1
|
Losada JC, Triana H, Vanegas E, Caro A, Rodríguez-López A, Espejo-Mojica AJ, Alméciga-Diaz CJ. Identification of Orthosteric and Allosteric Pharmacological Chaperones for Mucopolysaccharidosis Type IIIB. Chembiochem 2024; 25:e202400081. [PMID: 38830828 DOI: 10.1002/cbic.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal inherited disease caused by mutations in gene encoding the lysosomal enzyme N-acetyl-alpha-glucosaminidase (NAGLU). These mutations result in reduced NAGLU activity, preventing it from catalyzing the hydrolysis of the glycosaminoglycan heparan sulfate (HS). There are currently no approved treatments for MPS IIIB. A novel approach in the treatment of lysosomal storage diseases is the use of pharmacological chaperones (PC). In this study, we used a drug repurposing approach to identify and characterize novel potential PCs for NAGLU enzyme. We modeled the interaction of natural and artificial substrates within the active cavity of NAGLU (orthosteric site) and predicted potential allosteric sites. We performed a virtual screening for both the orthosteric and the predicted allosteric site against a curated database of human tested molecules. Considering the binding affinity and predicted blood-brain barrier permeability and gastrointestinal absorption, we selected atovaquone and piperaquine as orthosteric and allosteric PCs. The PCs were evaluated by their capacity to bind NAGLU and the ability to restore the enzymatic activity in human MPS IIIB fibroblasts These results represent novel PCs described for MPS IIIB and demonstrate the potential to develop novel therapeutic alternatives for this and other protein deficiency diseases.
Collapse
Affiliation(s)
- Juan Camilo Losada
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Lab 305 A., Bogotá D.C., 110231, Colombia
| | - Heidy Triana
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Lab 305 A., Bogotá D.C., 110231, Colombia
| | - Egdda Vanegas
- Chemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 52, Room 110 305 A., Bogotá D.C., 110231, Colombia
| | - Angela Caro
- Chemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 52, Room 110 305 A., Bogotá D.C., 110231, Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Lab 305 A., Bogotá D.C., 110231, Colombia
- Dogma Biotech, Cr 13 A No. 127 A-84, Bogotá D.C., 110111, Colombia
| | - Angela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Lab 305 A., Bogotá D.C., 110231, Colombia
| | - Carlos Javier Alméciga-Diaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Lab 305 A., Bogotá D.C., 110231, Colombia
| |
Collapse
|
2
|
Esposito A, Rossi A, Stabile M, Pinto G, De Fino I, Melessike M, Tamanini A, Cabrini G, Lippi G, Aureli M, Loberto N, Renda M, Galietta LJV, Amoresano A, Dechecchi MC, De Gregorio E, Bragonzi A, Guaragna A. Assessing the Potential of N-Butyl-l-deoxynojirimycin (l-NBDNJ) in Models of Cystic Fibrosis as a Promising Antibacterial Agent. ACS Pharmacol Transl Sci 2024; 7:1807-1822. [PMID: 38898954 PMCID: PMC11184606 DOI: 10.1021/acsptsci.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Over the past few years, l-iminosugars have revealed attractive pharmacological properties for managing rare diseases including Cystic Fibrosis (CF). The iminosugar N-butyl-l-deoxynojirimycin (l-NBDNJ, ent-1), prepared by a carbohydrate-based route, was herein evaluated for its anti-inflammatory and anti-infective potential in models of CF lung disease infection. A significant decrease in the bacterial load in the airways was observed in the murine model of Pseudomonas aeruginosa chronic infection in the presence of l-NBDNJ, also accompanied by a modest reduction of inflammatory cells. Mechanistic insights into the observed activity revealed that l-NBDNJ interferes with the expression of proteins regulating cytoskeleton assembly and organization of the host cell, downregulates the main virulence factors of P. aeruginosa involved in the host response, and affects pathogen adhesion to human cells. These findings along with the observation of the absence of an in vitro bacteriostatic/bactericidal action of l-NBDNJ suggest the potential use of this glycomimetic as an antivirulence agent in the management of CF lung disease.
Collapse
Affiliation(s)
- Anna Esposito
- Department
of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples I-80125, Italy
| | - Alice Rossi
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Maria Stabile
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples I-80131, Italy
| | - Gabriella Pinto
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
| | - Ida De Fino
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Medede Melessike
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Anna Tamanini
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Giulio Cabrini
- Center on
Innovative Therapies for Cystic Fibrosis, Department of Life Sciences
and Biotechnology, University of Ferrara, Ferrara I-40121, Italy
| | - Giuseppe Lippi
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Massimo Aureli
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20054, Italy
| | - Nicoletta Loberto
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20054, Italy
| | - Mario Renda
- Telethon
Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples I-80078, Italy
| | - Luis J. V. Galietta
- Telethon
Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples I-80078, Italy
- Department
of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples I-80131, Italy
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
- Istituto
Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, Rome I-00136, Italy
| | - Maria Cristina Dechecchi
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Eliana De Gregorio
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples I-80131, Italy
| | - Alessandra Bragonzi
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Annalisa Guaragna
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
| |
Collapse
|
3
|
Alyazidi AS, Muthaffar OY, Baaishrah LS, Shawli MK, Jambi AT, Aljezani MA, Almaghrabi MA. Current Concepts in the Management of Sanfilippo Syndrome (MPS III): A Narrative Review. Cureus 2024; 16:e58023. [PMID: 38738088 PMCID: PMC11087936 DOI: 10.7759/cureus.58023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Sanfilippo syndrome is a childhood-onset (1-4 years) autosomal recessive lysosomal storage disease that presents as a neurodegenerative disease by targeting the brain and spinal cord. It is also known as mucopolysaccharidosis III. Mucopolysaccharidosis III is divided into four subtypes (A, B, C, or D). It can cause delayed speech, behavior problems, and features of autism spectrum disorder. Sanfilippo syndrome is of a higher prevalence within consanguineous families that carry its gene alteration. If both parents have a nonfunctional copy of a gene linked to this condition, their children will have a 25% (1 in 4) chance of developing the disease. In Saudi Arabia, the incidence rate is estimated at 2 per 100,000 live births. Recent research focused on promising treatment approaches, such as gene therapy, modified enzyme replacement therapy, and stem cells. These approaches work by exogenous administration of the proper version of the mutant enzyme (enzyme replacement therapy), cleaning the defective enzyme in individuals with glycolipid storage disorders (substrate reduction therapy), or using a pharmacological chaperone to target improperly folded proteins. However, there is currently no approved curative medication for Sanfilippo syndrome that can effectively halt or reverse the disorder.
Collapse
Affiliation(s)
- Anas S Alyazidi
- Pediatrics, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Osama Y Muthaffar
- Pediatrics, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Layan S Baaishrah
- Faculty of Pharmacy, King Abdulaziz University Hospital, Jeddah, SAU
| | - Mohammed K Shawli
- Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Abdulaziz T Jambi
- Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Maram A Aljezani
- Pediatric Neurology, King Abdulaziz University Hospital, Jeddah, SAU
| | | |
Collapse
|
4
|
Scarcella M, Scerra G, Ciampa M, Caterino M, Costanzo M, Rinaldi L, Feliciello A, Anzilotti S, Fiorentino C, Renna M, Ruoppolo M, Pavone LM, D’Agostino M, De Pasquale V. Metabolic rewiring and autophagy inhibition correct lysosomal storage disease in mucopolysaccharidosis IIIB. iScience 2024; 27:108959. [PMID: 38361619 PMCID: PMC10864807 DOI: 10.1016/j.isci.2024.108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are lysosomal disorders with neurological involvement for which no cure exists. Here, we show that recombinant NK1 fragment of hepatocyte growth factor rescues substrate accumulation and lysosomal defects in MPS I, IIIA and IIIB patient fibroblasts. We investigated PI3K/Akt pathway, which is of crucial importance for neuronal function and survival, and demonstrate that PI3K inhibition abolishes NK1 therapeutic effects. We identified that autophagy inhibition, by Beclin1 silencing, reduces MPS IIIB phenotype and that NK1 downregulates autophagic-lysosome (ALP) gene expression, suggesting a possible contribution of autophagosome biogenesis in MPS. Indeed, metabolomic analyses revealed defects of mitochondrial activity accompanied by anaerobic metabolism and inhibition of AMP-activated protein kinase (AMPK), which acts on metabolism and autophagy, rescues lysosomal defects. These results provide insights into the molecular mechanisms of MPS IIIB physiopathology, supporting the development of new promising approaches based on autophagy inhibition and metabolic rewiring to correct lysosomal pathology in MPSs.
Collapse
Affiliation(s)
- Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariangela Ciampa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80131 Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80131 Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Serenella Anzilotti
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, 82100 Benevento, Italy
| | - Chiara Fiorentino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Massimo D’Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| |
Collapse
|