1
|
Yu Y, Li F, Li J, Zheng X, Tian H, Mahmut Z, Du Y, Dai Y, Wang L. Lipase-catalyzed hydrazine insertion for the synthesis of N'-alkyl benzohydrazides. Biotechnol Appl Biochem 2023; 70:130-136. [PMID: 35285069 DOI: 10.1002/bab.2335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/22/2022] [Indexed: 11/07/2022]
Abstract
N'-alkyl benzohydrazides are classic organic compounds that have been widely utilized in organic chemistry. In this study, an efficient method was developed for the synthesis of N'-alkyl benzohydrazides by hydrazine insertion catalyzed by lipase. Under the optimal conditions (Morita-Baylis-Hillman ketone [1 mmol], phenylhydrazine [1.3 mmol], N,N-dimethylformamide [2 ml], lipase [20 mg], room temperature, 12 h), satisfactory yields (71-97%) and substrate tolerance were obtained when porcine pancreatic lipase was used as biocatalyst. These findings imply the great potential for the lipase-catalyzed synthesis of N'-alkyl benzohydrazides and extend the utilization of lipase in organic chemistry.
Collapse
Affiliation(s)
- Yue Yu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jiapeng Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xin Zheng
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Haochen Tian
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Zulpiya Mahmut
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yanan Du
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yuyin Dai
- Department of Nuclear Medicine, the First Hospital of Jilin University, Changchun, China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
2
|
Perebyinis M, Rognan D. Overlap of On-demand Ultra-large Combinatorial Spaces with On-the-shelf Drug-like Libraries. Mol Inform 2023; 42:e2200163. [PMID: 36072995 DOI: 10.1002/minf.202200163] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
On-demand combinatorial spaces are shifting paradigms in early drug discovery, by considerably increasing the searchable chemical space to several billions of compounds while securing their synthetic accessibility. We here systematically compared the on-the-shelf available drug-like chemical space (9 million compounds) to three on-demand ultra-large (ODUL) combinatorial fragment spaces (REAL, CHEMriya, GalaXi) covering 32 billion of readily accessible molecules. Surprisingly, only one space (REAL) intersects almost entirely the currently available drug-like space, suggesting that it is the only ODUL widely suitable for in-stock hit expansion. Of course, expanding a preliminary ODUL hit in the same chemical space is the best possible strategy to rapidly generate structure-activity relationships. All three spaces remain well suited to early hit finding initiatives since they all provide numerous unique scaffolds that are not described by on-the shelf collections.
Collapse
Affiliation(s)
- Mariana Perebyinis
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, 74 route du Rhin, F-67400, Illkirch, France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, 74 route du Rhin, F-67400, Illkirch, France
| |
Collapse
|
3
|
Skelly PJ, Nation CS, Da'Dara AA. Schistosoma mansoni and the purinergic halo. Trends Parasitol 2022; 38:1080-1088. [PMID: 36182536 PMCID: PMC9669209 DOI: 10.1016/j.pt.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 01/13/2023]
Abstract
Intravascular schistosomes may control immune and hemostatic responses by regulating the nature and amount of selected host purinergic signaling molecules - such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and nicotinamide adenine dinucleotide (NAD) - surrounding them. Such metabolites are collectively known as the worm's 'purinergic halo'. Host-interactive, membrane-bound, tegumental ectonucleotidases, notably SmATPDase1, SmNPP5, SmAP and SmNACE, can degrade proinflammatory, prothrombotic and immunomodulatory purinergic metabolites like those listed. A common catabolic product is the anti-inflammatory metabolite adenosine that can additionally be taken in by the worms as food. We envision the tegumental ectonucleotidases as having a twofold role at the worm surface: first, they degrade potentially harmful host signaling molecules, and second, they generate vital nutrients around the worms from where these can be conveniently imported.
Collapse
Affiliation(s)
- Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Catherine S Nation
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Akram A Da'Dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
4
|
NAD-catabolizing ectoenzymes of Schistosoma mansoni. Biochem J 2022; 479:1165-1180. [PMID: 35593185 DOI: 10.1042/bcj20210784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Infection with schistosomes (blood flukes) can result in the debilitating disease schistosomiasis. These parasites survive in their host for many years, and we hypothesize that proteins on their tegumental surface, interacting with the host microenvironment, facilitate longevity. One such ectoenzyme - the nucleotide pyrophosphatase/phosphodiesterase SmNPP5 can cleave ADP (to prevent platelet aggregation) and NAD (likely preventing Treg apoptosis). A second tegumental ectoenzyme, the glycohydrolase SmNACE, also catabolizes NAD. Here, we undertake a comparative biochemical characterization of these parasite ectoenzymes. Both are GPI-linked and exhibit different optimal pH ranges. While SmNPP5 requires divalent cations, SmNACE does not. The Km values of the two enzymes for NAD at physiological pH differ: SmNPP5, Km=340µM±44; SmNACE, Km=49µM±4. NAD cleavage by each enzyme yields different products. SmNPP5 cleaves NAD to form nicotinamide mononucleotide (NMN) and AMP, whereas SmNACE cleaves NAD to generate nicotinamide (NAM) and adenosine diphosphate ribose (ADPR). Each enzyme can process the other's reaction product. Thus, SmNACE cleaves NMN (to yield NAM and ribose phosphate) and SmNPP5 cleaves ADPR (yielding AMP and ribose phosphate). Metabolomic analysis of plasma containing adult worms supports the idea that these cleavage pathways are active in vivo. We hypothesize that a primary function of SmNPP5 is to cleave NAD to control host immune cell function and a primary function of SmNACE is to cleave NMN to generate the vital nutrient nicotinamide (vitamin B3) for convenient uptake by the worms. Chemical inhibition of one or both ectoenzymes could upset worm metabolism and control schistosome infection.
Collapse
|
5
|
Fray M, Mathiron D, Pilard S, Lesur D, Abidi R, Barhoumi-Slimi T, Cragg PJ, BENAZZA M. Heteroglycoclusters through Unprecedented Orthogonal Chemistry Based on N‐Alkylation of N‐Acylhydrazone. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marwa Fray
- LG2A: Laboratoire de Glycochimie des Antimicrobiens et des Agroressources Chemistry 10 Rue Baudelocque 80039 Amiens FRANCE
| | - David Mathiron
- UPJV: Universite de Picardie Jules Verne Analytique 80039 Amiens FRANCE
| | - Serge Pilard
- UPJV: Universite de Picardie Jules Verne Analytique 80039 Amiens FRANCE
| | - David Lesur
- LG2A: Laboratoire de Glycochimie des Antimicrobiens et des Agroressources Analytique 10 Rue Baudelocque 80039 Amiens FRANCE
| | - Rym Abidi
- University of Carthage: Universite de Carthage Chemistry Zarzouna-Bizerte, TN 7021, Tunisia TN 7021 Bizerte TUNISIA
| | - Thouraya Barhoumi-Slimi
- University of Tunis El Manar: Universite de Tunis El Manar Structural Chemistry Faculty of Sciences of Tunis 2092 Tunis TUNISIA
| | - Peter J. Cragg
- University of Brighton School of Applied Sciences BN2 4GJ Brighton UNITED KINGDOM
| | - Mohammed BENAZZA
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A UMR7378, CNRS), Université de Picardie Jules Verne Departement of organic Chemistry 10 Rue Baudelocque 80039 Amiens FRANCE
| |
Collapse
|
6
|
Cheuka PM. Drug Discovery and Target Identification against Schistosomiasis: a Reality Check on Progress and Future Prospects. Curr Top Med Chem 2021; 22:1595-1610. [PMID: 34565320 DOI: 10.2174/1568026621666210924101805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Schistosomiasis ranks among the most important infectious diseases, with over 200 million people currently being infected and > 280,000 deaths reported annually. Chemotherapeutic treatment has relied on one drug, praziquantel, for four decades, while other drugs, such as oxamniquine and metrifonate, are no longer preferred for clinical use due to their narrow spectrum of activity - these are only active against S. mansoni and S. haematobium, respectively. Despite being cheap, safe, and effective against all schistosome species, praziquantel is ineffective against immature worms, which may lead to reinfections and treatment failure in endemic areas; a situation that necessitates repeated administration besides other limitations. Therefore, novel drugs are urgently needed to overcome this situation. In this paper, an up to date review of drug targets identified and validated against schistosomiasis while also encompassing promising clinical and preclinical candidate drugs is presented. While there are considerable efforts aimed at identifying and validating drug targets, the pipeline for new antischistosomals is dry. Moreover, the majority of compounds evaluated preclinically are not really advanced because most of them were evaluated in very small preclinical species such as mice alone. Overall, it appears that although a lot of research is going on at discovery phases, unfortunately, it does not translate to advanced preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, Lusaka. Zambia
| |
Collapse
|
7
|
Jha AK, Sarita, Easwar S. Unsymmetrical N,N'-functionalization of hydrazine by insertion into Morita–Baylis–Hillman ketones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Noungoue D, Toussi Matchi J, Chaubet G, Boissier J, Kuhn I, Tchouankeu J, Nothisen M, Ursuegui S, Ngouela S, Wagner A. Antischistosomal evaluation of stem bark's extract and chemical constituents from anonidium mannii against schistosoma mansoni. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_29_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Toussi Matchi JL, Tchamo Noungoue D, Kuhn I, Boissier J, Tchouankeu JC, Nothisen M, Chaubet G, Garnier D, Ursuegui S, Ngouela SA, Wagner A. Manniindole, an indole derivative from the roots of Anonidium mannii and combined antischistosomal and enzymatic activities. Nat Prod Res 2020; 35:5665-5673. [PMID: 32985247 DOI: 10.1080/14786419.2020.1824227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new alkaloid, manniindole 1, together with four known compounds: aristolactam AII 2, aristolactam BII 3, piperolactam D 4 and polycarpol 5 were isolated from the crude extract EtOH-H2O (8:2) of the roots of Anonidium mannii by chromatographic separation. The structure elucidation was performed on the basis of a spectroscopic analysis (IR, HRESI MS, 1D and 2D NMR) as well as a comparison of their spectral data with those reported in the literature. For the first time, the crude extract and those isolated compounds were evaluated for their anti-schistosomal activity against Schistosoma mansoni and for cytotoxicity activity against Huh7 and A549 cells. Furthermore, they were also tested in vitro on the recent characterized Schistosoma mansoni NAD+ catabolizing enzyme (SmNACE) for their impact on this enzyme which is localized on the outer surface of the adult parasite. Compound 2 displayed quite good worm killing capability, while 4 showed significant inhibition of SmNACE.
Collapse
Affiliation(s)
- Josette Linda Toussi Matchi
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,Laboratoire de Chimie Bio-Fonctionnelle, UMR 7199 CNRS, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| | - Diderot Tchamo Noungoue
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Isabelle Kuhn
- Laboratoire de Chimie Bio-Fonctionnelle, UMR 7199 CNRS, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| | - Jérôme Boissier
- Interactions Hôtes-Pathogenes- Environnements, UMR 5244 CNRS, University of Perpignan, Perpignan, France
| | - Jean Claude Tchouankeu
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Marc Nothisen
- Laboratoire de Chimie Bio-Fonctionnelle, UMR 7199 CNRS, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| | - Guilhem Chaubet
- Laboratoire de Chimie Bio-Fonctionnelle, UMR 7199 CNRS, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| | - Delphine Garnier
- Laboratoire de Chimie Bio-Fonctionnelle, UMR 7199 CNRS, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| | - Sylvain Ursuegui
- Laboratoire de Chimie Bio-Fonctionnelle, UMR 7199 CNRS, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| | | | - Alain Wagner
- Laboratoire de Chimie Bio-Fonctionnelle, UMR 7199 CNRS, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| |
Collapse
|
10
|
Jha AK, Kumari R, Easwar S. A Hydrazine Insertion Route to N′-Alkyl Benzohydrazides by an Unexpected Carbon–Carbon Bond Cleavage. Org Lett 2019; 21:8191-8195. [DOI: 10.1021/acs.orglett.9b02657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ajit Kumar Jha
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Rajasthan 305817, India
| | - Rajkiran Kumari
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Rajasthan 305817, India
| | - Srinivasan Easwar
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Rajasthan 305817, India
| |
Collapse
|
11
|
Sultana S, Shim JJ, Kim SH, Lee YR. Silver(i)/base-promoted propargyl alcohol-controlled regio- or stereoselective synthesis of furan-3-carboxamides and (Z)-enaminones. Org Biomol Chem 2019; 16:6749-6759. [PMID: 30187059 DOI: 10.1039/c8ob01791c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel and facile regioselective synthesis of furan-3-carboxamides by a silver(i)/base-promoted reaction of propargyl alcohol with 3-oxo amides has been demonstrated. This one-pot protocol provides a rapid synthetic approach to diverse trisubstituted furan-3-carboxamides via cascade nucleophilic addition, intramolecular cyclization, elimination, and isomerization reactions. Employing a substituted propargyl alcohol, (Z)-enaminones have been obtained with high stereoselectivities by a Ag2CO3-promoted reaction starting from 3-oxo amides via C-N bond cleavage.
Collapse
Affiliation(s)
- Sabera Sultana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | | | | | | |
Collapse
|
12
|
Gemma S, Federico S, Brogi S, Brindisi M, Butini S, Campiani G. Dealing with schistosomiasis: Current drug discovery strategies. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1016/bs.armc.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
He Y, Zheng Z, Liu Q, Song G, Sun N, Chai X. Tunable Synthesis of 2-Ene-1,4-diones, 4-Hydroxycyclopent-2-en-1-ones, and 2-(Furan-3-yl)acetamides via Palladium-Catalyzed Cascade Reactions of Allenols. J Org Chem 2018; 83:12514-12526. [PMID: 30239199 DOI: 10.1021/acs.joc.8b01753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and regioselective synthesis of 2-ene-1,4-diones, 4-hydroxycyclopent-2-en-1-ones, or 2-(furan-3-yl)acetamides is successfully realized through palladium-catalyzed one-pot multicomponent reactions of allenols with aryl iodides and carbon monoxide in the presence of tertiary amines. Interestingly, the selectivity depends on the substitution patterns of the allenol substrates. To be specific, from the reaction of allenols with no substituent attached on the internal position of the allenic moiety, 2-ene-1,4-diones or 4-hydroxycyclopent-2-en-1-ones were formed selectively through carbonylation of aryl iodide followed by acylation of allenol with the in situ formed acyl palladium species, β-hydride elimination of the in situ formed allyl palladium complex, and further tautomerization or intramolecular aldol reaction. From the reaction of allenols bearing a substituent at the internal position of the allenic unit, on the other hand, diversely substituted 2-(furan-3-yl)acetamides were formed through a cascade process combining carbonylation of aryl iodide, acylation, and carbonylation of allenol followed by intramolecular condensation and amination by tertiary amine featuring an oxidant-free C-N bond cleavage.
Collapse
Affiliation(s)
- Yan He
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Zhi Zheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Qimeng Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Guixian Song
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Nan Sun
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Xinyuan Chai
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| |
Collapse
|
14
|
Rivat C, Sar C, Mechaly I, Leyris JP, Diouloufet L, Sonrier C, Philipson Y, Lucas O, Mallié S, Jouvenel A, Tassou A, Haton H, Venteo S, Pin JP, Trinquet E, Charrier-Savournin F, Mezghrani A, Joly W, Mion J, Schmitt M, Pattyn A, Marmigère F, Sokoloff P, Carroll P, Rognan D, Valmier J. Inhibition of neuronal FLT3 receptor tyrosine kinase alleviates peripheral neuropathic pain in mice. Nat Commun 2018. [PMID: 29531216 PMCID: PMC5847526 DOI: 10.1038/s41467-018-03496-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathic pain (PNP) is a debilitating and intractable chronic disease, for which sensitization of somatosensory neurons present in dorsal root ganglia that project to the dorsal spinal cord is a key physiopathological process. Here, we show that hematopoietic cells present at the nerve injury site express the cytokine FL, the ligand of fms-like tyrosine kinase 3 receptor (FLT3). FLT3 activation by intra-sciatic nerve injection of FL is sufficient to produce pain hypersensitivity, activate PNP-associated gene expression and generate short-term and long-term sensitization of sensory neurons. Nerve injury-induced PNP symptoms and associated-molecular changes were strongly altered in Flt3-deficient mice or reversed after neuronal FLT3 downregulation in wild-type mice. A first-in-class FLT3 negative allosteric modulator, discovered by structure-based in silico screening, strongly reduced nerve injury-induced sensory hypersensitivity, but had no effect on nociception in non-injured animals. Collectively, our data suggest a new and specific therapeutic approach for PNP. Sensitisation of dorsal root ganglia neurons contributes to neuropathic pain. Here the authors demonstrate the cytokine FL contributes to sensitisation of DRGs via its receptor FLT3 expressed on neurons, and identify a novel FLT3 inhibitor that attenuates neuropathic pain in mice.
Collapse
Affiliation(s)
- Cyril Rivat
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France.,Université de Montpellier, Montpellier, 34000, France
| | - Chamroeun Sar
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France.,Université de Montpellier, Montpellier, 34000, France
| | - Ilana Mechaly
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France.,Université de Montpellier, Montpellier, 34000, France
| | - Jean-Philippe Leyris
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France.,Biodol Therapeutics, Cap Alpha, Clapiers, 34830, France
| | - Lucie Diouloufet
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France
| | - Corinne Sonrier
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France.,Biodol Therapeutics, Cap Alpha, Clapiers, 34830, France
| | - Yann Philipson
- Laboratoire d'Innovation Thérapeutique, UMR7200, CNRS-Université de Strasbourg, Illkirch, 67400, France
| | - Olivier Lucas
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France
| | - Sylvie Mallié
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France.,Université de Montpellier, Montpellier, 34000, France
| | - Antoine Jouvenel
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France.,Université de Montpellier, Montpellier, 34000, France
| | - Adrien Tassou
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France.,Université de Montpellier, Montpellier, 34000, France
| | - Henri Haton
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France.,Université de Montpellier, Montpellier, 34000, France
| | - Stéphanie Venteo
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Univ. Montpellier, 34094, Montpellier, France
| | - Eric Trinquet
- Cisbio Bioassays, Parc Marcel Boiteux, BP84175, 30200, Codolet, France
| | | | - Alexandre Mezghrani
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France
| | - Willy Joly
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France
| | - Julie Mion
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France
| | - Martine Schmitt
- Laboratoire d'Innovation Thérapeutique, UMR7200, CNRS-Université de Strasbourg, Illkirch, 67400, France
| | - Alexandre Pattyn
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France
| | - Frédéric Marmigère
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France
| | | | - Patrick Carroll
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR7200, CNRS-Université de Strasbourg, Illkirch, 67400, France.
| | - Jean Valmier
- Institute for Neurosciences of Montpellier, INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, Montpellier, 34000, France. .,Université de Montpellier, Montpellier, 34000, France.
| |
Collapse
|
15
|
Muller-Steffner H, Jacques SA, Kuhn I, Schultz MD, Botta D, Osswald P, Maechling C, Lund FE, Kellenberger E. Efficient Inhibition of SmNACE by Coordination Complexes Is Abolished by S. mansoni Sequestration of Metal. ACS Chem Biol 2017; 12:1787-1795. [PMID: 28481502 DOI: 10.1021/acschembio.7b00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SmNACE is a NAD catabolizing enzyme expressed on the outer tegument of S. mansoni, a human parasite that is one of the major agents of the neglected tropical disease schistosomiasis. Recently, we identified aroylhydrazone derivatives capable of inhibiting the recombinant form of the enzyme with variable potency (IC50 ranging from 88 μM to 33 nM). In the present study, we investigated the mechanism of action of the least potent micromolar inhibitor (compound 1) and the most potent nanomolar inhibitor (compound 2) in the series on both the recombinant and native SmNACE enzymes. Using mass spectroscopy, spectrophotometry, and activity assays under different experimental conditions, we demonstrated that the >3 log gain in potency against recombinant SmNACE by this class of compounds is dependent on the formation of a coordination complex with metal cations, such as Ni(II), Zn(II), and Fe(II), that are loaded on the protein surface. Testing the compounds on live parasites, we observed that only the weak micromolar compound 1 was active on the native enzyme. We showed that S. mansoni effectively sequesters the metal from the coordination complex, resulting in the loss of inhibitory activity of the potent nanomolar compound 2. Importantly, the modeling of the transition complex between Zn(II) and compound 2 enabled the discovery of a new metal-independent aroylhydrazone analogue, which is now the most potent and selective inhibitor of native SmNACE known.
Collapse
Affiliation(s)
- Hélène Muller-Steffner
- Laboratoire des Systèmes Chimiques Fonctionnels, CAMB UMR 7199 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center,
Faculté de Pharmacie, 67400 Illkirch, France
| | - Sylvain A. Jacques
- Laboratoire d’Innovation Thérapeutique, LIT UMR 7200 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center,
Faculté de Pharmacie, 67400 Illkirch, France
| | - Isabelle Kuhn
- Laboratoire des Systèmes Chimiques Fonctionnels, CAMB UMR 7199 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center,
Faculté de Pharmacie, 67400 Illkirch, France
| | - Michael D. Schultz
- Department
of Microbiology, University of Alabama at Birmingham, 276 BBRB Box
11, 1720 Second Avenue South, Birmingham, Alabama, United States
| | - Davide Botta
- Department
of Microbiology, University of Alabama at Birmingham, 276 BBRB Box
11, 1720 Second Avenue South, Birmingham, Alabama, United States
| | - Paul Osswald
- Laboratoire des Systèmes Chimiques Fonctionnels, CAMB UMR 7199 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center,
Faculté de Pharmacie, 67400 Illkirch, France
| | - Clarisse Maechling
- Laboratoire d’Innovation Thérapeutique, LIT UMR 7200 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center,
Faculté de Pharmacie, 67400 Illkirch, France
| | - Frances E. Lund
- Department
of Microbiology, University of Alabama at Birmingham, 276 BBRB Box
11, 1720 Second Avenue South, Birmingham, Alabama, United States
| | - Esther Kellenberger
- Laboratoire d’Innovation Thérapeutique, LIT UMR 7200 CNRS-Université de Strasbourg, MEDALIS Drug Discovery Center,
Faculté de Pharmacie, 67400 Illkirch, France
| |
Collapse
|
16
|
Rajesh M, Puri S, Kant R, Sridhar Reddy M. Synthesis of Substituted Furan/Pyrrole-3-carboxamides through a Tandem Nucleopalladation and Isocyanate Insertion. Org Lett 2016; 18:4332-5. [PMID: 27532221 DOI: 10.1021/acs.orglett.6b02077] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Neves BJ, Muratov E, Machado RB, Andrade CH, Cravo PVL. Modern approaches to accelerate discovery of new antischistosomal drugs. Expert Opin Drug Discov 2016; 11:557-67. [PMID: 27073973 PMCID: PMC6534417 DOI: 10.1080/17460441.2016.1178230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The almost exclusive use of only praziquantel for the treatment of schistosomiasis has raised concerns about the possible emergence of drug-resistant schistosomes. Consequently, there is an urgent need for new antischistosomal drugs. The identification of leads and the generation of high quality data are crucial steps in the early stages of schistosome drug discovery projects. AREAS COVERED Herein, the authors focus on the current developments in antischistosomal lead discovery, specifically referring to the use of automated in vitro target-based and whole-organism screens and virtual screening of chemical databases. They highlight the strengths and pitfalls of each of the above-mentioned approaches, and suggest possible roadmaps towards the integration of several strategies, which may contribute for optimizing research outputs and led to more successful and cost-effective drug discovery endeavors. EXPERT OPINION Increasing partnerships and access to funding for drug discovery have strengthened the battle against schistosomiasis in recent years. However, the authors believe this battle also includes innovative strategies to overcome scientific challenges. In this context, significant advances of in vitro screening as well as computer-aided drug discovery have contributed to increase the success rate and reduce the costs of drug discovery campaigns. Although some of these approaches were already used in current antischistosomal lead discovery pipelines, the integration of these strategies in a solid workflow should allow the production of new treatments for schistosomiasis in the near future.
Collapse
Affiliation(s)
- Bruno Junior Neves
- a LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia , Universidade Federal de Goiás , Goiânia , Brazil
| | - Eugene Muratov
- b Laboratory for Molecular Modeling, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , NC , USA
| | - Renato Beilner Machado
- c GenoBio - Laboratory of Genomics and Biotechnology, Instituto de Patologia Tropical e Saúde Pública , Universidade Federal de Goiás , Goiânia , Brazil
| | - Carolina Horta Andrade
- a LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia , Universidade Federal de Goiás , Goiânia , Brazil
| | - Pedro Vitor Lemos Cravo
- c GenoBio - Laboratory of Genomics and Biotechnology, Instituto de Patologia Tropical e Saúde Pública , Universidade Federal de Goiás , Goiânia , Brazil
- d Instituto de Higiene e Medicina Tropical , Universidade Nova de Lisboa , Lisbon , Portugal
| |
Collapse
|