1
|
Qian JY, Lou CY, Chen YL, Ma LF, Hou W, Zhan ZJ. A prospective therapeutic strategy: GPX4-targeted ferroptosis mediators. Eur J Med Chem 2025; 281:117015. [PMID: 39486214 DOI: 10.1016/j.ejmech.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
As a crucial regulator of oxidative homeostasis, seleno-protein glutathione peroxidase 4 (GPX4) represents the primary defense system against ferroptosis, making it a promising target with important clinical application prospects. From the discovery of covalent and allosteric sites in GPX4, substantial advancements in GPX4-targeted small molecules have been made through diverse discovery and design strategies in recent years. Moreover, as an emerging hotspot in drug development, seleno-organic compounds can functionally mimic GPX4 to reduce hydroperoxides. To facilitate the further development of selective ferroptosis mediators as potential pharmaceutical agents, this review comprehensively covers all GPX4-targeted small molecules, including inhibitors, degraders, and activators. In addition, seleno-organic compounds as GPX mimics are also included. We also provide perspectives regarding challenges and future research directions in this field.
Collapse
Affiliation(s)
- Jia-Yu Qian
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Chao-Yuan Lou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yi-Li Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Wei Hou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
2
|
Yang X, Wu L, Xu S. An overview of GPX4-targeting TPDs for cancer therapy. Bioorg Med Chem 2024; 118:118046. [PMID: 39693712 DOI: 10.1016/j.bmc.2024.118046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Ferroptosis is a newly identified form of regulated, non-apoptotic cell death caused by iron-dependent phospholipid peroxidation. Glutathione peroxidase 4 (GPX4) inactivation-induced ferroptosis is an efficient antitumor treatment. Currently, several GPX4 inhibitors have been identified. However, these inhibitors exhibit low selectivity and poor pharmacokinetic properties that preclude their clinical use. Targeted protein degradation (TPD) is an efficient strategy for discovering drugs and has unique advantages over target protein inhibition. Given GPX4's antitumor effects and the potential of TPD, researchers have explored GPX4-targeting TPDs, which outperform conventional inhibitors in several aspects, such as increased selectivity, strong anti-proliferative effects, overcoming drug resistance, and enhancing drug-like properties. In this review, we comprehensively summarize the progress in GPX4-targeting TPDs. In addition, we reviewed the changes and challenges related to the development of GPX4-targeting TPDs for cancer therapy.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shaohong Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
3
|
Ning Y, Zhu Z, Wang Y, Fan X, Wang J, Qian H, Qiu X, Wang Y. Design, synthesis, and biological evaluation of RSL3-based GPX4 degraders with hydrophobic tags. Eur J Med Chem 2024; 277:116719. [PMID: 39094276 DOI: 10.1016/j.ejmech.2024.116719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Ferroptosis is a new type of programmed cell death characterized by iron-dependent lipid peroxidation, during which glutathione peroxidase 4 (GPX4) plays an essential role and is well-recognized as a promising therapeutic target for cancer treatment. Although some GPX4 degradation molecules have been developed to induce ferroptosis, the discovery of GPX4 degraders with hydrophobic tagging (HyT) as an innovative approach is more challenging. Herein, we designed and synthesized a series of HyT degraders by linking the GPX4 inhibitor RSL3 with a hydrophobic and bulky group of adamantane. Among them, compound R8 is a potent degrader (DC50, 24h = 0.019 μM) which can effectively degrade GPX4 in a dose- and time-dependent manner. Furthermore, compound R8 exhibited superior in vitro antitumor potency against HT1080 and MDA-MB-231 cell lines with IC50 values of 24 nM and 32 nM respectively, which are 4 times more potent than parental compound RSL3. Mechanistic investigation evidenced that R8 consumes GPX4 protein mainly through the ubiquitin proteasome (UPS) and enables to induce the accumulation of LPO, thereby triggering ferroptosis. Our work presented the novel GPX4 degrader of R8 by HyT strategy, and provided a promising pathway of degradation agents for the treatment of ferroptosis relevant diseases.
Collapse
Affiliation(s)
- Yao Ning
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Zeqi Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Yicheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Xuejing Fan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Jing Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Huimei Qian
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Xue Qiu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China.
| |
Collapse
|
4
|
Dlamini S, Mohajeri S, Kuganesan N, Sindi SH, Karaj E, Rathnayake DS, McDaniel J, Taylor WR, Tillekeratne LMV. CETZOLE Analogs as Potent Ferroptosis Inducers and Their Target Identification Using Covalent/Affinity Probes. J Med Chem 2024; 67:16107-16127. [PMID: 39264826 DOI: 10.1021/acs.jmedchem.3c02084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Ferroptosis is a recently discovered cell death mechanism triggered by iron-dependent elevation of reactive oxygen species leading to lipid membrane peroxidation. We previously reported the development of a new class of ferroptosis inducers referred to as CETZOLEs with CC50 values in the low micromolar range. Structure-activity relationship study of these compounds led to the development of more potent analogs with CC50 values in the nanomolar range. Cells exposed to these compounds displayed the hallmarks of ferroptosis including cell death through ROS accumulation. Cancer cells were found to be more sensitive to these compounds than normal cells. Proteomic studies using covalent and affinity probes led to the identification of cystathionine β-synthase, peroxiredoxins, ADP/ATP carriers, and glucose dehydrogenase as enriched proteins. The binding of CETZOLEs to these proteins as well as GPX4 was validated by Western blotting. This group of proteins is known to be associated with cellular antioxidant pathways.
Collapse
Affiliation(s)
- Samkeliso Dlamini
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Shahrzad Mohajeri
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Nishanth Kuganesan
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Shaimaa H Sindi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Endri Karaj
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Dewmi S Rathnayake
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Jade McDaniel
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - William R Taylor
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - L M Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
5
|
Pan X, Kong X, Feng Z, Jin Z, Wang M, Lu H, Chen G. 4-Octyl itaconate protects chondrocytes against IL-1β-induced oxidative stress and ferroptosis by inhibiting GPX4 methylation in osteoarthritis. Int Immunopharmacol 2024; 137:112531. [PMID: 38906009 DOI: 10.1016/j.intimp.2024.112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The role of oxidative stress and ferroptosis in osteoarthritis (OA) pathogenesis is increasingly recognized. Notably, 4-octyl Itaconate (OI) has been documented to counteract oxidative stress and inflammatory responses, highlighting its therapeutic potential in OA. This study explored the effects of OI on GPX4 methylation, oxidative stress, and ferroptosis in chondrocytes affected by OA. Our results demonstrated that OI mitigated IL-1β-induced chondrocyte degeneration in a dose-dependent manner. It also suppressed reactive oxygen species (ROS) production and sustained GPX4 expression, thereby attenuating the degenerative impact of IL-1β and Erastin on chondrocytes by curtailing ferroptosis. Moreover, we observed that blocking GPX4 methylation could alleviate IL-1β-induced degeneration, oxidative stress, and ferroptosis in chondrocytes. The regulatory mechanism of OI on GPX4 expression in chondrocytes involved the inhibition of GPX4 methylation. In a mouse model of OA, OI's protective effects against OA were comparable to those of Ferrostatin-1. Thus, OI reduced chondrocyte degeneration, oxidative stress, and ferroptosis by inhibiting GPX4 methylation, offering a novel mechanistic insight into its therapeutic application in OA.
Collapse
Affiliation(s)
- Xuekang Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Xiangjia Kong
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Zhenhua Feng
- Sir Run Run Shaw Hospital, Hangzhou 310000, China
| | - Zheyuan Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Mige Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China.
| | - Huigen Lu
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China.
| | - Gang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China.
| |
Collapse
|
6
|
Li B, Cheng K, Wang T, Peng X, Xu P, Liu G, Xue D, Jiao N, Wang C. Research progress on GPX4 targeted compounds. Eur J Med Chem 2024; 274:116548. [PMID: 38838547 DOI: 10.1016/j.ejmech.2024.116548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Blocking the System Xc-_ GSH_GPX4 pathway to induce ferroptosis in tumor cells is a novel strategy for cancer treatment. GPX4 serves as the core of the System Xc-/GSH/GPX4 pathway and is a predominant target for inducing ferroptosis in tumor cells. This article summarizes compounds identified in current research that directly target the GPX4 protein, including inhibitors, activators, small molecule degraders, chimeric degraders, and the application of combination therapies with other drugs, aiming to promote further research on the target and related diseases.
Collapse
Affiliation(s)
- Bingru Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Keguang Cheng
- School of Chemistry and Pharmaceutical Sciences, State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Tzumei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xing Peng
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ping Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
| | - Chao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
7
|
Liu J, Tang D, Kang R. Targeting GPX4 in ferroptosis and cancer: chemical strategies and challenges. Trends Pharmacol Sci 2024; 45:666-670. [PMID: 38866667 DOI: 10.1016/j.tips.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Selenoprotein glutathione peroxidase 4 (GPX4) serves as a crucial suppressor of oxidative stress-induced ferroptosis, making it an attractive target for disease therapy. Here, we discuss recent strategies and challenges associated with targeting GPX4 through covalent inhibitors, proteolysis targeting chimera (PROTAC) degraders, and cell-type-specific degraders in the context of cancer.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Chen F, Kang R, Tang D, Liu J. Ferroptosis: principles and significance in health and disease. J Hematol Oncol 2024; 17:41. [PMID: 38844964 PMCID: PMC11157757 DOI: 10.1186/s13045-024-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia-reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
9
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Héja L, Simon Á, Kardos J. Simulation of gap junction formation reveals critical role of Cys disulfide redox state in connexin hemichannel docking. Cell Commun Signal 2024; 22:185. [PMID: 38500186 PMCID: PMC10949817 DOI: 10.1186/s12964-023-01439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/12/2023] [Indexed: 03/20/2024] Open
Abstract
Video Abstract.
Collapse
Affiliation(s)
- László Héja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary.
| | - Ágnes Simon
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary
| | - Julianna Kardos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
11
|
Zhu L, Chen C, Cai Y, Li Y, Gong L, Zhu T, Kong L, Luo J. Identification of a ferritinophagy inducer via sinomenine modification for the treatment of colorectal cancer. Eur J Med Chem 2024; 268:116250. [PMID: 38417218 DOI: 10.1016/j.ejmech.2024.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
Ferritinophagy is a cellular process to release redox-active iron. Excessive activation of ferritinophagy ultimately results in ferroptosis characterized by ROS accumulation which plays important roles in the development and progression of cancer. Sinomenine, a main bioactive alkaloid from the traditional Chinese medicine Sinomenum acutum, inhibits the proliferation of cancer cells by promoting ROS production. Herein, new compounds were designed and synthesized through the stepwise optimization of sinomenine. Among them, D3-3 induced the production of lipid ROS, and significantly promoted colorectal cancer cells to release the ferrous ion in an autophagy-dependent manner. Moreover, D3-3 enhanced the interaction of FTH1-NCOA4, indicating the activation of ferritinophagy. In vivo experiments showed that D3-3 restrained tumor growth and promoted lipid peroxidation in the HCT-116 xenograft model. These findings demonstrated that D3-3 is an inducer of ferritinophagy, eventually triggering ferroptosis. Compound D3-3, as the first molecule to be definitively demonstrated to induce ferritinophagy, is worth further evaluation as a promising drug candidate in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ling Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxing Cai
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yalin Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lijie Gong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Tang Z, Li J, Peng L, Xu F, Tan Y, He X, Zhu C, Zhang ZM, Zhang Z, Sun P, Ding K, Li Z. Novel Covalent Probe Selectively Targeting Glutathione Peroxidase 4 In Vivo: Potential Applications in Pancreatic Cancer Therapy. J Med Chem 2024; 67:1872-1887. [PMID: 38265413 DOI: 10.1021/acs.jmedchem.3c01608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Glutathione peroxidase 4 (GPX4) emerges as a promising target for the treatment of therapy-resistant cancer through ferroptosis. Thus, there is a broad interest in the development of GPX4 inhibitors. However, a majority of reported GPX4 inhibitors utilize chloroacetamide as a reactive electrophilic warhead, and the selectivity and pharmacokinetic properties still need to be improved. Herein, we developed a compound library based on a novel electrophilic warhead, the sulfonyl ynamide, and executed phenotypic screening against pancreatic cancer cell lines. Notably, one compound A16 exhibiting potent cell toxicity was identified. Further chemical proteomics investigations have demonstrated that A16 specifically targets GPX4 under both in situ and in vivo conditions, inducing ferroptosis. Importantly, A16 exhibited superior selectivity and potency compared to reported GPX4 inhibitors, ML210 and ML162. This provides the structural diversity of tool probes for unraveling the fundamental biology of GPX4 and exploring the therapeutic potential of pancreatic cancer via ferroptosis induction.
Collapse
Affiliation(s)
- Zifeng Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jie Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lijie Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Fang Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yi Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoqiang He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chengjun Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhi-Min Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Pinghua Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
13
|
Jiao Y, Shi X, Ju L, Yu S. Photoredox-Catalyzed Synthesis of C-Benzoselenazolyl/Benzothiazolyl Glycosides from 2-Isocyanoaryl Selenoethers/Thioethers and Glycosyl Bromides. Org Lett 2024; 26:390-395. [PMID: 38165656 DOI: 10.1021/acs.orglett.3c04059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Molecules containing heteroatoms, such as Se and S, play an indispensable role in the discovery and design of pharmaceuticals, whereas Se has been less studied. Here, we described a photoredox strategy to synthesize C-benzoselenazolyl (Bs) glycosides from 2-isocyanoaryl selenoethers and glycosyl bromides. This reaction was carried out under mild conditions with high efficiency. C-Benzothiazolyl (Bt) glycosides could also be synthesized from 2-isocyanoaryl thioethers using this strategy. This method can access novel seleno/thiosugars, which will benefit Se/S-containing drug discovery.
Collapse
Affiliation(s)
- Yi Jiao
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoran Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Ju
- Sunichem Company, Limited, Dandong 118003, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Mehta NV, Degani MS. The expanding repertoire of covalent warheads for drug discovery. Drug Discov Today 2023; 28:103799. [PMID: 37839776 DOI: 10.1016/j.drudis.2023.103799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The reactive functionalities of drugs that engage in covalent interactions with the enzyme/receptor residue in either a reversible or an irreversible manner are called 'warheads'. Covalent warheads that were previously neglected because of safety concerns have recently gained center stage as a result of their various advantages over noncovalent drugs, including increased selectivity, increased residence time, and higher potency. With the approval of several covalent inhibitors over the past decade, research in this area has accelerated. Various strategies are being continuously developed to tune the characteristics of warheads to improve their potency and mitigate toxicity. Here, we review research progress in warhead discovery over the past 5 years to provide valuable insights for future drug discovery.
Collapse
Affiliation(s)
- Namrashee V Mehta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
15
|
Csorba N, Ábrányi-Balogh P, Keserű GM. Covalent fragment approaches targeting non-cysteine residues. Trends Pharmacol Sci 2023; 44:802-816. [PMID: 37770315 DOI: 10.1016/j.tips.2023.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Covalent fragment approaches combine advantages of covalent binders and fragment-based drug discovery (FBDD) for target identification and validation. Although early applications focused mostly on cysteine labeling, the chemistries of available warheads that target other orthosteric and allosteric protein nucleophiles has recently been extended. The range of different warheads and labeling chemistries provide unique opportunities for screening and optimizing warheads necessary for targeting non-cysteine residues. In this review, we discuss these recently developed amino-acid-specific and promiscuous warheads, as well as emerging labeling chemistries, which includes novel transition metal catalyzed, photoactive, electroactive, and noncatalytic methodologies. We also highlight recent applications of covalent fragments for the development of molecular glues and proteolysis-targeting chimeras (PROTACs), and their utility in chemical proteomics-based target identification and validation.
Collapse
Affiliation(s)
- Noémi Csorba
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary.
| |
Collapse
|
16
|
Cai M, Ma F, Hu C, Li H, Cao F, Li Y, Dong J, Qin JJ. Design and synthesis of proteolysis-targeting chimeras (PROTACs) as degraders of glutathione peroxidase 4. Bioorg Med Chem 2023; 90:117352. [PMID: 37257255 DOI: 10.1016/j.bmc.2023.117352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Ferroptosis is a new type of regulated, non-apoptotic cell death driven by iron-dependent phospholipid peroxidation. Inducing cell ferroptosis by inactivating glutathione peroxidase 4 (GPX4) has been considered as an effective cancer treatment strategy, but only few GPX4 inhibitors have been reported to date. Targeted protein degradation is receiving increasing attention in the discovery and development of therapeutic modality, particularly proteolysis targeting chimeras (PROTACs). Herein, we reported the design, synthesis, and evaluation of different types of GPX4-targeting PROTACs using ML162 derivatives and ligands for CRBN/VHL E3 ligases. Among them, CRBN-based PROTAC GDC-11 showed a relatively balanced biological profile in GPX4 degradation (degradation rate of 33% at 10 μM), cytotoxicity (IC50 = 11.69 μM), and lipid peroxides accumulation (2-foldincreaserelatedtoDMSO), suggesting a typical characteristic of ferroptosis. In silico docking and quantum chemistry theoretical calculations provided a plausible explanation for the moderate degrading effect of these synthesized PROTACs. Overall, this work lays the foundation for subsequent studies of GPX4-targeting PROTACs, and further design and synthesis of GPX4-targeting degrader are currently in progress in our group, which will be reported in due course.
Collapse
Affiliation(s)
- Maohua Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Furong Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Can Hu
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Haobin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fei Cao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jinyun Dong
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
17
|
Wang H, Wang C, Li B, Zheng C, Liu G, Liu Z, Zhang L, Xu P. Discovery of ML210-Based glutathione peroxidase 4 (GPX4) degrader inducing ferroptosis of human cancer cells. Eur J Med Chem 2023; 254:115343. [PMID: 37087895 DOI: 10.1016/j.ejmech.2023.115343] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
Ferroptosis is an iron-dependent cell death caused by the accumulation of lipid peroxidation. The glutathione peroxidase 4 (GPX4) is an antioxidative enzyme and a major regulator of ferroptosis. Targeting GPX4 has become a promising strategy for cancer therapy. Here in this article, we designed and synthesized a series of GPX4 degraders using ML210 as a warhead. DC-2 among them has been found to have the best degradation activity with the DC50 value of 0.03 μM in HT1080 cells. It also showed an obvious cell growth inhibition effect with the IC50 value of 0.1 μM in HT1080 cells. Mechanism research showed that DC-2 induced GPX4 degradation via the ubiquitin-proteasome pathway and autophagy-lysosome pathway. GPX4 degradation induced by DC-2 could result in the accumulation of ROS and subsequent ferroptosis. The pharmacodynamics study showed that DC-2 could reduce the GPX4 level in HT1080 tumor tissue in mice and has a good safety profile. Above all, a potent and safe compound DC-2 has been found to induce GPX4 degradation and subsequent ferroptosis. This study may lay the foundation for a highly efficient and safe drug with a new mechanism for cancer therapy.
Collapse
Affiliation(s)
- Han Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Bingru Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Cangxin Zheng
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
18
|
Kuganesan N, Dlamini S, Tillekeratne VL, Taylor WR. Regulation of Ferroptosis by Transcription Factor E2F1 and RB. RESEARCH SQUARE 2023:rs.3.rs-2493335. [PMID: 36778475 PMCID: PMC9915776 DOI: 10.21203/rs.3.rs-2493335/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tumor suppressor RB binds to E2F family proteins and modulates cell cycle progression. Cyclin dependent kinases (CDK) regulate the interaction of RB/E2F by phosphorylating RB. Previously, we have revealed that CDK2, RB and E2F inhibit ferroptosis. Ferroptosis is a non-apoptotic, iron-dependent form of cell death characterized by toxic lipid peroxidation. Here we provide evidence that CDK2 suppresses ferroptosis through phosphorylation of RB. We approach this question by overexpressing WT-RB or a mutant RB that cannot be phosphorylated by CDKs (RBΔCDK) along with CDK2/cyclinE followed by analysis of ferroptosis. We also observed that E2F1 regulates of both pro and anti-ferroptotic proteins including ALOX5, MYC SLC7A11, ATF4, and GPX4 and finally renders a net inhibitory role in ferroptosis. Interestingly, we also found a cell type dependent compensatory effect of E2F3 upon E2F1 depletion. This compensatory effect resulted in no change of ferroptotic target genes after E2F1 knock down in an osteosarcoma cell line. Taken together, our study reveals that cancer cells protect themselves from ferroptosis through cell cycle regulatory proteins.
Collapse
|
19
|
Ábrányi-Balogh P, Keeley A, Ferenczy GG, Petri L, Imre T, Grabrijan K, Hrast M, Knez D, Ilaš J, Gobec S, Keserű GM. Next-Generation Heterocyclic Electrophiles as Small-Molecule Covalent MurA Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15121484. [PMID: 36558935 PMCID: PMC9781958 DOI: 10.3390/ph15121484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Heterocyclic electrophiles as small covalent fragments showed promising inhibitory activity on the antibacterial target MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase, EC:2.5.1.7). Here, we report the second generation of heterocyclic electrophiles: the quaternized analogue of the heterocyclic covalent fragment library with improved reactivity and MurA inhibitory potency. Quantum chemical reaction barrier calculations, GSH (L-glutathione) reactivity assay, and thrombin counter screen were also used to demonstrate and explain the improved reactivity and selectivity of the N-methylated heterocycles and to compare the two generations of heterocyclic electrophiles.
Collapse
Affiliation(s)
- Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
| | - Aaron Keeley
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
| | - Tímea Imre
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
| | - Katarina Grabrijan
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
20
|
Karaj E, Sindi SH, Kuganesan N, Koranne RA, Knoff JR, James AW, Fu Y, Kotsull LN, Pflum MK, Shah Z, Taylor WR, Tillekeratne LMV. First-in-Class Dual Mechanism Ferroptosis-HDAC Inhibitor Hybrids. J Med Chem 2022; 65:14764-14791. [PMID: 36306372 PMCID: PMC10257520 DOI: 10.1021/acs.jmedchem.2c01276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HDAC inhibitors are an attractive class of cytotoxic agents for the design of hybrid molecules. Several HDAC hybrids have emerged over the years, but none combines HDAC inhibition with ferroptosis, a combination which is being extensively studied because it leads to enhanced cytotoxicity and attenuated neuronal toxicity. We combined the pharmacophores of SAHA and CETZOLE molecules to design the first-in-class dual mechanism hybrid molecules, which induce ferroptosis and inhibit HDAC proteins. The involvement of both mechanisms in cytotoxicity was confirmed by a series of biological assays. The cytotoxic effects were evaluated in a series of cancer and neuronal cell lines. Analogue HY-1 demonstrated the best cytotoxic profile with GI50 values as low as 20 nM. Although the increase in activity of the hybrids over the combinations is modest in cellular systems, they have the potential advantage of homogeneous spatiotemporal distribution in in vivo systems.
Collapse
Affiliation(s)
- Endri Karaj
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Shaimaa H Sindi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Nishanth Kuganesan
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - Radhika A Koranne
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - Joseph R Knoff
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Yu Fu
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Lauren N Kotsull
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Mary Kay Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Zahoor Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - William R Taylor
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - L M Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
21
|
McAulay K, Bilsland A, Bon M. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals (Basel) 2022; 15:1366. [PMID: 36355538 PMCID: PMC9694498 DOI: 10.3390/ph15111366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 09/27/2023] Open
Abstract
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising that covalent fragment-based approaches have become popular and have recently led to the identification of novel targets and binding sites, as well as ligands for targets previously thought to be 'undruggable'. Understanding the properties of such covalent fragments is important, and characterizing and/or predicting reactivity can be highly useful. This review aims to discuss the requirements for an electrophilic fragment library and the importance of differing warhead reactivity. Successful case studies from the world of drug discovery are then be examined.
Collapse
Affiliation(s)
- Kirsten McAulay
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Centre for Targeted Protein Degradation, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Alan Bilsland
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Marta Bon
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, UK
| |
Collapse
|