1
|
Wang T, Sun N, Ma Y, Zhang S. Recent Advances in the Development of Sigma Receptor (Radio)Ligands and Their Application in Tumors. ACS Pharmacol Transl Sci 2025; 8:951-977. [PMID: 40242588 PMCID: PMC11997895 DOI: 10.1021/acsptsci.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
Cancer ranks among the top triumvirate leading causes of human deaths worldwide. The pathological mechanisms are notably intricate, demonstrating proliferative and metastatic capabilities, which complicate therapeutic interventions. The sigma-1 receptor (σ1R) plays a crucial role in tumor survival and migration, while the sigma-2 receptor (σ2R) is intimately associated with tumor proliferation. This review encapsulated the investigation concerning σ1R and σ2R in neoplasms and rigorously summarized the ligands and radio-ligands development and their tumor applications, such as antitumor cell proliferation and PET/SPECT imaging in tumors. A comprehensive classification discussion was undertaken regarding the chemical structures and emphasized the possibility of dual/multitargeted ligands. Ultimately, we discussed the effects of chiral structures and the pharmacological characteristics of ligands on affinity and pharmacokinetic features in vivo, particularly concerning radiopharmaceuticals. This review functions as a beneficial resource, fostering ligand deployment and stimulating the generation of innovative ideas for developing innovative radiopharmaceuticals.
Collapse
Affiliation(s)
- Tao Wang
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
- School
of Medical Imaging, North Sichuan Medical
College, NanChong 637100, China
- Department
of Nuclear Medicine, Affiliated Hospital
of North Sichuan Medical College, North Sichuan Medical College, NanChong 637000, China
| | - Na Sun
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| | - Yanxi Ma
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| | - Song Zhang
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| |
Collapse
|
2
|
Galenko EE, Bodunov VA, Taishev AE, Novikov MS, Khlebnikov AF. Synthesis of Azirinyl Ethynyl Ketones and Their Use in the Preparation C(O)C≡CR-Substituted NH-Pyrroles/NH-Imidazoles and Azole-Azine/Azole-Azole Heterocyclic Hybrids. J Org Chem 2025; 90:3334-3348. [PMID: 39995056 DOI: 10.1021/acs.joc.4c02970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Azirinyl-substituted conjugated ynones were first synthesized by the reaction of lithiated acetylenes with 2H-azirine-2-carbonyl chlorides. Azirinyl ethynyl ketones containing only a C(O)C≡CR substituent at position 2 of the azirine ring are good precursors for obtaining α-C(O)C≡CR substituted NH-pyrroles and 5-[C(O)C≡CR]-substituted NH-imidazoles, reacting selectively only at the azirine moiety with 1,3-diketones and arylamidines, respectively. Various N-heterocyclic hybrids (pyrrole-pyrimidine, imidazole-pyrimidine, pyrrole-isoxazole, imidazole-isoxazole, pyrimidine-pyrrole-thiophene, pyrrole-pyrimidine-thiophene, imidazole-pyrimidine-thiophene, isoxazole-pyrrole-thiophene) have been prepared based on orthogonal or domino reactions of an azirine and C(O)C≡CR moieties of azirinyl ethynyl ketones.
Collapse
Affiliation(s)
- Ekaterina E Galenko
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Vladimir A Bodunov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Artur E Taishev
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| |
Collapse
|
3
|
Liu X, Chen P, Wu W, Zhong M, Dong S, Lin H, Dai C, Zhang Z, Lin S, Che C, Xu J, Li C, Li H, Pan X, Chen Z, Chen X, Ye ZC. Compound (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one downregulation of Galectin-3 ameliorates Aβ pathogenesis-induced neuroinflammation in 5 × FAD mice. Life Sci 2024; 357:123085. [PMID: 39362584 DOI: 10.1016/j.lfs.2024.123085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
AIMS Alzheimer's disease (AD) is characterized by β-amyloid (Aβ) aggregation and neuroinflammation, leading to progressive synaptic loss and cognitive decline. Recent evidence suggests that Galectin-3 (Gal-3) plays a critical role in Aβ pathogenesis. However, strategies to simultaneously target Gal-3 and Aβ are currently insufficient. This study evaluates the therapeutic efficacy of (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one (D30), in reducing Gal-3 and Aβ pathogenesis. MATERIALS AND METHODS We applied exogenous oligomeric Aβ and used 5 × FAD mice to assess the impact of Aβ on Gal-3 deposition, microglial activation, and cognitive function. Thy1-EGFP mice were employed to observe dendritic spines. Comprehensive evaluations of D30's effects included behavioral studies, transcriptomic analysis, Western blotting, and immunofluorescent staining. The interaction between D30 and Gal-3 was examined using fluorescence resonance energy transfer (FRET) and microscale thermophoresis (MST). KEY FINDINGS D30 effectively reduced Aβ monomer production by inhibiting Amyloid Precursor Protein (APP) and presenilin 1 (PS1) expression, and decreased Aβ aggregation. Treatment with D30 improved cognitive functions, reversed dendritic spine loss, and increased PSD95 expression in 5 × FAD mice. Additionally, D30 significantly lowered Gal-3 levels in both plasma and hippocampal tissues. D30 binds to Gal-3 and disrupts the interaction between Gal-3 and TREM2, as confirmed by FRET and MST. SIGNIFICANCE Our findings underscore the interaction between Gal-3 and Aβ in AD and its role in systemic inflammation using the 5 × FAD mouse model. Being able to target and regulate Gal-3 together with Aβ is crucial for preventing neuroinflammation and protecting synapses, D30 emerged as a novel compound with promising potential for AD treatment.
Collapse
Affiliation(s)
- Xueyan Liu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China; School of Pharmacy, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Ping Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China; Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Wei Wu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Meihua Zhong
- School of Pharmacy, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Shiyu Dong
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Huiling Lin
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Chaoxian Dai
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Zhile Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350112, Fujian Province, China; Ningde Rehabilitation Hospital, Ningde 352105, Fujian Province, China
| | - Shiqi Lin
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Cuilan Che
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Jiexin Xu
- School of Pharmacy, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Chenlu Li
- Department of Hyperbaric Oxygen, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China
| | - Hongwei Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, Jilin Province, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fujian Province, China
| | - Zhou Chen
- Overseas Education College of Fujian Medical University, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fujian Province, China.
| | - Zu-Cheng Ye
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China.
| |
Collapse
|
4
|
Christmann U, Garriga L, Llorente AV, Díaz JL, Pascual R, Bordas M, Dordal A, Porras M, Yeste S, Reinoso RF, Vela JM, Almansa C. WLB-87848, a Selective σ 1 Receptor Agonist, with an Unusually Positioned NH Group as Positive Ionizable Moiety and Showing Neuroprotective Activity. J Med Chem 2024; 67:9150-9164. [PMID: 38753759 DOI: 10.1021/acs.jmedchem.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The synthesis and pharmacological activity of a new series of thieno[2,3-d]pyrimidin-4(3H)-one derivatives as sigma-1 receptor (σ1R) ligands are reported. A hit from a high-throughput screening program was evolved into a highly potent and selective σ1R agonist (14qR) that contains a free NH group as positive ionizable moiety, not fulfilling the usual pharmacophoric features of the σ1R. The compound shows good physicochemical and ADMET characteristics, displays an agonist profile in the binding immunoglobulin protein/σ1R association assay, induces neuron viability in an in vitro model of β-amyloid peptide intoxication, and presents positive results against recognition memory impairment induced by hippocampal injection of Aβ peptide in rats after oral treatment, altogether making 14qR (WLB-87848) an interesting candidate for neuroprotection.
Collapse
Affiliation(s)
- Ute Christmann
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Lourdes Garriga
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Ana Virginia Llorente
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - José Luis Díaz
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Rosalía Pascual
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Magda Bordas
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Albert Dordal
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Mónica Porras
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Sandra Yeste
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Raquel F Reinoso
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| | - Carmen Almansa
- Welab Barcelona, Parc Científic Barcelona, C/Baldiri Reixac 4-8, Barcelona 08028, Spain
| |
Collapse
|
5
|
Walby GD, Gu Q, Yang H, Martin SF. Structure-Affinity relationships of novel σ 2R/TMEM97 ligands. Bioorg Chem 2024; 145:107191. [PMID: 38432153 DOI: 10.1016/j.bioorg.2024.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
The sigma 2 receptor (σ2R), which was recently identified as the transmembrane protein 97 (TMEM97), is increasingly attracting interest as a possible therapeutic target for indications in neuroscience. Toward identifying novel modulators of σ2R/TMEM97, we prepared a collection of benzoxazocine, benzomorphan, and methanobenzazepine ligands related to the known bioactive norbenzomorphans DKR-1677, FEM-1689, and EES-1686 and determined their Ki values for σ2R/TMEM97 and the sigma 1 receptor (σ1R). The σ2R/TMEM97 binding affinities and selectivities relative to σ1R of these new benzoxazocine, benzomorphan, and methanobenzazepine analogs are lower, often significantly lower, than their respective norbenzomorphan counterparts, suggesting the spatial orientation of pharmacophoric substituents is critical for binding to the two proteins. The benzoxazocine, benzomorphan, and methanobenzazepine congeners of DKR-1677 and FEM-1689 tend to be weakly selective for σ2R/TMEM97 versus σ1R, whereas EES-1686 derivatives exhibit the greatest selectivity, suggesting the size and/or nature of the substituent on the nitrogen atom of the scaffold may be important for selectivity. Computational docking studies were performed for the 1S,5R-and 1R,5S-enantiomers of DKR-1677, FEM-1689, and EES-1686 and their benzoxazocine, benzomorphan, and methanobenzazepine counterparts. These computations predict that the protonated amino group of each ligand forms a highly conserved salt bridge and a H-bonding interaction with Asp29 as well as a cation-π interaction with Tyr150 of σ2R/TMEM97. These electrostatic interactions are major driving forces for binding to σ2R/TMEM97 and are similar, though not identical, for each ligand. Other interactions within the well-defined binding pocket also tend to be comparable, but there are some major differences in how the hydrophobic aryl groups of various ligands interact with the protein surface external to the binding pocket. Overall, these studies show that the orientations of aryl and N-substituents on the norbenzomorphan and related scaffolds are important determinants of binding affinity of σ2R/TMEM97 ligands, and small changes can have significant effects upon binding profiles.
Collapse
Affiliation(s)
- Grant D Walby
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | - Qi Gu
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | - Hongfen Yang
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | - Stephen F Martin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|