1
|
Hao Y, Wang R, Ni T, Monk BC, Tyndall JDA, Bao J, Wang M, Chi X, Yu S, Jin Y, Zhang D, Yan L, Xie F. Synthesis and antifungal evaluation of novel triazole derivatives bearing a pyrazole-methoxyl moiety. Eur J Med Chem 2024; 275:116637. [PMID: 38959728 DOI: 10.1016/j.ejmech.2024.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Life-threatening invasive fungal infections pose a serious threat to human health. A series of novel triazole derivatives bearing a pyrazole-methoxyl moiety were designed and synthesized in an effort to obtain antifungals with potent, broad-spectrum activity that are less susceptible to resistance. Most of these compounds exhibited moderate to excellent in vitro antifungal activities against Candida albicans SC5314 and 10,231, Cryptococcus neoformans 32,609, Candida glabrata 537 and Candida parapsilosis 22,019 with minimum inhibitory concentration (MIC) values of ≤0.125 μg/mL to 0.5 μg/mL. Use of recombinant Saccharomyces cerevisiae strains showed compounds 7 and 10 overcame the overexpression and resistant-related mutations in ERG11 of S. cerevisae and several pathogenic Candida spp. Despite being substrates of the C. albicans and Candida auris Cdr1 drug efflux pumps, compounds 7 and 10 showed moderate potency against five fluconazole (FCZ)-resistant fungi with MIC values from 2.0 μg/mL to 16.0 μg/mL. Growth kinetics confirmed compounds 7 and 10 had much stronger fungistatic activity than FCZ. For C. albicans, compounds 7 and 10 inhibited the yeast-to-hyphae transition, biofilm formation and destroyed mature biofilm more effectively than FCZ. Preliminary mechanism of action studies showed compounds 7 and 10 blocked the ergosterol biosynthesis pathway at Erg11, ultimately leading to cell membrane disruption. Further investigation of these novel triazole derivatives is also warranted by their predicted ADMET properties and low cytotoxicity.
Collapse
Affiliation(s)
- Yumeng Hao
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China
| | - Ruina Wang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China
| | - Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Junhe Bao
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China
| | - Mengyuan Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, 110016, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, 110016, China
| | - Shichong Yu
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China
| | - Yongsheng Jin
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China
| | - Dazhi Zhang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China; Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China.
| | - Lan Yan
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China.
| | - Fei Xie
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Shinde AD, Nandurkar YM, Bhalekar S, Walunj YS, Ugale S, Ahmad I, Patel H, Chavan AP, Mhaske PC. Investigation of new 1,2,3-triazolyl-quinolinyl-propan-2-ol derivatives as potential antimicrobial agents: in vitro and in silico approach. J Biomol Struct Dyn 2024; 42:1191-1207. [PMID: 37254438 DOI: 10.1080/07391102.2023.2217922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/28/2023] [Indexed: 06/01/2023]
Abstract
A new series of 1-((1-(4-substituted benzyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-(2-substituted quinolin-4-yl)propan-2-ol (9a-x) have been synthesized. The newly synthesized 1,2,3-triazolyl-quinolinyl-propan-2-ol (9a-x) derivatives were screened for in vitro antimicrobial activity against M. tuberculosis H37Rv, E. coli, P. mirabilis, B. subtilis, and S. albus. Most of the compounds showed good to moderate antibacterial activity and all derivatives have shown excellent to good antitubercular activity with MIC 0.8-12.5 μg/mL. To know the plausible mode of action for antibacterial activity the docking study against DNA gyrase from M. tuberculosis and S. aureus was investigated. The compounds have shown significant docking scores in the range of -9.532 to -7.087 and -9.543 to -6.621 Kcal/mol with the DNA gyrase enzyme of S. aureus (PDB ID: 2XCT) and M. tuberculosis (PDB ID: 5BS8), respectively. Against the S. aureus and M. tuberculosis H37Rv strains, the compound 9 l showed good activity with MIC values of 62.5 and 3.33 μM. It also showed significant docking scores in both targets with -8.291 and -8.885 Kcal/mol, respectively. Molecular dynamics was studied to investigate the structural and dynamics transitions at the atomistic level in S. aureus DNA gyrase (2XCT) and M. tuberculosis DNA gyrase (5BS8). The results revealed that the residues in the active binding pockets of the S. aureus and M. tuberculosis DNA gyrase proteins that interacted with compound 9 l remained relatively consistent throughout the MD simulations and thus, reflected the conformation stability of the respective complexes. Thus, the significant antimicrobial activity of derivatives 9a-x recommended that these compounds could assist in the development of lead compounds to treat for bacterial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhijit D Shinde
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Yogesh M Nandurkar
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
- Department of Chemistry, Nowrosjee Wadia College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Swapnil Bhalekar
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Yogesh S Walunj
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
- Department of Chemistry, Hutatma Rajguru Mahavidyalaya, Rajgurunagar, India (Affiliated to Savitribai Phule Pune University)
| | - Sandip Ugale
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Abhijit P Chavan
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Pravin C Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| |
Collapse
|
3
|
Zhao R, Zhu J, Jiang X, Bai R. Click chemistry-aided drug discovery: A retrospective and prospective outlook. Eur J Med Chem 2024; 264:116037. [PMID: 38101038 DOI: 10.1016/j.ejmech.2023.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Click chemistry has emerged as a valuable tool for rapid compound synthesis, presenting notable advantages and convenience in the exploration of potential drug candidates. In particular, in situ click chemistry capitalizes on enzymes as reaction templates, leveraging their favorable conformation to selectively link individual building blocks and generate novel hits. This review comprehensively outlines and introduces the extensive use of click chemistry in compound library construction, and hit and lead discovery, supported by specific research examples. Additionally, it discusses the limitations and precautions associated with the application of click chemistry in drug discovery. Our intention for this review is to contribute to the development of a modular synthetic approach for the rapid identification of drug candidates.
Collapse
Affiliation(s)
- Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
4
|
Jiang W, Zhou M, Chen S, Xie J, Chen M, Zhang H, Wu Y, Chen X, Liu R. Peptide-Mimicking Poly(2-oxazoline)s Possessing Potent Antifungal Activity and BBB Penetrating Property to Treat Invasive Infections and Meningitis. J Am Chem Soc 2023; 145:25753-25765. [PMID: 37966432 DOI: 10.1021/jacs.3c09240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Invasive fungal infections, including meningitis, cause a high mortality rate due to few available antifungal drugs and frequently associated side effects and quick emergence of drug-resistant fungi. The restrictive permeability of the blood-brain barrier (BBB) further limits the efficacy of antifungal agents substantially in treating meningitis. Hereby, we design and synthesize guanidinium-functionalized poly(2-oxazoline)s by mimicking cell-penetrating peptides. The optimal polymer, PGMeOx10 bearing a methylene spacer arm, displays potent activities against the drug-resistant fungi and biofilm, negligible toxicity, and insusceptibility to antimicrobial resistance. Moreover, PGMeOx10 can break BBB retractions to exert promising antifungal functions in the brain. PGMeOx10 demonstrates potent in vivo antifungal therapeutic efficacy in mouse models including skin infection, systemic infections, and meningitis. PGMeOx10 effectively rescues infected mice and reduces fungal burden and inflammation in the brain. These results and the excellent biosafety of poly(2-oxazoline)s indicate the effectiveness and potential of our strategy to design promising antifungal agents in treating systemic infections and meningitis.
Collapse
Affiliation(s)
- Weinan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayang Xie
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Minzhang Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Haodong Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yueming Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Xie F, Hao Y, Li L, Wang R, Bao J, Chi X, Monk BC, Wang T, Yu S, Jin Y, Zhang D, Ni T, Yan L. Novel antifungal triazoles with alkynyl-methoxyl side chains: Design, synthesis, and biological activity evaluation. Eur J Med Chem 2023; 257:115506. [PMID: 37216811 DOI: 10.1016/j.ejmech.2023.115506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Previous work led to the rational design, synthesis and testing of novel antifungal triazole analogues bearing alkynyl-methoxyl side chains. Tests of in vitro antifungal activity showed Candida albicans SC5314 and Candida glabrata 537 gave MIC values of ≤0.125 μg/mL for most of the compounds. Among these, compounds 16, 18, and 29 displayed broad-spectrum antifungal activity against seven human pathogenic fungal species, two fluconazole-resistant C. albicans isolates and two multi-drug resistant Candida auris isolates. Moreover, 0.5 μg/mL of 16, 18, and 29 was more effective than 2 μg/mL of fluconazole at inhibiting fungal growth of the strains tested. The most active compound (16) completely inhibited the growth of C. albicans SC5314 at 16 μg/mL for 24 h, affected biofilm formation and destroyed the mature biofilm at 64 μg/mL. Several Saccharomyces cerevisiae strains, overexpressing recombinant Cyp51s or drug efflux pumps, indicated 16, 18, and 29 targeted Cyp51 without being significantly affected by a common active site mutation, but were susceptible to target overexpression and efflux by both MFS and ABC transporters. GC-MS analysis demonstrated that 16, 18, and 29 interfered with the C. albicans ergosterol biosynthesis pathway by inhibition at Cyp51. Molecular docking studies elucidated the binding modes of 18 with Cyp51. The compounds showed low cytotoxicity, low hemolytic activity and favorable ADMT properties. Importantly, compound 16 showed potent in vivo antifungal efficacy in the G. mellonella infection model. Taken together, this study presents more effective, broad-spectrum, low toxicity triazole analogues that can contribute to the development of novel antifungal agents and help overcome antifungal resistance.
Collapse
Affiliation(s)
- Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China
| | - Ruina Wang
- Center of New Drug Research, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Junhe Bao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Ting Wang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Shichong Yu
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yongsheng Jin
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Dazhi Zhang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China.
| | - Lan Yan
- Center of New Drug Research, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
6
|
Chi X, Xie F, Li L, Hao Y, Wu H, Li X, Xia G, Yan L, Zhang D, Jiang Y, Ni T. Discovery of novel triazoles containing benzyloxy phenyl isoxazole side chain with potent and broad-spectrum antifungal activity. Bioorg Chem 2023; 137:106572. [PMID: 37156136 DOI: 10.1016/j.bioorg.2023.106572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/11/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
As a continuation study, 29 novel triazoles containing benzyloxy phenyl isoxazole side chain were designed and synthesized based on our previous work. The majority of the compounds exhibited high potency in vitro antifungal activities against eight pathogenic fungi. The most active compounds 13, 20 and 27 displayed outstanding antifungal activity with MIC values ranging from <0.008 µg/mL to 1 µg/mL, and showed potent activity against six drug-resistant Candida auris isolates. Growth curve assays further confirmed the high potency of these compounds. Moreover, compounds 13, 20 and 27 showed a potent inhibitory activity on biofilm formation of C. albicans SC5314 and C. neoformans H99. Notably, compound 13 showed no inhibition of human CYP1A2 and low inhibitory activity against CYP2D6 and CYP3A4, suggesting a low risk of drug-drug interactions. With high potency in vitro and in vivo and good safety profiles, compound 13 will be further investigated as a promising candidate.
Collapse
Affiliation(s)
- Xiaochen Chi
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China; School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fei Xie
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Yumeng Hao
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Hao Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Xianru Li
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences, No. 258 Tianxiong Road, Shanghai 201318, China
| | - Guangxin Xia
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., No. 898 Halei Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China; School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China.
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China.
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
7
|
Shinde A, Thakare PP, Nandurkar Y, Chavan A, Shaikh ALN, Mhaske PC. Synthesis of 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol as potential antimycobacterial agents. CHEMICKE ZVESTI 2023; 77:3791-3802. [PMID: 37252671 PMCID: PMC9961301 DOI: 10.1007/s11696-023-02741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
Resistance to antibiotic drugs has directed global health security to a life-threatening situation due to mycobacterial infections. In search of a new potent antimycobacterial, a series of (±) 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol (8a-p) have been synthesized. The structures of the newly synthesized derivatives were characterized by spectrometric analysis. Derivatives 8a-p were evaluated for antitubercular activity against Mycobacterium tuberculosis H37Rv (ATCC 25177), antibacterial activity against Proteus mirabilis (NCIM2388), Escherichia coli (NCIM 2065), Bacillus subtilis (NCIM2063) Staphylococcus albus (NCIM 2178) and antifungal activity against Candida albicans (NCIM 3100), Aspergillus niger (ATCC 504). Thirteen 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol (8a-m) derivatives reported moderate to good antitubercular activity against M. tuberculosis H37Rv with MIC 9.2-106.4 μM. Compounds 8a and 8h showed comparable activity with respect to the standard drug pyrazinamide. The active compounds screened for cytotoxicity activity against L929 mouse fibroblast cells showed no significant cytotoxic activity. Compounds 8c, 8d, 8e, 8g, 8k, and 8o displayed good activity against S. albus. Compounds 8c and 8n showed good activity against P. mirabilis and E. coli, respectively. The potential antimycobacterial activities imposed that the 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol derivatives could lead to compounds that could treat tuberculosis. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11696-023-02741-3.
Collapse
Affiliation(s)
- Abhijit Shinde
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India
| | - Prashant P. Thakare
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India
| | - Yogesh Nandurkar
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India
- Department of Chemistry, N. Wadia College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Abhijit Chavan
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India
| | - Abdul Latif N. Shaikh
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India
- Department of Chemistry, Jijamata College of Science and Arts (Affiliated to Savitribai Phule Pune University), Bhende, Ahmednagar, India
| | - Pravin C. Mhaske
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India
| |
Collapse
|