1
|
Zhu YS, Wu J, Zhi F. Advances in conjugate drug delivery System: Opportunities and challenges. Int J Pharm 2024; 667:124867. [PMID: 39454974 DOI: 10.1016/j.ijpharm.2024.124867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Ideal drug delivery system is designed to accurately deliver the drug to its intended site. The development of conjugate drug delivery system introduces a novel pathway to precise drug delivery with advantages over traditional methods. The core of a conjugate drug delivery system comprises a molecule with two functional components, bounded by a linker structure. One component is responsible for delivering or stabilizing the conjugate, while the other is used to provide the therapeutic or diagnostic effects of the bioactivity. Conjugate drug delivery system improves patient health by maintaining the structural stability of drugs in molecular form, delivering therapeutics or diagnostic material to the target site, minimising off-target accumulation and promoting patient compliance. This system includes various types of drug conjugates that modulate drug pharmacokinetics, stability, absorption, and exposure in lesions and healthy tissues. In this review, we focus on the key characteristics and recent advances of various conjugate drug delivery systems and explore their mechanisms. We also point out the current challenges faced by conjugate drug delivery system and look forward to the future prospects.
Collapse
Affiliation(s)
- Yi-Shen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, PuZhuNanLu No.30, Nanjing 211816, Jiangsu Province, China.
| | - Jiaqi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, PuZhuNanLu No.30, Nanjing 211816, Jiangsu Province, China
| | - Feng Zhi
- Department of Neurosurgery, Clinical Medical Research Center, Third Affiliated Hospital of Soochow University, Juqian Road No.185, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
2
|
Chen C, Pan Y, Yang X, Li H, Cai X, He S, Wang Q, Yang Y, Zheng R, Li H, Yuan S, Dong X, Samarawickrama PN, Zi M, He Y, Zhang X. Liver-targeting chimeras as a potential modality for the treatment of liver diseases. J Control Release 2024; 374:627-638. [PMID: 39208934 DOI: 10.1016/j.jconrel.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Liver diseases pose significant challenges to global public health. In the realm of drug discovery and development, overcoming 'on-target off-tissue' effects remains a substantial barrier for various diseases. In this study, we have pioneered a Liver-Targeting Chimera (LIVTAC) approach using a proteolysis-targeting chimera (PROTAC) molecule coupled to the liver-specific asialoglycoprotein receptor (ASGPR) through an innovative linker attachment strategy for the precise induction of target protein degradation within the liver. As a proof-of-concept study, we designed XZ1606, a mammalian bromodomain and extra-terminal domain (BET)-targeting LIVTAC agent, which not only demonstrated enduring tumor suppression (over 2 months) in combination with sorafenib but also an improved safety profile, notably ameliorating the incidence of thrombocytopenia, a common and severe on-target dose-limiting toxic effect associated with conventional BET inhibitors. These encouraging results highlight the potential of LIVTAC as a versatile platform for addressing a broad spectrum of liver diseases.
Collapse
Affiliation(s)
- Chuanjie Chen
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongzhang Pan
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Xiaoyu Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiqin Li
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Xinhui Cai
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengyuan He
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiong Wang
- National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yiwen Yang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Huiwen Li
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shengjie Yuan
- University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Xin Dong
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Meiting Zi
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China.
| | - Xuan Zhang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Johann F, Wöll S, Gieseler H. "Negative" Impact: The Role of Payload Charge in the Physicochemical Stability of Auristatin Antibody-Drug Conjugates. J Pharm Sci 2024; 113:2433-2442. [PMID: 38679233 DOI: 10.1016/j.xphs.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Antibody-drug conjugates (ADCs) tend to be less stable than their parent antibodies, which is often attributed to the hydrophobic nature of their drug payloads. This study investigated how the payload charge affects ADC stability by comparing two interchain cysteine ADCs that had matched drug-to-antibody ratios and identical linkers but differently charged auristatin payloads, vcMMAE (neutral) and vcMMAF (negative). Both ADCs exhibited higher aggregation than their parent antibody under shaking stress and thermal stress conditions. However, conjugation with vcMMAF increased the aggregation rates to a greater extent than conjugation with uncharged but more hydrophobic vcMMAE. Consistent with the payload logD values, ADC-vcMMAE showed the greatest increase in hydrophobicity but minor changes in charge compared with the parent antibody, as indicated by hydrophobic interaction chromatography and capillary electrophoresis data. In contrast, ADC-vcMMAF showed a decrease in net charge and isoelectric point along with an increase in charge heterogeneity. This charge alteration likely contributed to a reduced electrostatic repulsion and increased surface activity in ADC-vcMMAF, thus affecting its aggregation propensity. These findings suggest that not only the hydrophobicity of the payload, but also its charge should be considered as a critical factor affecting the stability of ADCs.
Collapse
Affiliation(s)
- Florian Johann
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutical Technology and Biopharmacy, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Steffen Wöll
- Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Henning Gieseler
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutical Technology and Biopharmacy, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
4
|
Johann F, Wöll S, Gieseler H. Evaluating the Potential of Cyclodextrins in Reducing Aggregation of Antibody-Drug Conjugates with Different Payloads. J Pharm Sci 2024; 113:2443-2453. [PMID: 38679234 DOI: 10.1016/j.xphs.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Cyclodextrins (CDs) are versatile agents used to solubilize small drugs and stabilize proteins. This dual functionality may be particularly beneficial for antibody-drug conjugates (ADCs), as CDs may "mask" the hydrophobicity of the drug payloads. In this study, we explored the effect of CDs on the physical stability of ADCs composed of the same antibody but with different payloads (maytansinoid, auristatin, and fluorophore payloads). The aggregation of ADCs was evaluated under shaking stress conditions and elevated temperatures using size-exclusion chromatography, turbidity, and backgrounded membrane imaging. Our results showed that hydroxypropyl-(HP)-CDs effectively stabilized all ADCs during shaking stress, with increasing stabilization in the order of HPαCD < HPγCD < HPβCD at concentrations of 7.5 mM and (near) complete stabilization at 75 mM. Native CDs without surface activity also stabilized certain ADCs, although less effectively than HP-CDs under agitation stress. During quiescent incubation, the HP-CD effects were small for most ADCs. However, for an ADC with a fluorophore payload that rapidly aggregated after conjugation, HPγCD substantially reduced aggregate levels, in line with fluorescence data supporting CD-ADC interactions. In contrast, sulfobutylether-β-CD (SBEβCD) increased the aggregation rates in all ADCs under all stress conditions. In conclusion, this study highlights the potential of appropriate CD formulations to improve the physical stability of ADCs.
Collapse
Affiliation(s)
- Florian Johann
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutical Technology and Biopharmacy, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Steffen Wöll
- Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Henning Gieseler
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutical Technology and Biopharmacy, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
5
|
Marvin CC, Hobson AD, McPherson MJ, Hayes ME, Patel MV, Schmidt DL, Li T, Randolph JT, Bischoff AK, Fitzgibbons J, Wang L, Wang L, Hernandez A, Jia Y, Goess CA, Bryant SH, Mathieu SL, Xu J. Anti-TNF Thioester Glucocorticoid Antibody-Drug Conjugate Fully Inhibits Inflammation with Minimal Effect on Systemic Corticosterone Levels in a Mouse Arthritis Model. J Med Chem 2024; 67:9495-9515. [PMID: 38780432 DOI: 10.1021/acs.jmedchem.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We describe the discovery of a thioester-containing glucocorticoid receptor modulator (GRM) payload and the corresponding antibody-drug conjugate (ADC). Payload 6 was designed for rapid hepatic inactivation to minimize systemic exposure of nonconjugated GRM. Mouse PK indicated that 6 is cleared 10-fold more rapidly than a first-generation GRM payload, resulting in 10-fold lower exposure and 3-fold decrease in Cmax. The anti-mTNF conjugate ADC5 fully inhibited inflammation in mouse contact hypersensitivity with minimal effects on corticosterone, a biomarker for systemic GRM effects, at doses up to and including 100 mg/kg. Concomitant inhibition of P1NP suggests potential delivery to cells involved in the remodeling of bone, which may be a consequence of TNF-targeting or bystander payload effects. Furthermore, ADC5 fully suppressed inflammation in collagen-induced arthritis mouse model after one 10 mg/kg dose for 21 days. The properties of the anti-hTNF conjugate were suitable for liquid formulation and may enable subcutaneous dosing.
Collapse
Affiliation(s)
- Christopher C Marvin
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Adrian D Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Michael J McPherson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Martin E Hayes
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Meena V Patel
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Diana L Schmidt
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tongmei Li
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - John T Randolph
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Agnieszka K Bischoff
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Julia Fitzgibbons
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Axel Hernandez
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Ying Jia
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Christian A Goess
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Shaughn H Bryant
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Suzanne L Mathieu
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Jianwen Xu
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
6
|
Santora LC, Hobson AD, Wang L, Wu KX. Impact of drug-linker on method selection for analytical characterization and purification of antibody-drug conjugates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3492-3503. [PMID: 38770747 DOI: 10.1039/d4ay00725e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In addition to traditional characterisation methods of hydrophobic interaction (HIC) and reverse phase (RP) chromatography, an anion exchange chromatography (AIEX) was developed to analyse and purify antibody drug conjugates (ADCs). Since different drug antibody ratio (DAR) species may impact biological activity, therapeutic index, PK parameters or even potential immunogenicity, homogenous ADC DAR demands have been significantly increasing. To accelerate linker designs, drug screening and ADC DAR purification for in vitro and in vivo studies, we built the analytical toolbox including HIC, RP, AIEX, icIEF, SEC, and MS for downstream ADC DAR purification using HIC and AIEX. The established analytical methods can quickly assess the quality of ADC DAR profiles and provide important information to select the proper ADC DAR purification method. Since drug-linker structures can significantly affect ADC physicochemical properties, and highly impact on selections of analytical methods, we applied both HIC and AIEX characterisation and purification platforms to achieve ADC DAR homogenous. Our experiments also implied that unlike HIC, AIEX could be used to separate DAR4 positional isomers.
Collapse
Affiliation(s)
- Ling C Santora
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, USA.
| | - Adrian D Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, USA.
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, USA.
| | - Kan X Wu
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
7
|
Hobson AD. The medicinal chemistry evolution of antibody-drug conjugates. RSC Med Chem 2024; 15:809-831. [PMID: 38516594 PMCID: PMC10953486 DOI: 10.1039/d3md00674c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Antibody-drug conjugates (ADCs) comprise 3 components of wildly differing sizes: antibody (150 000 Da), linker (typically <500 Da) and payload (typically <500 Da). While the drug-linker makes up only a small percent of the ADC it has a disproportionately massive impact on all aspects of the ADC. Replacing maleimide with bromoacetamide (BrAc) affords stable attachment of the linker to the antibody cysteine, supports total flexibility for linker design and affords a more homogenous ADC. Optimisation of the protease cleavable dipeptide reduces aggregation, facilitates moderation of the physicochemical properties of the ADC and enables long-term stability to facilitate subcutaneous self-administration. Payloads are designed specifically to afford the optimal ADC. Structural information and SAR guide design to improve both potency and selectivity to the small molecule target improving the therapeutic index of resulting ADCs. Minimising the solvent exposed hydrophobic surface area improves the drug-like properties of the ADC, the realisation that the attachment heteroatom can be more than just the site for linker attachment as it can also drive potency and selectivity of the payload and the adoption of a prodrug strategy at project initiation are key areas that medicinal chemistry drives. For an optimal ADC the symbiotic relationship of the three structurally disparate components requires they all function in unison and medicinal chemistry has a huge role to ensure this happens.
Collapse
Affiliation(s)
- Adrian D Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester Massachusetts 01605 USA
| |
Collapse
|
8
|
Hobson AD, Zhu H, Qiu W, Judge RA, Longenecker K. Minimising the payload solvent exposed hydrophobic surface area optimises the antibody-drug conjugate properties. RSC Med Chem 2024; 15:832-838. [PMID: 38516584 PMCID: PMC10953475 DOI: 10.1039/d3md00540b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/22/2024] [Accepted: 01/05/2024] [Indexed: 03/23/2024] Open
Abstract
Glucocorticoid receptor modulators (GRMs) are an established and successful compound class for the treatment of multiple diseases. In addition, they are an area of high interest as payloads for antibody-drug conjugate s(ADCs) in both immunology and oncology. Solving the crystal structure of compound 2, the GRM payload from ABBV-3373 and ABBV-154, in the ligand binding domain of the glucocorticoid receptor (GR) revealed key information to facilitate optimal ADC payload design. All four critical H-bonds between the oxygen functional groups on the hexadecahydro-1H-cyclopenta[a]phenanthrene ring system of the small molecule and protein were shown to be made (carbonyl at C3 to Gln570 and Arg611 and Asn564, carbonyl at C20 to Thr739, hydroxyl at C21 to Asn 564 and Thr739). In addition, an extra H-bond between the linker attachment site on compound 2, the aniline in the biaryl region, was observed. Confirmation of the stereochemistry of the acetal in compound 2 as (R) was established. Finally, the importance of minimising the exposed hydrophobic surface area of a payload to reduce the negative impact on the properties of resulting ADCs, like aggregation, was rationalised by comparison of (R)-acetal compound 2 and (S)-acetal compound 3.
Collapse
Affiliation(s)
- Adrian D Hobson
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Haizhong Zhu
- AbbVie Inc. 1 North Waukegan Road North Chicago IL 60064 USA
| | - Wei Qiu
- AbbVie Inc. 1 North Waukegan Road North Chicago IL 60064 USA
| | - Russell A Judge
- AbbVie Inc. 1 North Waukegan Road North Chicago IL 60064 USA
| | | |
Collapse
|
9
|
Choi Y, Choi Y, Hong S. Recent Technological and Intellectual Property Trends in Antibody-Drug Conjugate Research. Pharmaceutics 2024; 16:221. [PMID: 38399275 PMCID: PMC10892729 DOI: 10.3390/pharmaceutics16020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Antibody-drug conjugate (ADC) therapy, an advanced therapeutic technology comprising antibodies, chemical linkers, and cytotoxic payloads, addresses the limitations of traditional chemotherapy. This study explores key elements of ADC therapy, focusing on antibody development, linker design, and cytotoxic payload delivery. The global rise in cancer incidence has driven increased investment in anticancer agents, resulting in significant growth in the ADC therapy market. Over the past two decades, notable progress has been made, with approvals for 14 ADC treatments targeting various cancers by 2022. Diverse ADC therapies for hematologic malignancies and solid tumors have emerged, with numerous candidates currently undergoing clinical trials. Recent years have seen a noteworthy increase in ADC therapy clinical trials, marked by the initiation of numerous new therapies in 2022. Research and development, coupled with patent applications, have intensified, notably from major companies like Pfizer Inc. (New York, NY, USA), AbbVie Pharmaceuticals Inc. (USA), Regeneron Pharmaceuticals Inc. (Tarrytown, NY, USA), and Seagen Inc. (Bothell, WA, USA). While ADC therapy holds great promise in anticancer treatment, challenges persist, including premature payload release and immune-related side effects. Ongoing research and innovation are crucial for advancing ADC therapy. Future developments may include novel conjugation methods, stable linker designs, efficient payload delivery technologies, and integration with nanotechnology, driving the evolution of ADC therapy in anticancer treatment.
Collapse
Affiliation(s)
- Youngbo Choi
- Department of Safety Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea;
- Department of BigData, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Youbeen Choi
- Department of Biotechnology, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea;
| | - Surin Hong
- Department of Biotechnology, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea;
| |
Collapse
|
10
|
Wang L, Hobson AD, Fitzgibbons J, Hernandez A, Jia Y, Xu Z, Wang Z, Yu Y, Li X. Impact of dipeptide on ADC physicochemical properties and efficacy identifies Ala-Ala as the optimal dipeptide. RSC Med Chem 2024; 15:355-365. [PMID: 38283215 PMCID: PMC10809321 DOI: 10.1039/d3md00473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024] Open
Abstract
Side chains of natural occurring amino acids vary greatly in terms of charge state, polarity, size and hydrophobicity. Using a linear synthetic route, two amino acids were sequentially coupled to a potent glucocorticoid receptor modulator (GRM) to afford a library of dipeptide-GRM linker payloads with a range of in silico properties. The linker payloads were conjugated to a mouse anti-TNF antibody through interchain disulfide Cys. Impact of various dipeptide linkers on ADC physical properties, including solubility, hydrophobicity, and aggregation were evaluated and the in silico properties pI, Log P and tPSA of the linker drugs used to correlate with these properties. ADCs were screened in a GRE luciferase reporter assay to compare their in vitro efficacy. Data identified Ala-Ala as a superior dipeptide linker that allowed a maximum drug load of 10 while affording ADCs with low aggregation.
Collapse
Affiliation(s)
- Lu Wang
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Adrian D Hobson
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Julia Fitzgibbons
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Axel Hernandez
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Ying Jia
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Zhou Xu
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Zhongyuan Wang
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Yajie Yu
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Xiang Li
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| |
Collapse
|
11
|
Hobson AD. Antibody drug conjugates beyond cytotoxic payloads. PROGRESS IN MEDICINAL CHEMISTRY 2023; 62:1-59. [PMID: 37981349 DOI: 10.1016/bs.pmch.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
For many years, antibody drug conjugates (ADC) have teased with the promise of targeted payload delivery to diseased cells, embracing the targeting of the antibody to which a cytotoxic payload is conjugated. During the past decade this promise has started to be realised with the approval of more than a dozen ADCs for the treatment of various cancers. Of these ADCs, brentuximab vedotin really laid the foundations of a template for a successful ADC with lysosomal payload release from a cleavable dipeptide linker, measured DAR by conjugation to the Cys-Cys interchain bonds of the antibody and a cytotoxic payload. Using this ADC design model oncology has now expanded their repertoire of payloads to include non-cytotoxic compounds. These new payload classes have their origins in prior medicinal chemistry programmes aiming to design selective oral small molecule drugs. While this may not have been achieved, the resulting compounds provide excellent starting points for ADC programmes with some compounds amenable to immediate linker attachment while for others extensive SAR and structural information offer invaluable design insights. Many of these new oncology payload classes are of interest to other therapeutic areas facilitating rapid access to drug-linkers for exploration as non-oncology ADCs. Other therapeutic areas have also pursued unique payload classes with glucocorticoid receptor modulators (GRM) being the most clinically advanced in immunology. Here, ADC payloads come full circle, as oncology is now investigating GRM payloads for the treatment of cancer. This chapter aims to cover all these new ADC approaches while describing the medicinal chemistry origins of the new non-cytotoxic payloads.
Collapse
Affiliation(s)
- Adrian D Hobson
- Small Molecule Therapeutics & Platform Technologies, AbbVie Bioresearch Center, Worcester, MA, United States.
| |
Collapse
|
12
|
Hobson AD, Xu J, Welch DS, Marvin CC, McPherson MJ, Gates B, Liao X, Hollmann M, Gattner MJ, Dzeyk K, Sarvaiya H, Shenoy VM, Fettis MM, Bischoff AK, Wang L, Santora LC, Wang L, Fitzgibbons J, Salomon P, Hernandez A, Jia Y, Goess CA, Mathieu SL, Bryant SH, Larsen ME, Cui B, Tian Y. Discovery of ABBV-154, an anti-TNF Glucocorticoid Receptor Modulator Immunology Antibody-Drug Conjugate (iADC). J Med Chem 2023; 66:12544-12558. [PMID: 37656698 DOI: 10.1021/acs.jmedchem.3c01174] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Stable attachment of drug-linkers to the antibody is a critical requirement, and for maleimide conjugation to cysteine, it is achieved by ring hydrolysis of the succinimide ring. During ADC profiling in our in-house property screening funnel, we discovered that the succinimide ring open form is in equilibrium with the ring closed succinimide. Bromoacetamide (BrAc) was identified as the optimal replacement, as it affords stable attachment of the drug-linker to the antibody while completely removing the undesired ring open-closed equilibrium. Additionally, BrAc also offers multiple benefits over maleimide, especially with respect to homogeneity of the ADC structure. In combination with a short, hydrophilic linker and phosphate prodrug on the payload, this afforded a stable ADC (ABBV-154) with the desired properties to enable long-term stability to facilitate subcutaneous self-administration.
Collapse
Affiliation(s)
- Adrian D Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Jianwen Xu
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Dennie S Welch
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | | | - Michael J McPherson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Bradley Gates
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Xiaoli Liao
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Markus Hollmann
- AbbVie Deutschland GmbH & Co KG, Knollstrasse 50, 67061 Ludwigshafen, Germany
| | - Michael J Gattner
- AbbVie Deutschland GmbH & Co KG, Knollstrasse 50, 67061 Ludwigshafen, Germany
| | - Kristina Dzeyk
- AbbVie Deutschland GmbH & Co KG, Knollstrasse 50, 67061 Ludwigshafen, Germany
| | - Hetal Sarvaiya
- AbbVie Inc., 1000 Gateway Blvd, South San Francisco, California 94080, United States
| | - Vikram M Shenoy
- AbbVie Inc., 1000 Gateway Blvd, South San Francisco, California 94080, United States
| | - Margaret M Fettis
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Agnieszka K Bischoff
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Ling C Santora
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Julia Fitzgibbons
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Paulin Salomon
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Axel Hernandez
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Ying Jia
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Christian A Goess
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Suzanne L Mathieu
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Shaughn H Bryant
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Mary E Larsen
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Baoliang Cui
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Yu Tian
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|