1
|
Guadagni A, Barone S, Alfano AI, Pelliccia S, Bello I, Panza E, Summa V, Brindisi M. Tackling triple negative breast cancer with HDAC inhibitors: 6 is the isoform! Eur J Med Chem 2024; 279:116884. [PMID: 39321690 DOI: 10.1016/j.ejmech.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterized by the lack in the expression of estrogen and progesterone receptors, and human epidermal growth factor receptors 2. TNBC stands out among other breast cancers subtypes for its high aggressiveness and invasiveness, and for the limited therapeutic options available, which justify the poor survival rates registered for this breast cancer subtype. Compelling new evidence pointed out the role of epigenetic modifications in cancer, prompting tumor cell uncontrolled proliferation, epithelial-to-mesenchymal transition, and metastatic events. In this review we showcase the latest evidence supporting the involvement of histone deacetylase 6 (HDAC6) in cancer pathways strictly related to TNBC subtype, also tracking the latest advancements in the identification of novel HDAC6 inhibitors which showed efficacy in TNBC models, offering insights into the potential of targeting this key epigenetic player as an innovative therapeutic option for the treatment of TNBC.
Collapse
Affiliation(s)
- Anna Guadagni
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Simona Barone
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Antonella Ilenia Alfano
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Ivana Bello
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Elisabetta Panza
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
2
|
Raouf YS, Moreno-Yruela C. Slow-Binding and Covalent HDAC Inhibition: A New Paradigm? JACS AU 2024; 4:4148-4161. [PMID: 39610753 PMCID: PMC11600154 DOI: 10.1021/jacsau.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
The dysregulated post-translational modification of proteins is an established hallmark of human disease. Through Zn2+-dependent hydrolysis of acyl-lysine modifications, histone deacetylases (HDACs) are key regulators of disease-implicated signaling pathways and tractable drug targets in the clinic. Early targeting of this family of 11 enzymes (HDAC1-11) afforded a first generation of broadly acting inhibitors with medicinal applications in oncology, specifically in cutaneous and peripheral T-cell lymphomas and in multiple myeloma. However, first-generation HDAC inhibitors are often associated with weak-to-modest patient benefits, dose-limited efficacies, pharmacokinetic liabilities, and recurring clinical toxicities. Alternative inhibitor design to target single enzymes and avoid toxic Zn2+-binding moieties have not overcome these limitations. Instead, recent literature has seen a shift toward noncanonical mechanistic approaches focused on slow-binding and covalent inhibition. Such compounds hold the potential of improving the pharmacokinetic and pharmacodynamic profiles of HDAC inhibitors through the extension of the drug-target residence time. This perspective aims to capture this emerging paradigm and discuss its potential to improve the preclinical/clinical outlook of HDAC inhibitors in the coming years.
Collapse
Affiliation(s)
- Yasir S. Raouf
- Department
of Chemistry, United Arab Emirates University, P.O. Box No. 15551 Al Ain, UAE
| | - Carlos Moreno-Yruela
- Laboratory
of Chemistry and Biophysics of Macromolecules (LCBM), Institute of
Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Kraft FB, Biermann L, Schäker-Hübner L, Hanl M, Hamacher A, Kassack MU, Hansen FK. Hydrazide-Based Class I Selective HDAC Inhibitors Completely Reverse Chemoresistance Synergistically in Platinum-Resistant Solid Cancer Cells. J Med Chem 2024; 67:17796-17819. [PMID: 39356226 DOI: 10.1021/acs.jmedchem.4c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In this work, we have synthesized a set of peptoid-based histone deacetylase inhibitors (HDACi) with a substituted hydrazide moiety as zinc-binding group. Subsequently, all compounds were evaluated in biochemical HDAC inhibition assays and for their antiproliferative activity against native and cisplatin-resistant cancer cell lines. The hydrazide derivatives with a propyl or butyl substituent (compounds 5 and 6) emerged as the most potent class I HDAC selective inhibitors (HDAC1-3). Further, compounds 5 and 6 outperformed entinostat in cytotoxicity assays and were able to reverse chemoresistance in cisplatin-resistant A2780 (ovarian) and Cal27 (head-neck) cancer cell lines. Moreover, the hydrazide derivatives 5 and 6 showed strong synergism with cisplatin (combination indices <0.2), again outperforming entinostat, and increased DNA damage, p21, and pro-apoptotic BIM expression, leading to caspase-mediated apoptosis and cell death. Thus, compounds 5 and 6 represent promising lead structures for developing new HDACi capable of reversing chemoresistance in cisplatin resistant cancer cells.
Collapse
Affiliation(s)
- Fabian B Kraft
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lukas Biermann
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Maria Hanl
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alexandra Hamacher
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Matthias U Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
4
|
Scheuerer S, Motlova L, Schäker-Hübner L, Sellmer A, Feller F, Ertl FJ, Koch P, Hansen FK, Barinka C, Mahboobi S. Biological and structural investigation of tetrahydro-β-carboline-based selective HDAC6 inhibitors with improved stability. Eur J Med Chem 2024; 276:116676. [PMID: 39067437 DOI: 10.1016/j.ejmech.2024.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Our previously reported HDAC6 inhibitor (HDAC6i) Marbostat-100 (4) has provided many arguments for further clinical evaluation. By the substitution of the acidic hydrogen of 4 for different carbon residues, we were able to generate an all-carbon stereocenter, which significantly improves the hydrolytic stability of the inhibitor. Further asymmetric synthesis has shown that the (S)-configured inhibitors preferentially bind to HDAC6. This led to the highly selective and potent methyl-substituted derivative S-29b, which elicited a long-lasting tubulin hyperacetylation in MV4-11 cells. Finally, a crystal structure of the HDAC6/S-29b complex provided mechanistic explanation for the high potency and stereoselectivity of synthesized compound series.
Collapse
Affiliation(s)
- Simon Scheuerer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Lucia Motlova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Felix Feller
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Siavosh Mahboobi
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
5
|
Huang Z, Li L, Cheng B, Li D. Small molecules targeting HDAC6 for cancer treatment: Current progress and novel strategies. Biomed Pharmacother 2024; 178:117218. [PMID: 39084081 DOI: 10.1016/j.biopha.2024.117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a crucial role in the initiation and progression of various cancers, as its overexpression is linked to tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Therefore, HDAC6 has emerged as an attractive target for anticancer drug discovery in the past decade. However, the development of conventional HDAC6 inhibitors has been hampered by their limited clinical efficacy, acquired resistance, and inability to inhibit non-enzymatic functions of HDAC6. To overcome these challenges, new strategies, such as dual-acting inhibitors, targeted protein degradation (TPD) technologies (including PROTACs, HyT), are essential to enhance the anticancer activity of HDAC6 inhibitors. In this review, we focus on the recent advances in the design and development of HDAC6 modulators, including isoform-selective HDAC6 inhibitors, HDAC6-based dual-target inhibitors, and targeted protein degraders (PROTACs, HyT), from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for HDAC6-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Ling Li
- The Eighth Affiliated Hospital Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen 518000, China.
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
6
|
van Eyll J, Prior R, Celanire S, Van Den Bosch L, Rombouts F. Therapeutic indications for HDAC6 inhibitors in the peripheral and central nervous disorders. Expert Opin Ther Targets 2024; 28:719-737. [PMID: 39305025 DOI: 10.1080/14728222.2024.2404571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Inhibition of the enzymatic function of HDAC6 is currently being explored in clinical trials ranging from peripheral neuropathies to cancers. Advances in selective HDAC6 inhibitor discovery allowed studying highly efficacious brain penetrant and peripheral restrictive compounds for treating PNS and CNS indications. AREAS COVERED This review explores the multifactorial role of HDAC6 in cells, the common pathological hallmarks of PNS and CNS disorders, and how HDAC6 modulates these mechanisms. Pharmacological inhibition of HDAC6 and genetic knockout/knockdown studies as a therapeutic strategy in PNS and CNS indications were analyzed. Furthermore, we describe the recent developments in HDAC6 PET tracers and their utility in CNS indications. Finally, we explore the advancements and challenges with HDAC6 inhibitor compounds, such as hydroxamic acid, fluoromethyl oxadiazoles, HDAC6 degraders, and thiol-based inhibitors. EXPERT OPINION Based on extensive preclinical evidence, pharmacological inhibition of HDAC6 is a promising approach for treating both PNS and CNS disorders, given its involvement in neurodegeneration and aging-related cellular processes. Despite the progress in the development of selective HDAC6 inhibitors, safety concerns remain regarding their chronic administration in PNS and CNS indications, and the development of novel compound classes and modalities inhibiting HDAC6 function offer a way to mitigate some of these safety concerns.
Collapse
Affiliation(s)
| | | | - Sylvain Celanire
- Augustine Therapeutics, Research and Development, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | | |
Collapse
|
7
|
Tretbar M, Schliehe-Diecks J, von Bredow L, Tan K, Roatsch M, Tu JW, Kemkes M, Sönnichsen M, Schöler A, Borkhardt A, Bhatia S, Hansen FK. Preferential HDAC6 inhibitors derived from HPOB exhibit synergistic antileukemia activity in combination with decitabine. Eur J Med Chem 2024; 272:116447. [PMID: 38714044 DOI: 10.1016/j.ejmech.2024.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Histone deacetylase 6 (HDAC6) is an emerging drug target to treat oncological and non-oncological conditions. Since highly selective HDAC6 inhibitors display limited anticancer activity when used as single agent, they usually require combination therapies with other chemotherapeutics. In this work, we synthesized a mini library of analogues of the preferential HDAC6 inhibitor HPOB in only two steps via an Ugi four-component reaction as the key step. Biochemical HDAC inhibition and cell viability assays led to the identification of 1g (highest antileukemic activity) and 2b (highest HDAC6 inhibition) as hit compounds. In subsequent combination screens, both 1g and especially 2b showed synergy with DNA methyltransferase inhibitor decitabine in acute myeloid leukemia (AML). Our findings highlight the potential of combining HDAC6 inhibitors with DNA methyltransferase inhibitors as a strategy to improve AML treatment outcomes.
Collapse
Affiliation(s)
- Maik Tretbar
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Kathrin Tan
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Martin Roatsch
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Marie Kemkes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Melf Sönnichsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
8
|
Cellupica E, Gaiassi A, Rocchio I, Rovelli G, Pomarico R, Sandrone G, Caprini G, Cordella P, Cukier C, Fossati G, Marchini M, Bebel A, Airoldi C, Palmioli A, Stevenazzi A, Steinkühler C, Vergani B. Mechanistic and Structural Insights on Difluoromethyl-1,3,4-oxadiazole Inhibitors of HDAC6. Int J Mol Sci 2024; 25:5885. [PMID: 38892072 PMCID: PMC11172862 DOI: 10.3390/ijms25115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) is increasingly recognized for its potential in targeted disease therapy. This study delves into the mechanistic and structural nuances of HDAC6 inhibition by difluoromethyl-1,3,4-oxadiazole (DFMO) derivatives, a class of non-hydroxamic inhibitors with remarkable selectivity and potency. Employing a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) kinetic experiments, comprehensive enzymatic characterizations, and X-ray crystallography, we dissect the intricate details of the DFMO-HDAC6 interaction dynamics. More specifically, we find that the chemical structure of a DMFO and the binding mode of its difluoroacetylhydrazide derivative are crucial in determining the predominant hydrolysis mechanism. Our findings provide additional insights into two different mechanisms of DFMO hydrolysis, thus contributing to a better understanding of the HDAC6 inhibition by oxadiazoles in disease modulation and therapeutic intervention.
Collapse
Affiliation(s)
- Edoardo Cellupica
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Aureliano Gaiassi
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Ilaria Rocchio
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Grazia Rovelli
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Roberta Pomarico
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Giovanni Sandrone
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Gianluca Caprini
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Paola Cordella
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Cyprian Cukier
- Department of Biochemistry, Selvita S.A., 30-394 Kraków, Poland; (C.C.); (A.B.)
| | - Gianluca Fossati
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Mattia Marchini
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Aleksandra Bebel
- Department of Biochemistry, Selvita S.A., 30-394 Kraków, Poland; (C.C.); (A.B.)
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (C.A.); (A.P.)
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (C.A.); (A.P.)
| | - Andrea Stevenazzi
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Christian Steinkühler
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| | - Barbara Vergani
- Research and Development, Italfarmaco Group, 20092 Milan, Italy; (E.C.); (A.G.); (I.R.); (G.R.); (R.P.); (G.S.); (G.C.); (P.C.); (G.F.); (M.M.); (A.S.); (C.S.)
| |
Collapse
|
9
|
Kopranovic A, Meyer-Almes FJ. Rapid Determination of Kinetic Constants for Slow-Binding Inhibitors and Inactivators of Human Histone Deacetylase 8. Int J Mol Sci 2024; 25:5593. [PMID: 38891780 PMCID: PMC11171933 DOI: 10.3390/ijms25115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The kinetics and mechanism of drug binding to its target are critical to pharmacological efficacy. A high throughput (HTS) screen often results in hundreds of hits, of which usually only simple IC50 values are determined during reconfirmation. However, kinetic parameters such as residence time for reversible inhibitors and the kinact/KI ratio, which is the critical measure for evaluating covalent inactivators, are early predictive measures to assess the chances of success of the hits in the clinic. Using the promising cancer target human histone deacetylase 8 as an example, we present a robust method that calculates concentration-dependent apparent rate constants for the inhibition or inactivation of HDAC8 from dose-response curves recorded after different pre-incubation times. With these data, hit compounds can be classified according to their mechanism of action, and the relevant kinetic parameters can be calculated in a highly parallel fashion. HDAC8 inhibitors with known modes of action were correctly assigned to their mechanism, and the binding mechanisms of some hits from an internal HDAC8 screening campaign were newly determined. The oxonitriles SVE04 and SVE27 were classified as fast reversible HDAC8 inhibitors with moderate time-constant IC50 values of 4.2 and 2.6 µM, respectively. The hit compound TJ-19-24 and SAH03 behave like slow two-step inactivators or reversible inhibitors, with a very low reverse isomerization rate.
Collapse
Affiliation(s)
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| |
Collapse
|
10
|
Christianson DW. Chemical Versatility in Catalysis and Inhibition of the Class IIb Histone Deacetylases. Acc Chem Res 2024; 57:1135-1148. [PMID: 38530703 PMCID: PMC11021156 DOI: 10.1021/acs.accounts.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The zinc-dependent histone deacetylases (HDACs 1-11) belong to the arginase-deacetylase superfamily of proteins, members of which share a common α/β fold and catalytic metal binding site. While several HDACs play a role in epigenetic regulation by catalyzing acetyllysine hydrolysis in histone proteins, the biological activities of HDACs extend far beyond histones. HDACs also deacetylate nonhistone proteins in the nucleus as well as the cytosol to regulate myriad cellular processes. The substrate pool is even more diverse in that certain HDACs can hydrolyze other covalent modifications. For example, HDAC6 is also a lysine decrotonylase, and HDAC11 is a lysine-fatty acid deacylase. Surprisingly, HDAC10 is not a lysine deacetylase but instead is a polyamine deacetylase. Thus, the HDACs are biologically and chemically versatile catalysts as they regulate the function of diverse protein and nonprotein substrates throughout the cell.Owing to their critical regulatory functions, HDACs serve as prominent targets for drug design. At present, four HDAC inhibitors are FDA-approved for cancer chemotherapy. However, these inhibitors are active against multiple HDAC isozymes, and a lack of selectivity is thought to contribute to undesirable side effects. Current medicinal chemistry campaigns focus on the development of isozyme-selective inhibitors, and many such studies largely focus on HDAC6 and HDAC10. HDAC6 is a target for therapeutic intervention due to its cellular role as a tubulin deacetylase and tau deacetylase, and selective inhibitors are being studied in cancer chemotherapy and the treatment of peripheral neuropathy. Crystal structures of enzyme-inhibitor complexes reveal how various features of inhibitor design, such as zinc-coordinating groups, bifurcated capping groups, and aromatic fluorination patterns, contribute to affinity and isozyme selectivity. The polyamine deacetylase HDAC10 is also an emerging target for cancer chemotherapy. Crystal structures of intact substrates trapped in the HDAC10 active site reveal the molecular basis of strikingly narrow substrate specificity for N8-acetylspermidine hydrolysis. Active site features responsible for substrate specificity have been successfully exploited in the design of potent and selective inhibitors.In this Account, I review the structural chemistry and inhibition of HDACs, highlighting recent X-ray crystallographic and functional studies of HDAC6 and HDAC10 in my laboratory. These studies have yielded fascinating snapshots of catalysis as well as novel chemical transformations involving bound inhibitors. The zinc-bound water molecule in the HDAC active site is the catalytic nucleophile in the deacetylation reaction, but this activated water molecule can also react with inhibitor C═O or C═N groups to yield unanticipated reaction products that bind exceptionally tightly. Versatile active site chemistry unleashes the full inhibitory potential of such compounds, and X-ray crystallography allows us to view this chemistry in action.
Collapse
Affiliation(s)
- David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| |
Collapse
|
11
|
Feller F, Hansen FK. Targeted Protein Degradation of Histone Deacetylases by Hydrophobically Tagged Inhibitors. ACS Med Chem Lett 2023; 14:1863-1868. [PMID: 38116436 PMCID: PMC10726458 DOI: 10.1021/acsmedchemlett.3c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
There is a growing interest in alternative strategies for targeted protein degradation. In this work, we present the development of histone deacetylase (HDAC) degraders based on hydrophobic tagging technology. To this end, a library of hydrophobically tagged HDAC inhibitors was synthesized via efficient solid-phase protocols utilizing pre-loaded resins. The subsequent biological evaluation led to the identification of our best degrader, 1a, which significantly decreased HDAC1 levels in MM.1S multiple myeloma cells.
Collapse
Affiliation(s)
- Felix Feller
- Department of Pharmaceutical
and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Finn K. Hansen
- Department of Pharmaceutical
and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
12
|
Ripa L, Sandmark J, Hughes G, Shamovsky I, Gunnarsson A, Johansson J, Llinas A, Collins M, Jung B, Novén A, Pemberton N, Mogemark M, Xiong Y, Li Q, Tångefjord S, Ek M, Åstrand A. Selective and Bioavailable HDAC6 2-(Difluoromethyl)-1,3,4-oxadiazole Substrate Inhibitors and Modeling of Their Bioactivation Mechanism. J Med Chem 2023; 66:14188-14207. [PMID: 37797307 DOI: 10.1021/acs.jmedchem.3c01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family mainly targeting cytosolic nonhistone substrates, such as α-tubulin, cortactin, and heat shock protein 90 to regulate cell proliferation, metastasis, invasion, and mitosis in tumors. We describe the identification and characterization of a series of 2-(difluoromethyl)-1,3,4-oxadiazoles (DFMOs) as selective nonhydroxamic acid HDAC6 inhibitors. By comparing structure-activity relationships and performing quantum mechanical calculations of the HDAC6 catalytic mechanism, we show that potent oxadiazoles are electrophilic substrates of HDAC6 and propose a mechanism for the bioactivation. We also observe that the inherent electrophilicity of the oxadiazoles makes them prone to degradation in water solution and the generation of potentially toxic products cannot be ruled out, limiting the developability for chronic diseases. However, the oxadiazoles demonstrate high oral bioavailability and low in vivo clearance and are excellent tools for studying the role of HDAC6 in vitro and in vivo in rats and mice.
Collapse
Affiliation(s)
- Lena Ripa
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Jenny Sandmark
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Glyn Hughes
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Igor Shamovsky
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Julia Johansson
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Antonio Llinas
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mia Collins
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Bomi Jung
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anna Novén
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Nils Pemberton
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mickael Mogemark
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Yao Xiong
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Qing Li
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Stefan Tångefjord
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Margareta Ek
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Annika Åstrand
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| |
Collapse
|