1
|
Gogde K, Kirar S, Pujari AK, Mohne D, Yadav AK, Bhaumik J. Near-IR nanolignin sensitizers based on pyrene-conjugated chlorin and bacteriochlorin for ROS generation, DNA intercalation and bioimaging. J Mater Chem B 2024; 13:288-304. [PMID: 39535256 DOI: 10.1039/d4tb01627k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Near-infrared (NIR) fluorescent agents are extensively used for biomedical imaging due to their ability for deep tissue penetration. Tetrapyrrole-based photosensitizers are promising candidates in this regard. Further, the extended conjugation of such macromolecules with chromophores can enhance their fluorescence efficiency and DNA intercalation ability. Herein, pyrene-conjugated NIR photosensitizers, such as chlorin (PyChl) and bacteriochlorin (PyBac), were synthesized from the corresponding pyrene-porphyrin (PyP). The correlation between the theoretical and experimental optical properties (absorption and fluorescence spectroscopy results) was determined using the DFT/TD-DFT computational approach. Next, studies on the photophysical properties, reactive oxygen species (ROS) production, and DNA binding were conducted on these macrocycles to study the effect of pyrene conjugation on the pyrrolic ring. Furthermore, each photosensitizer was loaded into lignin nanoparticles (LNPs) using the solvent-antisolvent method to accomplish fluorescence-guided imaging. The developed near-IR chlorin- and bacteriochlorin-doped lignin nanocarriers (PyChl-LNCs and PyBac-LNCs) exhibited significant in vitro singlet oxygen generation upon red LED light exposure. Moreover, these macrocycle-loaded nanolignin sensitizers showed good fluorescence-guided bioimaging with fungal cells (Candida albicans). Further, the nanoprobes exhibited pH-dependent release profiles for biological applications. These nanolignin sensitizers demonstrated promising potential to be utilized in near-IR image-guided photodynamic therapy.
Collapse
Affiliation(s)
- Kunal Gogde
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
- University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh 160306, India
| | - Seema Kirar
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
| | - Anil Kumar Pujari
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
- Indian Institute of Sciences Education and Research (IISER), Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India
| | - Devesh Mohne
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
- Indian Institute of Sciences Education and Research (IISER), Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh 160306, India
| | - Jayeeta Bhaumik
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S. A. S. Nagar 140306, Punjab, India.
| |
Collapse
|
2
|
Rawat K, Kaur R, Pujari AK, Kirar S, Bhaumik J. Lignin-Derived Gold-Titanium Dioxide Nanophotocomposites as Potent Photoactivatable Probes for Microbial Inactivation. ACS APPLIED BIO MATERIALS 2024; 7:7666-7674. [PMID: 39503607 DOI: 10.1021/acsabm.4c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The overuse of antibiotics has accelerated antibiotic resistance, and it is a significant global threat to public health. To combat the rising threat of drug-resistant microbes, antimicrobial photodynamic therapy (APDT) has emerged as a promising alternative therapeutic strategy. This study focuses on the synthesis of eco-friendly lignin-derived gold-titanium dioxide nanophotocomposites (L@Au-TiO2 NCs). Lignin was utilized as a sustainable precursor for the synthesis of L@Au-TiO2 NCs. The gold and TiO2 nanoparticles possess inherent photodynamic properties, and thus the developed L@Au-TiO2 NCs exhibit enhanced antimicrobial efficacy due to the synergistic combination of their attributes. The antimicrobial potential of the L@Au-TiO2 NCs was evaluated against various microbial strains (Escherichia coli, Bacillus megaterium, and Candida tropicalis) under dark and green light conditions. The outcome of this study highlights the promising potential of L@Au-TiO2 NCs for photodynamic antimicrobial applications. The L@Au-TiO2 nanophotocomposites could be explored in the fields of medicine and nanotechnology to introduce innovative ideas into the biomedical field.
Collapse
Affiliation(s)
- Kshitij Rawat
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT) Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab 140306, India
- Department of Biological Sciences, Indian Institute of Science Education and Research, Sector-81 (Knowledge City), S.A.S Nagar, Mohali, Punjab 140306, India
| | - Ravneet Kaur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT) Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Anil Kumar Pujari
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT) Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector-81 (Knowledge City), S.A.S Nagar, Mohali, Punjab 140306, India
| | - Seema Kirar
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT) Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT) Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Hou S, Li Y, Chen Q, Yang J, Zhao P, Zhao Y. Mechano-triggered eradication of dentinal tubule biofilm via in situ generation of nanoscale sonosensitizer by the tailored irrigation formulation. Int J Pharm 2024; 665:124655. [PMID: 39244072 DOI: 10.1016/j.ijpharm.2024.124655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The efficient elimination of bacteria within the dentinal tubules has been hindered by the poor deposition and short residence of disinfecting agents. Meanwhile, the current irrigant (e.g., NaClO, 5.25 %) shows severe adverse effects on the surrounding soft tissues because of its inherent high irritancy. To address this issue, this work reports an in situ generated sonosensitizer to handle the biofilm in dentinal tubules with minimal adverse effects. The production of nanoscale sonosensitizer involves the concurrent delivery of H2O2 (0.01 %), ferrocene derivative (Fc), and indocyanine green (ICG). With ultrasound treatment, the reaction between H2O2 and Fc liberated Fe3+ that was further complexed with ICG to generate the nanoscale sonosensitizer in situ, followed by singlet oxygen production for potent disinfecting action. Because the above cascade reactions occur within the confined dentinal tubules, the generated ICG-Fe3+ nanosensitizer would show prolonged retention therein. The anti-bacterial potency of nanosensitizer was demonstrated in petrodish and ex vivo biofilm models. Meanwhile, the transmission electron microscope imaging of biofilm and cytotoxicity assay in L929 fibroblast cells proved the superiority of nanosensitizer against NaClO regarding adverse effects. The current work opens new avenues of biofilm elimination in dentinal tubules, showing a high translation potential.
Collapse
Affiliation(s)
- Shuai Hou
- Department of Stomatology, The General Hospital of Tianjin Medical University, Anshan Road, Heping District, Tianjin 30052, China
| | - Yao Li
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Qiqi Chen
- Hefei Stomatological Hospital, Luyang District, Hefei 230001, China
| | - Jie Yang
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Pingjiang Road, Hexi District, Tianjin 300211, China.
| | - Pengpeng Zhao
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin,300041.China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Pujari AK, Kaur R, Reddy YN, Paul S, Gogde K, Bhaumik J. Design and Synthesis of Metalloporphyrin Nanoconjugates for Dual Light-Responsive Antimicrobial Photodynamic Therapy. J Med Chem 2024; 67:2004-2018. [PMID: 38241140 DOI: 10.1021/acs.jmedchem.3c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Antimicrobial photodynamic therapy (APDT) utilizes photosensitizers (PSs) that eradicate a broad spectrum of bacteria in the presence of light and molecular oxygen. On the other hand, some light sources such as ultraviolet (UVB and UVC) have poor penetration and high cytotoxicity, leading to undesired PDT of the PSs. Herein, we have synthesized conjugatable mesosubstituted porphyrins and extensively characterized them. Time-dependent density functional theory (TD-DFT) calculations revealed that metalloporphyrin EP (5) is a suitable candidate for further applications. Subsequently, the metalloporphyrin was conjugated with lignin-based zinc oxide nanocomposites (ZnOAL and ZnOKL) to develop hydrophilic nanoconjugates (ZnOAL@EP and ZnOKL@EP). Upon dual light (UV + green light) exposure, nanoconjugates showed enhanced singlet oxygen generation ability and also demonstrated pH responsiveness. These nanoconjugates displayed significantly improved APDT efficiency (4-7 fold increase) to treat bacterial infection under dual light irradiation.
Collapse
Affiliation(s)
- Anil Kumar Pujari
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- Indian Institute of Science Education and Research (IISER), Knowledge City, Sector 81, S. A. S. Nagar, Mohali, Punjab 140306, India
| | - Ravneet Kaur
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
| | - Yeddula Nikhileshwar Reddy
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- Indian Institute of Science Education and Research (IISER), Knowledge City, Sector 81, S. A. S. Nagar, Mohali, Punjab 140306, India
| | - Shatabdi Paul
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001, India
| | - Kunal Gogde
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, Chandigarh 160014, India
| | - Jayeeta Bhaumik
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
| |
Collapse
|