1
|
Mi D, Li C, Li Y, Yao M, Li Y, Hong K, Xie C, Chen Y. Discovery of novel BCL6-Targeting PROTACs with effective antitumor activities against DLBCL in vitro and in vivo. Eur J Med Chem 2024; 277:116789. [PMID: 39208743 DOI: 10.1016/j.ejmech.2024.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The transcriptional repressor B cell lymphoma 6 (BCL6) plays a critical role in driving tumorigenesis of diffuse large B-cell lymphoma (DLBCL). However, the therapeutic potential of inhibiting or degrading BCL6 for DLBCL has not been thoroughly understood. Herein, we reported the discovery of a series of novel BCL6-targeting PROTACs based on our previously reported N-phenyl-4-pyrimidinamine BCL6 inhibitors. The optimal compound DZ-837 degraded BCL6 with DC50 values around 600 nM and effectively inhibited the proliferation of several DLBCL cell lines. Further study indicated that DZ-837 induced significant G1 phase arrest and exhibited sustained reactivation of BCL6 downstream genes. In the SU-DHL-4 xenograft model, DZ-837 significantly inhibited tumor growth with TGI of 71.8 % at 40 mg/kg once daily. Furthermore, the combination of DZ-837 with BTK inhibitor Ibrutinib showed synergistic effects and overcame acquired resistance against DLBCL cells. Overall, our findings demonstrate that DZ-837 is an effective BCL6 degrader for DLBCL treatment as a monotherapy or in combination with Ibrutinib.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-6/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Animals
- Cell Proliferation/drug effects
- Mice
- Structure-Activity Relationship
- Drug Discovery
- Drug Screening Assays, Antitumor
- Molecular Structure
- Dose-Response Relationship, Drug
- Cell Line, Tumor
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Proteolysis Targeting Chimera
Collapse
Affiliation(s)
- Dazhao Mi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Cheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuzhan Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | | | - Yan Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Keyu Hong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China
| | - Chengying Xie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China.
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunna, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
2
|
Liongue C, Almohaisen FLJ, Ward AC. B Cell Lymphoma 6 (BCL6): A Conserved Regulator of Immunity and Beyond. Int J Mol Sci 2024; 25:10968. [PMID: 39456751 PMCID: PMC11507070 DOI: 10.3390/ijms252010968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
B cell lymphoma 6 (BCL6) is a conserved multi-domain protein that functions principally as a transcriptional repressor. This protein regulates many pivotal aspects of immune cell development and function. BCL6 is critical for germinal center (GC) formation and the development of high-affinity antibodies, with key roles in the generation and function of GC B cells, follicular helper T (Tfh) cells, follicular regulatory T (Tfr) cells, and various immune memory cells. BCL6 also controls macrophage production and function as well as performing a myriad of additional roles outside of the immune system. Many of these regulatory functions are conserved throughout evolution. The BCL6 gene is also important in human oncology, particularly in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL), but also extending to many in other cancers, including a unique role in resistance to a variety of therapies, which collectively make BCL6 inhibitors highly sought-after.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Farooq L. J. Almohaisen
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Department of Medical Laboratory Techniques, Southern Technical University, Basra 61001, Iraq
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
3
|
Cheng YJ, Zhuang Z, Miao YL, Song SS, Bao XB, Yang CH, He JX. Identification of YCH2823 as a novel USP7 inhibitor for cancer therapy. Biochem Pharmacol 2024; 222:116071. [PMID: 38387527 DOI: 10.1016/j.bcp.2024.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Inhibition of the human ubiquitin-specific protease 7 (USP7), the key deubiquitylating enzyme in regulating p53 protein levels, has been considered an attractive anticancer strategy. In order to enhance the cellular activity of FT671, scaffold hopping strategy was employed. This endeavor resulted in the discovery of YCH2823, a novel and potent USP7 inhibitor.YCH2823 demonstrated remarkable efficacy in inhibiting the growth of a specific subset of TP53 wild-type, -mutant, and MYCN-amplified cell lines, surpassing the potency of FT671 by approximately 5-fold. The mechanism of action of YCH2823 involves direct interaction with the catalytic domain of USP7, thereby impeding the cleavage of ubiquitinated substrates. An increase in the expression of p53 and p21, accompanied by G1 phase arrest and apoptosis, was observed upon treatment with YCH2823. Subsequently, the knockdown of p53 or p21 in CHP-212 cells exhibited a substantial reduction in sensitivity to YCH2823, as evidenced by a considerable increase in IC50 values up to 690-fold. Furthermore, YCH2823 treatment specifically enhanced the transcriptional and protein levels of BCL6 in sensitive cells. Moreover, a synergistic effect between USP7 inhibitors and mTOR inhibitors was observed, suggesting the possibility of novel therapeutic strategies for cancer treatment. In conclusion, YCH2823 exhibits potential as an anticancer agent for the treatment of both TP53 wild-type and -mutant tumors.
Collapse
Affiliation(s)
- Yong-Jun Cheng
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Avenue, Nanjing 210046 China
| | - Zhen Zhuang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yu-Ling Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xu-Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Chun-Hao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Jin-Xue He
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Avenue, Nanjing 210046 China.
| |
Collapse
|
4
|
Konstantakopoulou C, Verykokakis M. Key Functions of the Transcription Factor BCL6 During T-Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:79-94. [PMID: 39017840 DOI: 10.1007/978-3-031-62731-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
T lymphocytes consist of several subtypes with distinct functions that help to coordinate an immune response. They are generated within the thymus through a sequential developmental pathway that produces subsets with diverse antigen specificities and functions. Naïve T cells populate peripheral lymphoid organs and are activated upon foreign antigen encounter. While most T cells die soon after activation, a memory population survives and is able to quickly respond to secondary challenges, thus providing long-term immunity to the host. Although cell identity is largely stable and is instructed by cell-specific transcriptional programs, cells may change their transcriptional profiles to be able to adapt to new functionalities. Central to these dynamic processes are transcription factors, which control cell fate decisions, through direct regulation of gene expression. In this book chapter, we review the functions of the transcription factor B-cell lymphoma 6 (BCL6), which directs the fate of several lymphocyte subsets, including helper, cytotoxic, and innate-like T cells, but can also be involved in lymphomagenesis in humans.
Collapse
Affiliation(s)
- Chara Konstantakopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
- Department of Antibody Research Materials, Genmab B.V., Utrecht, The Netherlands
| | - Mihalis Verykokakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece.
| |
Collapse
|
5
|
Golovnin A, Melnikova L, Babosha V, Pokholkova GV, Slovohotov I, Umnova A, Maksimenko O, Zhimulev IF, Georgiev P. The N-Terminal Part of Drosophila CP190 Is a Platform for Interaction with Multiple Architectural Proteins. Int J Mol Sci 2023; 24:15917. [PMID: 37958900 PMCID: PMC10648081 DOI: 10.3390/ijms242115917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
CP190 is a co-factor in many Drosophila architectural proteins, being involved in the formation of active promoters and insulators. CP190 contains the N-terminal BTB/POZ (Broad-Complex, Tramtrack and Bric a brac/POxvirus and Zinc finger) domain and adjacent conserved regions involved in protein interactions. Here, we examined the functional roles of these domains of CP190 in vivo. The best-characterized architectural proteins with insulator functions, Pita, Su(Hw), and dCTCF, interacted predominantly with the BTB domain of CP190. Due to the difficulty of mutating the BTB domain, we obtained a transgenic line expressing a chimeric CP190 with the BTB domain of the human protein Kaiso. Another group of architectural proteins, M1BP, Opbp, and ZIPIC, interacted with one or both of the highly conserved regions in the N-terminal part of CP190. Transgenic lines of D. melanogaster expressing CP190 mutants with a deletion of each of these domains were obtained. The results showed that these mutant proteins only partially compensated for the functions of CP190, weakly binding to selective chromatin sites. Further analysis confirmed the essential role of these domains in recruitment to regulatory regions associated with architectural proteins. We also found that the N-terminal of CP190 was sufficient for recruiting Z4 and Chromator proteins and successfully achieving chromatin opening. Taken together, our results and the results of previous studies showed that the N-terminal region of CP190 is a platform for simultaneous interaction with various DNA-binding architectural proteins and transcription complexes.
Collapse
Affiliation(s)
- Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Galina V. Pokholkova
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia (I.F.Z.)
| | - Ivan Slovohotov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Anastasia Umnova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Igor F. Zhimulev
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia (I.F.Z.)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
6
|
Tran VH, Luu TG, Nguyen AT, Kim HK. Direct transformation of benzyl esters into esters, amides, and anhydrides using catalytic ferric(III) chloride under mild conditions. Org Biomol Chem 2023; 21:8494-8499. [PMID: 37861427 DOI: 10.1039/d3ob01443f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A facile one-pot transformation of benzyl esters into esters, amides, and anhydrides is described. α,α-Dichlorodiphenylmethane and FeCl3 were employed as the chlorinating agent and catalyst respectively to convert benzyl esters into acid chloride intermediates, which directly reacted with alcohols, amines, and carboxylic acids. Various esters, amides, and anhydrides were readily obtained with high yields under mild conditions. This method is promising for the practical synthesis of esters, amides, and anhydrides from benzyl esters.
Collapse
Affiliation(s)
- Van Hieu Tran
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea.
| | - Truong Giang Luu
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea.
| | - Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea.
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea.
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| |
Collapse
|
7
|
Zhang L, Wu M, Guo W, Zhu S, Li S, Lv S, Li Y, Liu L, Xing Y, Chen H, Liu M, Peng S, Chen Y, Yi Z. A small molecule BCL6 inhibitor as chemosensitizers in acute myeloid leukemia. Biomed Pharmacother 2023; 166:115358. [PMID: 37634473 DOI: 10.1016/j.biopha.2023.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 08/29/2023] Open
Abstract
BCL6 is a transcriptional repressor that regulates multiple genes involved in immune cell differentiation, DNA damage repair, cell cycle, and apoptosis, and is a carcinogenic factor in acute myeloid leukemia (AML). AML is one of the four major types of leukemia with the 5-year survival rate of patients is less than 20% and chemotherapy resistance remains the major obstacle to the treatment failure of AML. We identified WK499, a small molecule compound that can bind to BCL6BTB structure. Treatment with WK499 hinders the interactions between BCL6 with its corepressor proteins, resulting in a remarkable change of BCL6 downstream genes and anti-proliferative effects in AML cells, and inducing cell cycle arrest and apoptosis. We verified that AraC and DOXo could induce BCL6 expression in AML cells, and found that WK499 had a synergistic effect when combined with chemotherapeutic drugs. We further proved that WK499 and AraC could achieve a better result of inhibiting the growth of AML in vivo. These findings indicate that WK499, a small molecule inhibitor of BCL6, not only inhibits the proliferation of AML, but also provides an effective therapeutic strategy for increasing AML sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Lin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Min Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shuangshuang Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shiyi Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Yan Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Layang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Yajing Xing
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Huang Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shihong Peng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China; Shanghai Yuyao Biotech Co., Ltd., Shanghai 200241, China.
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China.
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China.
| |
Collapse
|
8
|
Tran VH, Nguyen AT, Kim HK. Tin(II) Chloride-Catalyzed Direct Esterification and Amidation of tert-Butyl Esters Using α,α-Dichlorodiphenylmethane Under Mild Conditions. J Org Chem 2023; 88:13291-13302. [PMID: 37641453 DOI: 10.1021/acs.joc.3c01588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A practical one-pot synthesis of esters and amides from tert-butyl esters via acid chloride was developed. Reactions of tert-butyl esters with α,α-dichlorodiphenylmethane as the chlorinating agent and SnCl2 as catalyst-generated acid chloride intermediates in situ were subsequently used in reactions with a variety of alcohols and amines to afford the corresponding esters and amides in high yields under mild reaction conditions. This catalytic synthetic procedure offers an effective strategy for the facile esterification and amidation of tert-butyl esters.
Collapse
Affiliation(s)
- Van Hieu Tran
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
9
|
Phelan JD, Staudt LM. Double-headed molecule activates cell-death pathways in cancer cells. Nature 2023:10.1038/d41586-023-02213-4. [PMID: 37495782 DOI: 10.1038/d41586-023-02213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
|
10
|
Mouawad N, Capasso G, Ruggeri E, Martinello L, Severin F, Visentin A, Facco M, Trentin L, Frezzato F. Is It Still Possible to Think about HSP70 as a Therapeutic Target in Onco-Hematological Diseases? Biomolecules 2023; 13:biom13040604. [PMID: 37189352 DOI: 10.3390/biom13040604] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The search for molecules to be targeted that are involved in apoptosis resistance/increased survival and pathogenesis of onco-hematological malignancies is ongoing since these diseases are still not completely understood. Over the years, a good candidate has been identified in the Heat Shock Protein of 70kDa (HSP70), a molecule defined as “the most cytoprotective protein ever been described”. HSP70 is induced in response to a wide variety of physiological and environmental insults, allowing cells to survive lethal conditions. This molecular chaperone has been detected and studied in almost all the onco-hematological diseases and is also correlated to poor prognosis and resistance to therapy. In this review, we give an overview of the discoveries that have led us to consider HSP70 as a therapeutic target for mono- or combination-therapies in acute and chronic leukemias, multiple myeloma and different types of lymphomas. In this excursus, we will also consider HSP70 partners, such as its transcription factor HSF1 or its co-chaperones whose druggability could indirectly affect HSP70. Finally, we will try to answer the question asked in the title of this review considering that, despite the effort made by research in this field, HSP70 inhibitors never reached the clinic.
Collapse
|
11
|
Qi J, Liu C, Bai Z, Li X, Yao G. T follicular helper cells and T follicular regulatory cells in autoimmune diseases. Front Immunol 2023; 14:1178792. [PMID: 37187757 PMCID: PMC10175690 DOI: 10.3389/fimmu.2023.1178792] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
T follicular helper (Tfh) cells are heterogeneous and mainly characterized by expressing surface markers CXCR5, ICOS, and PD-1; cytokine IL-21; and transcription factor Bcl6. They are crucial for B-cell differentiation into long-lived plasma cells and high-affinity antibody production. T follicular regulatory (Tfr) cells were described to express markers of conventional T regulatory (Treg) cells and Tfh cells and were able to suppress Tfh-cell and B-cell responses. Evidence has revealed that the dysregulation of Tfh and Tfr cells is positively associated with the pathogenic processes of autoimmune diseases. Herein, we briefly introduce the phenotype, differentiation, and function of Tfh and Tfr cells, and review their potential roles in autoimmune diseases. In addition, we discuss perspectives to develop novel therapies targeting Tfh/Tfr balance.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Genhong Yao, ; Jingjing Qi,
| | - Chang Liu
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- *Correspondence: Genhong Yao, ; Jingjing Qi,
| |
Collapse
|