliation(s)
- Xiao-Yan Zhi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. China
| | - Yuan Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Yang-Fan Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Ying Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Wen-Peng Niu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Yang Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Cheng-Ran Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Hui Cao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Xiao-Juan Hao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Chun Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. China
| |
Collapse
|
9
|
Yi X, Tang X, Li T, Chen L, He H, Wu X, Xiang C, Cao M, Wang Z, Wang Y, Wang Y, Huang X. Therapeutic potential of the sphingosine kinase 1 inhibitor, PF-543. Biomed Pharmacother 2023; 163:114401. [PMID: 37167721 DOI: 10.1016/j.biopha.2023.114401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 05/13/2023] Open
Abstract
PF-543 is a sphingosine kinase 1(SPHK1)inhibitor developed by Pfizer and is currently considered the most potent selective SPHK1 inhibitor. SPHK1 catalyses the production of sphingosine 1-phosphate (S1P) from sphingosine. It is the rate-limiting enzyme of S1P production, and there is substantial evidence to support a very important role for sphingosine kinase in health and disease. This review is the first to summarize the role and mechanisms of PF-543 as an SPHK1 inhibitor in anticancer, antifibrotic, and anti-inflammatory processes, providing new therapeutic leads and ideas for future research and clinical trials.
Collapse
Affiliation(s)
- Xueliang Yi
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China
| | - Xuemei Tang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianlong Li
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- University of Electronic Science and Technology of China, China
| | - Hongli He
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China
| | - Xiaoxiao Wu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunlin Xiang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Cao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zixiang Wang
- University of Electronic Science and Technology of China, China
| | - Yi Wang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China.
| | - Yiping Wang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China.
| | - Xiaobo Huang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; University of Electronic Science and Technology of China, China.
| |
Collapse
|
10
|
Ma S, Zhang N, Hou J, Liu S, Wang J, Lu B, Zhu F, Wei P, Hong G, Liu T. Synthesis and Discovery of Ligustrazine–Heterocycle Derivatives as Antitumor Agents. Front Chem 2022; 10:941367. [PMID: 35958230 PMCID: PMC9358002 DOI: 10.3389/fchem.2022.941367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Ligustrazine (TMP) is a natural pyrazine alkaloid extracted from the roots of Ligusticum Chuanxiong Hort, which has the potential as an antitumor agent. A series of 33 ligustrazine–heterocycle (TMPH) derivatives were designed, synthesized, and investigated via antitumor screening assays, molecular docking analysis, and prediction of drug-like properties. TMP was attached to other heterocyclic derivatives by an 8–12 methylene alkyl chain as a linker to obtain 33 TMPH derivatives. The structures were confirmed by 1H-NMR, 13C-NMR, and high-resolution mass spectroscopy spectral (HR-MS) data. The antiproliferative activity against human breast cancer MCF-7, MDA-MB-231, mouse breast cancer 4T1, mouse fibroblast L929, and human umbilical vein endothelial HUVEC cell lines was evaluated by MTT assay. Compound 12–9 displayed significant inhibitory activity with IC50 values in the low micromolar range (0.84 ± 0.02 µM against the MDA-MB-231 cell line). The antitumor effects of compound 12–9 were further evaluated by plate cloning, Hoechst 33 342 staining, and annexin V-FITC/PI staining. The results indicated that compound 12–9 inhibited the proliferation and apoptosis of breast cancer cells. Furthermore, molecular docking of compound 12–9 into the active site of the Bcl-2, CASP-3, and PSMB5 target proteins was performed to explore the probable binding mode. The 33 newly synthesized compounds were predicted to have good drug-like properties in a theoretical study. Overall, these results indicated that compound 12–9 inhibited cell proliferation through PSMB5 and apoptosis through Bcl-2/CASP-3 apoptotic signaling pathways and had good drug-like properties. These results provided more information, and key precursor lead derivatives, in the search for effective bioactive components from Chinese natural medicines.
Collapse
Affiliation(s)
- Shitang Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- College of Life and Health, Anhui Science and Technology University, Fengyang, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, China
| | - Ning Zhang
- College of Life and Health, Anhui Science and Technology University, Fengyang, China
| | - Jiafu Hou
- Mudanjiang Medical University, Mudanjiang, China
| | - Shijuan Liu
- Mudanjiang Medical University, Mudanjiang, China
| | - Jiawen Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, China
| | - Baowei Lu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Fucheng Zhu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Peipei Wei
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Ge Hong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, China
- *Correspondence: Ge Hong, ; Tianjun Liu,
| | - Tianjun Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, China
- *Correspondence: Ge Hong, ; Tianjun Liu,
| |
Collapse
|