1
|
Garcia TX, Matzuk MM. Novel Genes of the Male Reproductive System: Potential Roles in Male Reproduction and as Non-hormonal Male Contraceptive Targets. Mol Reprod Dev 2024; 91:e70000. [PMID: 39422082 DOI: 10.1002/mrd.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
The development of novel non-hormonal male contraceptives represents a pivotal frontier in reproductive health, driven by the need for safe, effective, and reversible contraceptive methods. This comprehensive review explores the genetic underpinnings of male fertility, emphasizing the crucial roles of specific genes and structural variants (SVs) identified through advanced sequencing technologies such as long-read sequencing (LRS). LRS has revolutionized the detection of structural variants and complex genomic regions, offering unprecedented precision and resolution over traditional next-generation sequencing (NGS). Key genetic targets, including those implicated in spermatogenesis and sperm motility, are highlighted, showcasing their potential as non-hormonal contraceptive targets. The review delves into the systematic identification and validation of male reproductive tract-specific genes, utilizing advanced transcriptomics and genomics studies with validation using novel knockout mouse models. We discuss the innovative application of small molecule inhibitors, developed through platforms like DNA-encoded chemistry technology (DEC-Tec), which have shown significant promise in preclinical models. Notable examples include inhibitors targeting serine/threonine kinase 33 (STK33), soluble adenylyl cyclase (sAC), cyclin-dependent kinase 2 (CDK2), and bromodomain testis associated (BRDT), each demonstrating nanomolar affinity and potential for reversible and specific inhibition of male fertility. This review also honors the contributions of Dr. David L. Garbers whose foundational work has paved the way for these advancements. The integration of genomic, proteomic, and chemical biology approaches, supported by interdisciplinary collaboration, is poised to transform male contraceptive development. Future perspectives emphasize the need for continued innovation and rigorous testing to bring these novel contraceptives from the laboratory to clinical application, promising a new era of male reproductive health management.
Collapse
Affiliation(s)
- Thomas X Garcia
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Huang Y, Liu W, Zhao C, Shi X, Zhao Q, Jia J, Wang A. Targeting cyclin-dependent kinases: From pocket specificity to drug selectivity. Eur J Med Chem 2024; 275:116547. [PMID: 38852339 DOI: 10.1016/j.ejmech.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The development of selective modulators of cyclin-dependent kinases (CDKs), a kinase family with numerous members and functional variations, is a significant preclinical challenge. Recent advancements in crystallography have revealed subtle differences in the highly conserved CDK pockets. Exploiting these differences has proven to be an effective strategy for achieving excellent drug selectivity. While previous reports briefly discussed the structural features that lead to selectivity in individual CDK members, attaining inhibitor selectivity requires consideration of not only the specific structures of the target CDK but also the features of off-target members. In this review, we summarize the structure-activity relationships (SARs) that influence selectivity in CDK drug development and analyze the pocket features that lead to selectivity using molecular-protein binding models. In addition, in recent years, novel CDK modulators have been developed, providing more avenues for achieving selectivity. These cases were also included. We hope that these efforts will assist in the development of novel CDK drugs.
Collapse
Affiliation(s)
- Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing, 100084, People's Republic of China
| | - Changhao Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xiaoyu Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
3
|
Zeng Y, Ren X, Jin P, Fan Z, Liu M, Zhang Y, Li L, Zhuo M, Wang J, Li Z, Wu M. Inhibitors and PROTACs of CDK2: challenges and opportunities. Expert Opin Drug Discov 2024; 19:1125-1148. [PMID: 38994606 DOI: 10.1080/17460441.2024.2376655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Abundant evidence suggests that the overexpression of CDK2-cyclin A/E complex disrupts normal cell cycle regulation, leading to uncontrolled proliferation of cancer cells. Thus, CDK2 has become a promising therapeutic target for cancer treatment. In recent years, insights into the structures of the CDK2 catalytic site and allosteric pockets have provided notable opportunities for developing more effective clinical candidates of CDK2 inhibitors. AREA COVERED This article reviews the latest CDK2 inhibitors that have entered clinical trials and discusses the design and discovery of the most promising new preclinical CDK2 inhibitors in recent years. Additionally, it summarizes the development of allosteric CDK2 inhibitors and CDK2-targeting PROTACs. The review encompasses strategies for inhibitor and PROTAC design, structure-activity relationships, as well as in vitro and in vivo biological assessments. EXPERT OPINION Despite considerable effort, no CDK2 inhibitor has yet received FDA approval for marketing due to poor selectivity and observed toxicity in clinical settings. Future research must prioritize the optimization of the selectivity, potency, and pharmacokinetics of CDK2 inhibitors and PROTACs. Moreover, exploring combination therapies incorporating CDK2 inhibitors with other targeted agents, or the design of multi-target inhibitors, presents significant promise for advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Yangjie Zeng
- Medical College, Guizhou University, Guiyang, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, China
| | - Pengyao Jin
- Medical College, Guizhou University, Guiyang, China
| | - Zhida Fan
- Medical College, Guizhou University, Guiyang, China
| | | | - Yali Zhang
- Medical College, Guizhou University, Guiyang, China
| | - Linzhao Li
- Medical College, Guizhou University, Guiyang, China
| | - Ming Zhuo
- Medical College, Guizhou University, Guiyang, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Min Wu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
4
|
Ku AF, Sharma KL, Ta HM, Sutton CM, Bohren KM, Wang Y, Chamakuri S, Chen R, Hakenjos JM, Jimmidi R, Kent K, Li F, Li JY, Ma L, Madasu C, Palaniappan M, Palmer SS, Qin X, Robers MB, Sankaran B, Tan Z, Vasquez YM, Wang J, Wilkinson J, Yu Z, Ye Q, Young DW, Teng M, Kim C, Matzuk MM. Reversible male contraception by targeted inhibition of serine/threonine kinase 33. Science 2024; 384:885-890. [PMID: 38781365 DOI: 10.1126/science.adl2688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Men or mice with homozygous serine/threonine kinase 33 (STK33) mutations are sterile owing to defective sperm morphology and motility. To chemically evaluate STK33 for male contraception with STK33-specific inhibitors, we screened our multibillion-compound collection of DNA-encoded chemical libraries, uncovered potent STK33-specific inhibitors, determined the STK33 kinase domain structure bound with a truncated hit CDD-2211, and generated an optimized hit CDD-2807 that demonstrates nanomolar cellular potency (half-maximal inhibitory concentration = 9.2 nanomolar) and favorable metabolic stability. In mice, CDD-2807 exhibited no toxicity, efficiently crossed the blood-testis barrier, did not accumulate in brain, and induced a reversible contraceptive effect that phenocopied genetic STK33 perturbations without altering testis size. Thus, STK33 is a chemically validated, nonhormonal contraceptive target, and CDD-2807 is an effective tool compound.
Collapse
Affiliation(s)
- Angela F Ku
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kiran L Sharma
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hai Minh Ta
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Courtney M Sutton
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kurt M Bohren
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Wang
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruihong Chen
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - John M Hakenjos
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ravikumar Jimmidi
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katarzyna Kent
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jian-Yuan Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lang Ma
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chandrashekhar Madasu
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Murugesan Palaniappan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen S Palmer
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuan Qin
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yasmin M Vasquez
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jian Wang
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Zhifeng Yu
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiuji Ye
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Damian W Young
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Choel Kim
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Gruber FS, Richardson A, Johnston ZC, Myles R, Norcross NR, Day DP, Georgiou I, Sesma-Sanz L, Wilson C, Read KD, Martins da Silva S, Barratt CLR, Gilbert IH, Swedlow JR. Sperm Toolbox-A selection of small molecules to study human spermatozoa. PLoS One 2024; 19:e0297666. [PMID: 38377053 PMCID: PMC10878532 DOI: 10.1371/journal.pone.0297666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Male contraceptive options and infertility treatments are limited, and almost all innovation has been limited to updates to medically assisted reproduction protocols and methods. To accelerate the development of drugs that can either improve or inhibit fertility, we established a small molecule library as a toolbox for assay development and screening campaigns using human spermatozoa. We have profiled all compounds in the Sperm Toolbox in several automated high-throughput assays that measure stimulation or inhibition of sperm motility or the acrosome reaction. We have assayed motility under non-capacitating and capacitating conditions to distinguish between pathways operating under these different physiological states. We also assayed cell viability to ensure any effects on sperm function are specific. A key advantage of our studies is that all compounds are assayed together in the same experimental conditions, which allows quantitative comparisons of their effects in complementary functional assays. We have combined the resulting datasets to generate fingerprints of the Sperm Toolbox compounds on sperm function. The data are included in an on-line R-based app for convenient querying.
Collapse
Affiliation(s)
- Franz S. Gruber
- Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Anthony Richardson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Zoe C. Johnston
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rachel Myles
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Neil R. Norcross
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David P. Day
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Irene Georgiou
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Laura Sesma-Sanz
- Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Caroline Wilson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kevin D. Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sarah Martins da Silva
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Christopher L. R. Barratt
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Ian H. Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jason R. Swedlow
- Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
6
|
Zeng WB, Ji TY, Zhang YT, Ma YF, Li R, You WW, Zhao PL. Design, synthesis, and biological evaluation of N-(pyridin-3-yl)pyrimidin-4-amine analogues as novel cyclin-dependent kinase 2 inhibitors for cancer therapy. Bioorg Chem 2024; 143:107019. [PMID: 38096683 DOI: 10.1016/j.bioorg.2023.107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 01/24/2024]
Abstract
The discovery and development of CDK2 inhibitors has currently been validated as a hot topic in cancer therapy. Herein, a series of novel N-(pyridin-3-yl)pyrimidin-4-amine derivatives were designed and synthesized as potent CDK2 inhibitors. Among them, the most promising compound 7l presented a broad antiproliferative efficacy toward diverse cancer cells MV4-11, HT-29, MCF-7, and HeLa with IC50 values of 0.83, 2.12, 3.12, and 8.61 μM, respectively, which were comparable to that of Palbociclib and AZD5438. Interestingly, these compounds were less toxic on normal embryonic kidney cells HEK293 with high selectivity index. Further mechanistic studies indicated 7l caused cell cycle arrest and apoptosis on HeLa cells in a concentration-dependent manner. Moreover, 7l manifested potent and similar CDK2/cyclin A2 nhibitory activity to AZD5438 with an IC50 of 64.42 nM. These findings revealed that 7l could serve as ahighly promisingscaffoldfor CDK2 inhibitors as potential anticancer agents and functional probes.
Collapse
Affiliation(s)
- Wen-Bin Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Tang-Yang Ji
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yan-Ting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yu-Feng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Rou Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
7
|
Kuchukulla RR, Hwang I, Kim SH, Kye Y, Park N, Cha H, Moon S, Chung HW, Lee C, Kong G, Hur W. Identification of a novel potent CDK inhibitor degrading cyclinK with a superb activity to reverse trastuzumab-resistance in HER2-positive breast cancer in vivo. Eur J Med Chem 2024; 264:116014. [PMID: 38061230 DOI: 10.1016/j.ejmech.2023.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 12/30/2023]
Abstract
CDK12 is overexpressed in HER2-positive breast cancers and promotes tumorigenesis and trastuzumab resistance. Thus CDK12 is a good therapeutic target for the HER2-positive breast tumors resistant to trastuzumab. We previously reported a novel purine-based CDK inhibitor with an ability to degrade cyclinK. Herein, we further explored and synthesized new derivatives, and identified a new potent pan-CDK inhibitor degrading cyclinK (32e). Compound 32e potently inhibited CDK12/cyclinK with IC50 = 3 nM, and suppressed the growth of the both trastuzumab-sensitive and trastuzumab-resistant HER2-positive breast cancer cell lines (GI50's = 9-21 nM), which is superior to a potent, clinical pan-CDK inhibitor dinaciclib. Moreover, 32e (10, 20 mg/kg, ip, twice a week) showed a dose-dependent inhibition of tumor growth and a more dramatic anti-cancer effect than dinaciclib in mouse in vivo orthotopic breast cancer model of trastuzumab-resistant HCC1954 cells. Kinome-wide inhibition profiling revealed that 32e at 1 μM exhibits a decent selectivity toward CDK-family kinases including CDK12 over other wildtype protein kinases. Quantitative global proteomic analysis of 32e-treated HCC1954 cells demonstrated that 32e also showed a decent selectivity in degrading cyclinK over other cyclins. Compound 32e could be developed as a drug for intractable trastuzumab-resistant HER2-positive breast cancers. Our current study would provide a useful insight in designing potent cyclinK degraders.
Collapse
Affiliation(s)
- Ratnakar Reddy Kuchukulla
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Injeoung Hwang
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea; Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Suhn Hyung Kim
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Younghyeon Kye
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Narae Park
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedaero, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Heary Cha
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sojeong Moon
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hwan Won Chung
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Gu Kong
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea; Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Department of Pathology, Hanyang University College of Medicine, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Wooyoung Hur
- HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea; Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14 gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
8
|
Su Z, Diao T, McGuire H, Yao C, Yang L, Bao G, Xu X, He B, Zheng Y. Nanomaterials Solutions for Contraception: Concerns, Advances, and Prospects. ACS NANO 2023; 17:20753-20775. [PMID: 37856253 DOI: 10.1021/acsnano.3c04366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Preventing unintentional pregnancy is one of the goals of a global public health policy to minimize effects on individuals, families, and society. Various contraceptive formulations with high effectiveness and acceptance, including intrauterine devices, hormonal patches for females, and condoms and vasectomy for males, have been developed and adopted over the last decades. However, distinct breakthroughs of contraceptive techniques have not yet been achieved, while the associated long-term adverse effects are insurmountable, such as endocrine system disorder along with hormone administration, invasive ligation, and slowly restored fertility after removal of intrauterine devices. Spurred by developments of nanomaterials and bionanotechnologies, advanced contraceptives could be fulfilled via nanomaterial solutions with much safer and more controllable and effective approaches to meet various and specific needs for women and men at different reproductive stages. Nanomedicine techniques have been extended to develop contraceptive methods, such as the targeted drug delivery and controlled release of hormone using nanocarriers for females and physical stimulation assisted vasectomy using functional nanomaterials via photothermal treatment or magnetic hyperthermia for males. Nanomaterial solutions for advanced contraceptives offer significantly improved biosafety, noninvasive administration, and controllable reversibility. This review summarizes the nanomaterial solutions to female and male contraceptives including the working mechanisms, clinical concerns, and their merits and demerits. This work also reviewed the nanomaterials that have been adopted in contraceptive applications. In addition, we further discuss safety considerations and future perspectives of nanomaterials in nanostrategy development for next-generation contraceptives. We expect that nanomaterials would potentially replace conventional materials for contraception in the near future.
Collapse
Affiliation(s)
- Zhenning Su
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Tian Diao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Helen McGuire
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Cancan Yao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Lijun Yang
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Guo Bao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Science, Western Sydney University, Kumamoto NSW 2751, Australia
| | - Bin He
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| |
Collapse
|
9
|
Faber EB, Sun L, Tang J, Roberts E, Ganeshkumar S, Wang N, Rasmussen D, Majumdar A, Hirsch LE, John K, Yang A, Khalid H, Hawkinson JE, Levinson NM, Chennathukuzhi V, Harki DA, Schönbrunn E, Georg GI. Development of allosteric and selective CDK2 inhibitors for contraception with negative cooperativity to cyclin binding. Nat Commun 2023; 14:3213. [PMID: 37270540 PMCID: PMC10239507 DOI: 10.1038/s41467-023-38732-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/12/2023] [Indexed: 06/05/2023] Open
Abstract
Compared to most ATP-site kinase inhibitors, small molecules that target an allosteric pocket have the potential for improved selectivity due to the often observed lower structural similarity at these distal sites. Despite their promise, relatively few examples of structurally confirmed, high-affinity allosteric kinase inhibitors exist. Cyclin-dependent kinase 2 (CDK2) is a target for many therapeutic indications, including non-hormonal contraception. However, an inhibitor against this kinase with exquisite selectivity has not reached the market because of the structural similarity between CDKs. In this paper, we describe the development and mechanism of action of type III inhibitors that bind CDK2 with nanomolar affinity. Notably, these anthranilic acid inhibitors exhibit a strong negative cooperative relationship with cyclin binding, which remains an underexplored mechanism for CDK2 inhibition. Furthermore, the binding profile of these compounds in both biophysical and cellular assays demonstrate the promise of this series for further development into a therapeutic selective for CDK2 over highly similar kinases like CDK1. The potential of these inhibitors as contraceptive agents is seen by incubation with spermatocyte chromosome spreads from mouse testicular explants, where they recapitulate Cdk2-/- and Spdya-/- phenotypes.
Collapse
Affiliation(s)
- Erik B Faber
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Medical Scientist Training Program, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
| | - Luxin Sun
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Jian Tang
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Emily Roberts
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sornakala Ganeshkumar
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nan Wang
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Damien Rasmussen
- Department of Pharmacology, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
| | - Abir Majumdar
- Department of Pharmacology, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
| | - Laura E Hirsch
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Kristen John
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - An Yang
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Hira Khalid
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Jon E Hawkinson
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Nicholas M Levinson
- Department of Pharmacology, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
| | - Vargheese Chennathukuzhi
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA.
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|