1
|
Zhang X, Shen C, Zhang H, Kang Y, Hsieh CY, Hou T. Advancing Ligand Docking through Deep Learning: Challenges and Prospects in Virtual Screening. Acc Chem Res 2024; 57:1500-1509. [PMID: 38577892 DOI: 10.1021/acs.accounts.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Molecular docking, also termed ligand docking (LD), is a pivotal element of structure-based virtual screening (SBVS) used to predict the binding conformations and affinities of protein-ligand complexes. Traditional LD methodologies rely on a search and scoring framework, utilizing heuristic algorithms to explore binding conformations and scoring functions to evaluate binding strengths. However, to meet the efficiency demands of SBVS, these algorithms and functions are often simplified, prioritizing speed over accuracy.The emergence of deep learning (DL) has exerted a profound impact on diverse fields, ranging from natural language processing to computer vision and drug discovery. DeepMind's AlphaFold2 has impressively exhibited its ability to accurately predict protein structures solely from amino acid sequences, highlighting the remarkable potential of DL in conformation prediction. This groundbreaking advancement circumvents the traditional search-scoring frameworks in LD, enhancing both accuracy and processing speed and thereby catalyzing a broader adoption of DL algorithms in binding pose prediction. Nevertheless, a consensus on certain aspects remains elusive.In this Account, we delineate the current status of employing DL to augment LD within the VS paradigm, highlighting our contributions to this domain. Furthermore, we discuss the challenges and future prospects, drawing insights from our scholarly investigations. Initially, we present an overview of VS and LD, followed by an introduction to DL paradigms, which deviate significantly from traditional search-scoring frameworks. Subsequently, we delve into the challenges associated with the development of DL-based LD (DLLD), encompassing evaluation metrics, application scenarios, and physical plausibility of the predicted conformations. In the evaluation of LD algorithms, it is essential to recognize the multifaceted nature of the metrics. While the accuracy of binding pose prediction, often measured by the success rate, is a pivotal aspect, the scoring/screening power and computational speed of these algorithms are equally important given the pivotal role of LD tools in VS. Regarding application scenarios, early methods focused on blind docking, where the binding site is unknown. However, recent studies suggest a shift toward identifying binding sites rather than solely predicting binding poses within these models. In contrast, LD with a known pocket in VS has been shown to be more practical. Physical plausibility poses another significant challenge. Although DLLD models often achieve higher success rates compared to traditional methods, they may generate poses with implausible local structures, such as incorrect bond angles or lengths, which are disadvantageous for postprocessing tasks like visualization. Finally, we discuss the future perspectives for DLLD, emphasizing the need to improve generalization ability, strike a balance between speed and accuracy, account for protein conformation flexibility, and enhance physical plausibility. Additionally, we delve into the comparison between generative and regression algorithms in this context, exploring their respective strengths and potential.
Collapse
Affiliation(s)
- Xujun Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Chao Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Haotian Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
2
|
Wang T, Tong J, Zhang X, Wang Z, Xu L, Pan P, Hou T. Structure-based virtual screening of novel USP5 inhibitors targeting the zinc finger ubiquitin-binding domain. Comput Biol Med 2024; 174:108397. [PMID: 38603896 DOI: 10.1016/j.compbiomed.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
The equilibrium of cellular protein levels is pivotal for maintaining normal physiological functions. USP5 belongs to the deubiquitination enzyme (DUBs) family, controlling protein degradation and preserving cellular protein homeostasis. Aberrant expression of USP5 is implicated in a variety of diseases, including cancer, neurodegenerative diseases, and inflammatory diseases. In this paper, a multi-level virtual screening (VS) approach was employed to target the zinc finger ubiquitin-binding domain (ZnF-UBD) of USP5, leading to the identification of a highly promising candidate compound 0456-0049. Molecular dynamics (MD) simulations were then employed to assess the stability of complex binding and predict hotspot residues in interactions. The results indicated that the candidate stably binds to the ZnF-UBD of USP5 through crucial interactions with residues ARG221, TRP209, GLY220, ASN207, TYR261, TYR259, and MET266. Binding free energy calculations, along with umbrella sampling (US) simulations, underscored a superior binding affinity of the candidate relative to known inhibitors. Moreover, US simulations revealed conformational changes of USP5 during ligand dissociation. These insights provide a valuable foundation for the development of novel inhibitors targeting USP5.
Collapse
Affiliation(s)
- Tianhao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China; College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Jianbo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Xing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China; College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Zhe Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 310058, Zhejiang, PR China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
3
|
Kumar N, Acharya V. Advances in machine intelligence-driven virtual screening approaches for big-data. Med Res Rev 2024; 44:939-974. [PMID: 38129992 DOI: 10.1002/med.21995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/15/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023]
Abstract
Virtual screening (VS) is an integral and ever-evolving domain of drug discovery framework. The VS is traditionally classified into ligand-based (LB) and structure-based (SB) approaches. Machine intelligence or artificial intelligence has wide applications in the drug discovery domain to reduce time and resource consumption. In combination with machine intelligence algorithms, VS has emerged into revolutionarily progressive technology that learns within robust decision orders for data curation and hit molecule screening from large VS libraries in minutes or hours. The exponential growth of chemical and biological data has evolved as "big-data" in the public domain demands modern and advanced machine intelligence-driven VS approaches to screen hit molecules from ultra-large VS libraries. VS has evolved from an individual approach (LB and SB) to integrated LB and SB techniques to explore various ligand and target protein aspects for the enhanced rate of appropriate hit molecule prediction. Current trends demand advanced and intelligent solutions to handle enormous data in drug discovery domain for screening and optimizing hits or lead with fewer or no false positive hits. Following the big-data drift and tremendous growth in computational architecture, we presented this review. Here, the article categorized and emphasized individual VS techniques, detailed literature presented for machine learning implementation, modern machine intelligence approaches, and limitations and deliberated the future prospects.
Collapse
Affiliation(s)
- Neeraj Kumar
- Artificial Intelligence for Computational Biology Lab (AICoB), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Vishal Acharya
- Artificial Intelligence for Computational Biology Lab (AICoB), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
4
|
Shen T, Li S, Wang XS, Wang D, Wu S, Xia J, Zhang L. Deep reinforcement learning enables better bias control in benchmark for virtual screening. Comput Biol Med 2024; 171:108165. [PMID: 38402838 DOI: 10.1016/j.compbiomed.2024.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Virtual screening (VS) has been incorporated into the paradigm of modern drug discovery. This field is now undergoing a new wave of revolution driven by artificial intelligence and more specifically, machine learning (ML). In terms of those out-of-the-box datasets for model training or benchmarking, their data volume and applicability domain are limited. They are suffering from the biases constantly reported in the ML application. To address these issues, we present a novel benchmark named MUBDsyn. The utilization of synthetic decoys (i.e., presumed inactives) is the main feature of MUBDsyn, where deep reinforcement learning was leveraged for bias control during decoy generation. Then, we carried out extensive validations on this new benchmark. First, we confirmed that MUBDsyn was superior to the classical benchmarks in control of domain bias, artificial enrichment bias and analogue bias. Moreover, we found that the assessment of ML models based on MUBDsyn was less biased as revealed by the analysis of asymmetric validation embedding bias. In addition, MUBDsyn showed better setting of benchmarking challenge for deep learning models compared with NRLiSt-BDB. Overall, we have proven that MUBDsyn is the close-to-ideal benchmark for VS. The computational tool is publicly available for the easy extension of MUBDsyn.
Collapse
Affiliation(s)
- Tao Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shan Li
- College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiang Simon Wang
- Artificial Intelligence and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, USA
| | - Dongmei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
5
|
Xia S, Chen E, Zhang Y. Integrated Molecular Modeling and Machine Learning for Drug Design. J Chem Theory Comput 2023; 19:7478-7495. [PMID: 37883810 PMCID: PMC10653122 DOI: 10.1021/acs.jctc.3c00814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Modern therapeutic development often involves several stages that are interconnected, and multiple iterations are usually required to bring a new drug to the market. Computational approaches have increasingly become an indispensable part of helping reduce the time and cost of the research and development of new drugs. In this Perspective, we summarize our recent efforts on integrating molecular modeling and machine learning to develop computational tools for modulator design, including a pocket-guided rational design approach based on AlphaSpace to target protein-protein interactions, delta machine learning scoring functions for protein-ligand docking as well as virtual screening, and state-of-the-art deep learning models to predict calculated and experimental molecular properties based on molecular mechanics optimized geometries. Meanwhile, we discuss remaining challenges and promising directions for further development and use a retrospective example of FDA approved kinase inhibitor Erlotinib to demonstrate the use of these newly developed computational tools.
Collapse
Affiliation(s)
- Song Xia
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Eric Chen
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Yingkai Zhang
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
6
|
Zhang X, Shen C, Wang T, Deng Y, Kang Y, Li D, Hou T, Pan P. ML-PLIC: a web platform for characterizing protein-ligand interactions and developing machine learning-based scoring functions. Brief Bioinform 2023; 24:bbad295. [PMID: 37738401 DOI: 10.1093/bib/bbad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/24/2023] Open
Abstract
Cracking the entangling code of protein-ligand interaction (PLI) is of great importance to structure-based drug design and discovery. Different physical and biochemical representations can be used to describe PLI such as energy terms and interaction fingerprints, which can be analyzed by machine learning (ML) algorithms to create ML-based scoring functions (MLSFs). Here, we propose the ML-based PLI capturer (ML-PLIC), a web platform that automatically characterizes PLI and generates MLSFs to identify the potential binders of a specific protein target through virtual screening (VS). ML-PLIC comprises five modules, including Docking for ligand docking, Descriptors for PLI generation, Modeling for MLSF training, Screening for VS and Pipeline for the integration of the aforementioned functions. We validated the MLSFs constructed by ML-PLIC in three benchmark datasets (Directory of Useful Decoys-Enhanced, Active as Decoys and TocoDecoy), demonstrating accuracy outperforming traditional docking tools and competitive performance to the deep learning-based SF, and provided a case study of the Serine/threonine-protein kinase WEE1 in which MLSFs were developed by using the ML-based VS pipeline in ML-PLIC. Underpinning the latest version of ML-PLIC is a powerful platform that incorporates physical and biological knowledge about PLI, leveraging PLI characterization and MLSF generation into the design of structure-based VS pipeline. The ML-PLIC web platform is now freely available at http://cadd.zju.edu.cn/plic/.
Collapse
Affiliation(s)
- Xujun Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao Shen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Tianyue Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yafeng Deng
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Dan Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
7
|
Hagg A, Kirschner KN. Open-Source Machine Learning in Computational Chemistry. J Chem Inf Model 2023; 63:4505-4532. [PMID: 37466636 PMCID: PMC10430767 DOI: 10.1021/acs.jcim.3c00643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 07/20/2023]
Abstract
The field of computational chemistry has seen a significant increase in the integration of machine learning concepts and algorithms. In this Perspective, we surveyed 179 open-source software projects, with corresponding peer-reviewed papers published within the last 5 years, to better understand the topics within the field being investigated by machine learning approaches. For each project, we provide a short description, the link to the code, the accompanying license type, and whether the training data and resulting models are made publicly available. Based on those deposited in GitHub repositories, the most popular employed Python libraries are identified. We hope that this survey will serve as a resource to learn about machine learning or specific architectures thereof by identifying accessible codes with accompanying papers on a topic basis. To this end, we also include computational chemistry open-source software for generating training data and fundamental Python libraries for machine learning. Based on our observations and considering the three pillars of collaborative machine learning work, open data, open source (code), and open models, we provide some suggestions to the community.
Collapse
Affiliation(s)
- Alexander Hagg
- Institute
of Technology, Resource and Energy-Efficient Engineering (TREE), University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
- Department
of Electrical Engineering, Mechanical Engineering and Technical Journalism, University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| | - Karl N. Kirschner
- Institute
of Technology, Resource and Energy-Efficient Engineering (TREE), University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
- Department
of Computer Science, University of Applied
Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| |
Collapse
|
8
|
Zhang X, Shen C, Jiang D, Zhang J, Ye Q, Xu L, Hou T, Pan P, Kang Y. TB-IECS: an accurate machine learning-based scoring function for virtual screening. J Cheminform 2023; 15:63. [PMID: 37403155 DOI: 10.1186/s13321-023-00731-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023] Open
Abstract
Machine learning-based scoring functions (MLSFs) have shown potential for improving virtual screening capabilities over classical scoring functions (SFs). Due to the high computational cost in the process of feature generation, the numbers of descriptors used in MLSFs and the characterization of protein-ligand interactions are always limited, which may affect the overall accuracy and efficiency. Here, we propose a new SF called TB-IECS (theory-based interaction energy component score), which combines energy terms from Smina and NNScore version 2, and utilizes the eXtreme Gradient Boosting (XGBoost) algorithm for model training. In this study, the energy terms decomposed from 15 traditional SFs were firstly categorized based on their formulas and physicochemical principles, and 324 feature combinations were generated accordingly. Five best feature combinations were selected for further evaluation of the model performance in regard to the selection of feature vectors with various length, interaction types and ML algorithms. The virtual screening power of TB-IECS was assessed on the datasets of DUD-E and LIT-PCBA, as well as seven target-specific datasets from the ChemDiv database. The results showed that TB-IECS outperformed classical SFs including Glide SP and Dock, and effectively balanced the efficiency and accuracy for practical virtual screening.
Collapse
Affiliation(s)
- Xujun Zhang
- Innovation Institute for Artificial Intelligence in Medicine of, Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chao Shen
- Innovation Institute for Artificial Intelligence in Medicine of, Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Dejun Jiang
- Innovation Institute for Artificial Intelligence in Medicine of, Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jintu Zhang
- Innovation Institute for Artificial Intelligence in Medicine of, Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qing Ye
- Innovation Institute for Artificial Intelligence in Medicine of, Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of, Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of, Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of, Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
9
|
New avenues in artificial-intelligence-assisted drug discovery. Drug Discov Today 2023; 28:103516. [PMID: 36736583 DOI: 10.1016/j.drudis.2023.103516] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/08/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Over the past decade, the amount of biomedical data available has grown at unprecedented rates. Increased automation technology and larger data volumes have encouraged the use of machine learning (ML) or artificial intelligence (AI) techniques for mining such data and extracting useful patterns. Because the identification of chemical entities with desired biological activity is a crucial task in drug discovery, AI technologies have the potential to accelerate this process and support decision making. In addition, the advent of deep learning (DL) has shown great promise in addressing diverse problems in drug discovery, such as de novo molecular design. Herein, we will appraise the current state-of-the-art in AI-assisted drug discovery, discussing the recent applications covering generative models for chemical structure generation, scoring functions to improve binding affinity and pose prediction, and molecular dynamics to assist in the parametrization, featurization and generalization tasks. Finally, we will discuss current hurdles and the strategies to overcome them, as well as potential future directions.
Collapse
|
10
|
Wang L, Shi SH, Li H, Zeng XX, Liu SY, Liu ZQ, Deng YF, Lu AP, Hou TJ, Cao DS. Reducing false positive rate of docking-based virtual screening by active learning. Brief Bioinform 2023; 24:6987822. [PMID: 36642412 DOI: 10.1093/bib/bbac626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023] Open
Abstract
Machine learning-based scoring functions (MLSFs) have become a very favorable alternative to classical scoring functions because of their potential superior screening performance. However, the information of negative data used to construct MLSFs was rarely reported in the literature, and meanwhile the putative inactive molecules recorded in existing databases usually have obvious bias from active molecules. Here we proposed an easy-to-use method named AMLSF that combines active learning using negative molecular selection strategies with MLSF, which can iteratively improve the quality of inactive sets and thus reduce the false positive rate of virtual screening. We chose energy auxiliary terms learning as the MLSF and validated our method on eight targets in the diverse subset of DUD-E. For each target, we screened the IterBioScreen database by AMLSF and compared the screening results with those of the four control models. The results illustrate that the number of active molecules in the top 1000 molecules identified by AMLSF was significantly higher than those identified by the control models. In addition, the free energy calculation results for the top 10 molecules screened out by the AMLSF, null model and control models based on DUD-E also proved that more active molecules can be identified, and the false positive rate can be reduced by AMLSF.
Collapse
Affiliation(s)
- Lei Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Shao-Hua Shi
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hui Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Xiang-Xiang Zeng
- Department of Computer Science, Hunan University, Changsha 410082, Hunan, China
| | - Su-You Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Zhao-Qian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Ya-Feng Deng
- CarbonSilicon AI Technology Co., Ltd, Hangzhou, Zhejiang 310018, China
| | - Ai-Ping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ting-Jun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.,Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
11
|
Blanes-Mira C, Fernández-Aguado P, de Andrés-López J, Fernández-Carvajal A, Ferrer-Montiel A, Fernández-Ballester G. Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening. Molecules 2022; 28:molecules28010175. [PMID: 36615367 PMCID: PMC9821981 DOI: 10.3390/molecules28010175] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The rapid advances of 3D techniques for the structural determination of proteins and the development of numerous computational methods and strategies have led to identifying highly active compounds in computer drug design. Molecular docking is a method widely used in high-throughput virtual screening campaigns to filter potential ligands targeted to proteins. A great variety of docking programs are currently available, which differ in the algorithms and approaches used to predict the binding mode and the affinity of the ligand. All programs heavily rely on scoring functions to accurately predict ligand binding affinity, and despite differences in performance, none of these docking programs is preferable to the others. To overcome this problem, consensus scoring methods improve the outcome of virtual screening by averaging the rank or score of individual molecules obtained from different docking programs. The successful application of consensus docking in high-throughput virtual screening highlights the need to optimize the predictive power of molecular docking methods.
Collapse
|