1
|
Jia X, Schols D, Meier C. Antiviral Activity of Lipophilic Nucleoside Tetraphosphate Compounds. J Med Chem 2024; 67:2864-2883. [PMID: 38345794 PMCID: PMC10895676 DOI: 10.1021/acs.jmedchem.3c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
We report on the synthesis and characterization of three types of nucleoside tetraphosphate derivatives 4-9 acting as potential prodrugs of d4T nucleotides: (i) the δ-phosph(on)ate is modified by two hydrolytically stable alkyl residues 4 and 5; (ii) the δ-phosph(on)ate is esterified covalently by one biodegradable acyloxybenzyl moiety and a nonbioreversible moiety 6 and 7; or (iii) the δ-phosphate of nucleoside tetraphosphate is masked by two biodegradable prodrug groups 8 and 9. We were able to prove the efficient release of d4T triphosphate (d4TTP, (i)), δ-monoalkylated d4T tetraphosphates (20 and 24, (ii)), and d4T tetraphosphate (d4T4P, (iii)), respectively, by chemical or enzymatic processes. Surprisingly, δ-dialkylated d4T tetraphosphates, δ-monoalkylated d4T tetraphosphates, and d4T4P were substrates for HIV-RT. Remarkably, the antiviral activity of TetraPPPPro-prodrug 7 was improved by 7700-fold (SI 5700) as compared to the parent d4T in CEM/TK- cells, denoting a successful cell membrane passage of these lipophilic prodrugs and an intracellular delivery of the nucleotide metabolites.
Collapse
Affiliation(s)
- Xiao Jia
- Organic
Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics
and Natural Sciences, Universität
Hamburg, Martin-Luther-King-Platz 6, Hamburg D-20146, Germany
| | - Dominique Schols
- Laboratory
of Virology and Chemotherapy, Department of Microbiology and Immunology
and Transplantation, Rega Institute for
Medical Research, KU
Leuven, Herestraat 49, Leuven B-3000, Belgium
| | - Chris Meier
- Organic
Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics
and Natural Sciences, Universität
Hamburg, Martin-Luther-King-Platz 6, Hamburg D-20146, Germany
- Centre
for Structural Systems Biology (CSSB), Hamburg, DESY Campus, Notkestrasse 85, Hamburg D-22607, Germany
| |
Collapse
|
2
|
Jia X, Kullik GA, Bufano M, Brancale A, Schols D, Meier C. Membrane-permeable tenofovir-di- and monophosphate analogues. Eur J Med Chem 2024; 264:116020. [PMID: 38086193 DOI: 10.1016/j.ejmech.2023.116020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
The development of new antiviral agents such as nucleoside analogues or acyclic nucleotide analogues (ANPs) and prodrugs thereof is an ongoing task. We report on the synthesis of three types of lipophilic triphosphate analogues of (R)-PMPA and dialkylated diphosphate analogues of (R)-PMPA. A highly selective release of the different nucleotide analogues ((R)-PMPA-DP, (R)-PMPA-MP, and (R)-PMPA) from these compounds was achieved. All dialkylated (R)-PMPA-prodrugs proved to be very stable in PBS as well as in CEM/0 cell extracts and human plasma. In primer extension assays, both the monoalkylated and the dialkylated (R)-PMPA-DP derivatives acted as (R)-PMPA-DP as a substrate for HIV-RT. In contrast, no incorporation events were observed using human polymerase γ. The dialkylated (R)-PMPA-compounds exhibited significant anti-HIV efficacy in HIV-1/2 infected cells (CEM/0 and CEM/TK-). Remarkably, the dialkylated (R)-PMPA-MP derivative 9a showed a 326-fold improved activity as compared to (R)-PMPA in HIV-2 infected CEM/TK- cells as well as a very high SI of 14,000. We are convinced that this study may significantly contribute to advancing antiviral agents developed based on nucleotide analogues in the future.
Collapse
Affiliation(s)
- Xiao Jia
- Organic Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146, Hamburg, Germany
| | - Giuliano A Kullik
- Organic Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146, Hamburg, Germany
| | - Marianna Bufano
- Dipartimento Chimica e Tecnologie del Farmaco, Facoltà di Farmacia e Medicina, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Brancale
- Department of Organic Chemistry, Vysoká Škola Chemicko-Technologická v Praze, Technická 5, 16628, Prague, Czech Republic
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146, Hamburg, Germany; Centre for Structural Systems Biology (CSSB), Hamburg, DESY Campus, Notkestrasse 85, D-22607, Hamburg, Germany.
| |
Collapse
|
3
|
Jia X, Schols D, Meier C. Lipophilic Nucleoside Triphosphate Prodrugs of Anti-HIV Active Nucleoside Analogs as Potential Antiviral Compounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2306021. [PMID: 37884485 PMCID: PMC10754118 DOI: 10.1002/advs.202306021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 10/28/2023]
Abstract
Nucleoside analogs require three phosphorylation steps catalyzed by cellular kinases to give their triphosphorylated metabolites. Herein, the synthesis of two types of triphosphate prodrugs of different nucleoside analogs is disclosed. Triphosphates comprising: i) a γ-phosphate or γ-phosphonate bearing a bioreversible acyloxybenzyl group and a long alkyl group and ii) γ-dialkyl phosphate/phosphonate modified nucleoside triphosphate analogs. Almost selective conversion of the former TriPPPro-compounds into the corresponding γ-alkylated nucleoside triphosphate derivatives is demonstrated in CEM/0 cell extracts that proved to be stable toward further hydrolysis. The latter γ-dialkylated triphosphate derivatives lead to the slow formation of the corresponding NDPs. Both types of TriPPPro-compounds are highly potent in wild-type CEM/0 cells and more importantly, they exhibit even better activities against HIV-2 replication in CEM/TK- cell cultures. A finding of major importance is that, in primer extension assays, γ-phosphate-modified-NTPs, γ-mono-alkylated-triphosphates, and NDPs prove to be substrates for HIV-RT but not for cellular DNA-polymerases α,γ.
Collapse
Affiliation(s)
- Xiao Jia
- Organic ChemistryDepartment of ChemistryFaculty of Mathematics, Informatics and Natural SciencesUniversität HamburgMartin‐Luther‐King‐Platz 6D‐20146HamburgGermany
| | - Dominique Schols
- Laboratory of Virology and ChemotherapyDepartment of Microbiology and Immunology and TransplantationRega Institute for Medical ResearchKU Leuven, Herestraat 49LeuvenB‐3000Belgium
| | - Chris Meier
- Organic ChemistryDepartment of ChemistryFaculty of Mathematics, Informatics and Natural SciencesUniversität HamburgMartin‐Luther‐King‐Platz 6D‐20146HamburgGermany
| |
Collapse
|