1
|
Casanova-Sepúlveda G, Boggon TJ. Regulation and signaling of the LIM domain kinases. Bioessays 2025; 47:e2400184. [PMID: 39361252 DOI: 10.1002/bies.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
The LIM domain kinases (LIMKs) are important actin cytoskeleton regulators. These proteins, LIMK1 and LIMK2, are nodes downstream of Rho GTPases and are the key enzymes that phosphorylate cofilin/actin depolymerization factors to regulate filament severing. They therefore perform an essential role in cascades that control actin depolymerization. Signaling of the LIMKs is carefully regulated by numerous inter- and intra-molecular mechanisms. In this review, we discuss recent findings that improve the understanding of LIM domain kinase regulation mechanisms. We also provide an up-to-date review of the role of the LIM domain kinases, their architectural features, how activity is impacted by other proteins, and the implications of these findings for human health and disease.
Collapse
Affiliation(s)
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
- Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Champiré A, Berabez R, Braka A, Cosson A, Corret J, Girardin C, Serrano A, Aci-Sèche S, Bonnet P, Josselin B, Brindeau P, Ruchaud S, Leguevel R, Chatterjee D, Mathea S, Knapp S, Brion R, Verrecchia F, Vallée B, Plé K, Bénédetti H, Routier S. Tetrahydropyridine LIMK inhibitors: Structure activity studies and biological characterization. Eur J Med Chem 2024; 271:116391. [PMID: 38669909 DOI: 10.1016/j.ejmech.2024.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
LIM Kinases, LIMK1 and LIMK2, have become promising targets for the development of inhibitors with potential application for the treatment of several major diseases. LIMKs play crucial roles in cytoskeleton remodeling as downstream effectors of small G proteins of the Rho-GTPase family, and as major regulators of cofilin, an actin depolymerizing factor. In this article we describe the conception, synthesis, and biological evaluation of novel tetrahydropyridine pyrrolopyrimidine LIMK inhibitors. Homology models were first constructed to better understand the binding mode of our preliminary compounds and to explain differences in biological activity. A library of over 60 products was generated and in vitro enzymatic activities were measured in the mid to low nanomolar range. The most promising derivatives were then evaluated in cell on cofilin phosphorylation inhibition which led to the identification of 52 which showed excellent selectivity for LIMKs in a kinase selectivity panel. We also demonstrated that 52 affected the cell cytoskeleton by disturbing actin filaments. Cell migration studies with this derivative using three different cell lines displayed a significant effect on cell motility. Finally, the crystal structure of the kinase domain of LIMK2 complexed with 52 was solved, greatly improving our understanding of the interaction between 52 and LIMK2 active site. The reported data represent a basis for the development of more efficient LIMK inhibitors for future in vivo preclinical validation.
Collapse
Affiliation(s)
- Anthony Champiré
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France
| | - Rayan Berabez
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France
| | - Abdennour Braka
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France
| | - Aurélie Cosson
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071, Orléans, France
| | - Justine Corret
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071, Orléans, France
| | - Caroline Girardin
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071, Orléans, France
| | - Amandine Serrano
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071, Orléans, France
| | - Samia Aci-Sèche
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France
| | - Pascal Bonnet
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France
| | - Béatrice Josselin
- Sorbonne Université / CNRS UMR 8227, Station Biologique, 29688, Roscoff, France
| | - Pierre Brindeau
- Sorbonne Université / CNRS UMR 8227, Station Biologique, 29688, Roscoff, France
| | - Sandrine Ruchaud
- Sorbonne Université / CNRS UMR 8227, Station Biologique, 29688, Roscoff, France
| | - Rémy Leguevel
- Plate-forme ImPACcell, UAR BIOSIT, Université de Rennes 1, 35043, Rennes, France
| | - Deep Chatterjee
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences Goethe- University, 60438, Frankfurt am Main, Germany; Institute for Pharmaceutical Chemistry, Max von Lauestrasse 9, Goethe-University, 60438, Frankfurt am Main, Germany
| | - Sebastian Mathea
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences Goethe- University, 60438, Frankfurt am Main, Germany; Institute for Pharmaceutical Chemistry, Max von Lauestrasse 9, Goethe-University, 60438, Frankfurt am Main, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences Goethe- University, 60438, Frankfurt am Main, Germany; Institute for Pharmaceutical Chemistry, Max von Lauestrasse 9, Goethe-University, 60438, Frankfurt am Main, Germany
| | - Régis Brion
- CRCI(2)NA, INSERM, UMR 1307, CNRS, UMR 6075, Université de Nantes, 44035, Nantes, France; Centre Hospitalier Universitaire de Nantes, 44000, Nantes, France
| | - Franck Verrecchia
- CRCI(2)NA, INSERM, UMR 1307, CNRS, UMR 6075, Université de Nantes, 44035, Nantes, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071, Orléans, France
| | - Karen Plé
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071, Orléans, France.
| | - Sylvain Routier
- ICOA, Université d'Orléans, CNRS UMR 7311, 45067, Orléans, France.
| |
Collapse
|
3
|
Wang Q, Shi X, Li PP, Gao L, Zhou Y, Li L, Ye H, Fu X, Li P. microRNA profilings identify plasma biomarkers and targets associated with pediatric epilepsy patients. Pediatr Res 2024; 95:996-1008. [PMID: 37884644 PMCID: PMC10920196 DOI: 10.1038/s41390-023-02864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Although previous studies show that microRNAs (miRNAs) can potentially be used as diagnostic markers for epilepsy, there are very few analyses of pediatric epilepsy patients. METHODS miRNA profiles using miRNA-seq was performed on plasma samples from 14 pediatric epileptic patients and 14 healthy children. miRNA miR-27a-3p that were significantly changed between two groups were further evaluated. The potential target genes of miR-27a-3p were screened through unbiased mRNA-seq and further validated using Western blot and immunohistochemistry in HEK-293T cells and in the brains of mice with epilepsy induced by lithium chloride-pilocarpine. RESULTS We found 82 upregulated and 76 downregulated miRNAs in the plasma from pediatric patients compared with controls (p < 0.01), of which miR-27a-3p exhibited a very low p value (p < 0.0001) and validated in additional plasma samples. Two genes, GOLM1 and LIMK1, whose mRNA levels were decreased (p < 0.001) with the increase of miR-27a-3p were further validated in both HEK-293T cells and in epileptic mice. CONCLUSIONS MiR-27a-3p exhibits potential as a diagnostic and therapeutic marker for epilepsy. We postulate that additional studies on the downstream targets of miR-27a-3p will unravel its roles in epileptogenesis or disease progression. IMPACT A total of 158 differentially expressed miRNAs were detected in plasma between epileptic and control children. Plasma miR-27a-3p was one of the miRNAs with a low p value. GOLM1 and LIMK1 were validated as downstream target genes of miR-27a-3p. miR-27a-3p has potential as a diagnostic and therapeutic marker for epilepsy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Xulai Shi
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Ping-Ping Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Li Gao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Yueyuan Zhou
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Luyao Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Hao Ye
- School of life Science and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaoqin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325000, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China.
| | - Peijun Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, 325000, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Amrhein JA, Berger LM, Balourdas DI, Joerger AC, Menge A, Krämer A, Frischkorn JM, Berger BT, Elson L, Kaiser A, Schubert-Zsilavecz M, Müller S, Knapp S, Hanke T. Synthesis of Pyrazole-Based Macrocycles Leads to a Highly Selective Inhibitor for MST3. J Med Chem 2024; 67:674-690. [PMID: 38126712 DOI: 10.1021/acs.jmedchem.3c01980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
MST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20-like serine/threonine (MST) family that regulate cellular functions such as proliferation and migration. The MST3 isozyme plays a role in regulating cell growth and apoptosis, and its dysregulation has been linked to high-grade tumors. To date, there are no isoform-selective inhibitors that could be used for validating the role of MST3 in tumorigenesis. We designed a series of 3-aminopyrazole-based macrocycles based on the structure of a promiscuous inhibitor. By varying the moieties targeting the solvent-exposed region and optimizing the linker, macrocycle JA310 (21c) was synthesized. JA310 exhibited high cellular potency for MST3 (EC50 = 106 nM) and excellent kinome-wide selectivity. The crystal structure of the MST3-JA310 complex provided intriguing insights into the binding mode, which is associated with large-scale structural rearrangements. In summary, JA310 demonstrates the utility of macrocyclization for the design of highly selective inhibitors and presents the first chemical probe for MST3.
Collapse
Affiliation(s)
- Jennifer Alisa Amrhein
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lena Marie Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amelie Menge
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz 69120 Heidelberg, Germany
| | - Julia Marie Frischkorn
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz 69120 Heidelberg, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Bénédetti H, Vallée B. LIM Kinases: From Molecular to Pathological Features. Cells 2023; 12:1649. [PMID: 37371119 DOI: 10.3390/cells12121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
LIM kinases (LIMKs), LIMK1 and LIMK2, are atypical kinases, as they are the only two members of the LIM kinase family harbouring two LIM domains at their N-terminus and a kinase domain at their C-terminus [...].
Collapse
Affiliation(s)
- Hélène Bénédetti
- Centre de Biophysique Moléculaire, UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire, UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| |
Collapse
|
6
|
He Y, Sun B, Lu X, Zhou Y, Zhang FL. Iridium-Catalyzed Direct Ortho-C-H Amidation of α-Ketoesters with Sulfonyl Azides Using a Transient Directing Group Strategy. J Org Chem 2023; 88:4345-4351. [PMID: 36898142 DOI: 10.1021/acs.joc.2c02944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Direct C-H amidation of α-ketoesters was accomplished using various organic azides as the amino source through the combination of transient directing group strategy and iridium catalysis. Excellent functional group tolerance and wide substrate scope were explored under simple and mild conditions. Importantly, it was found that the steric hindrance of the ester moiety played a pivotal role for the reaction efficacy. In addition, the reaction could be enlarged to gram scale, and several useful heterocycles were readily constructed via one-step late-stage derivatization.
Collapse
Affiliation(s)
- Yinlong He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Bing Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Xuelian Lu
- Shenzhen Research Institute, Wuhan University of Technology, Shenzhen, Guangdong 518057, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang-Lin Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.,Shenzhen Research Institute, Wuhan University of Technology, Shenzhen, Guangdong 518057, China
| |
Collapse
|