1
|
Watanabe H, Ikawa M, Kakae M, Shirakawa H, Kaneko S, Ono M. Synthesis and biological evaluation of radioiodinated benzoxazole and benzothiazole derivatives for imaging myelin in multiple sclerosis. Bioorg Med Chem Lett 2024; 103:129691. [PMID: 38452827 DOI: 10.1016/j.bmcl.2024.129691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that results from destruction of the myelin sheath. Due to heterogeneity of the symptoms and course of MS, periodic monitoring of disease activity is important for diagnosis and treatment. In the present study, we synthesized four radioiodinated benzoxazole (BO) and benzothiazole (BT) derivatives, and evaluated their utility as novel myelin imaging probes for single photon emission computed tomography (SPECT). In a biodistribution study using normal mice, three compounds ([125I]BO-1, [125I]BO-2, and [125I]BT-2) displayed moderate brain uptake (2.7, 2.9, and 2.8% ID/g, respectively) at 2 min postinjection. On ex vivo autoradiography using normal mice, [125I]BO-2 showed the most preferable ratio of radioactivity accumulation in white matter (myelin-rich region) versus gray matter (myelin-deficient region). In addition, the radioactivity of [125I]BO-2 was reduced in the lysophosphatidylcholine-induced demyelination region. In conclusion, [123I]BO-2 demonstrated the fundamental characteristics of a myelin imaging probe for SPECT.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Miho Ikawa
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Sharma C, Mazumder A. A Comprehensive Review on Potential Molecular Drug Targets for the Management of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:45-56. [PMID: 38305393 DOI: 10.2174/0118715249263300231116062740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 10/04/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is an onset and incurable neurodegenerative disorder that has been linked to various genetic, environmental, and lifestyle factors. Recent research has revealed several potential targets for drug development, such as the prevention of Aβ production and removal, prevention of tau hyperphosphorylation, and keeping neurons alive. Drugs that target numerous ADrelated variables have been developed, and early results are encouraging. This review provides a concise map of the different receptor signaling pathways associated with Alzheimer's Disease, as well as insight into drug design based on these pathways. It discusses the molecular mechanisms of AD pathogenesis, such as oxidative stress, aging, Aβ turnover, thiol groups, and mitochondrial activities, and their role in the disease. It also reviews the potential drug targets, in vivo active agents, and docking studies done in AD and provides prospects for future drug development. This review intends to provide more clarity on the molecular processes that occur in Alzheimer's patient's brains, which can be of use in diagnosing and preventing the condition.
Collapse
Affiliation(s)
- Chanchal Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| |
Collapse
|
3
|
Chang YH, Lin H, Li HF, Chen HH, Hung HY. Exploration and biological evaluation of 7-methoxy-3-methyl-1H-chromeno[4,3-c]pyrazol-4-one as an activating transcription factor 3 inducer for managing metabolic syndrome. Eur J Med Chem 2023; 246:114951. [PMID: 36455354 DOI: 10.1016/j.ejmech.2022.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
The induction of activating transcription factor 3 (ATF3) was identified as a promising therapeutic mechanism to overcome metabolic syndrome. Hence, a structure-activity relationship campaign on the chiral lead (1b) was conducted with a scaffold-hopping approach, whereby achiral 7-methoxy-3-methyl-1H-chromeno[4,3-c]pyrazol-4-one (16c) was recognized as a potential ATF3 inducer with a lipid-lowering feature in a pre-differentiated 3T3-L1 cell model. Also, in a high-fat diet scenario, mice subjected to 16c demonstrated robust weight loss with shrinkage of the white adipose mass and fewer hypertrophic adipocytes, accompanied by a preferable glycemic profile compared to 1b. Additionally, the biochemical analysis revealed that 16c further ameliorated the liver function and improved the plasma triglyceride profile that were absent from mice treated with 1b. Taken together, 16c shows promise as an ATF3 stimulant for further development to alleviate metabolic syndrome.
Collapse
Affiliation(s)
- Yi-Han Chang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Hsiao-Fen Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Hsi-Hsien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan, ROC; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan, ROC; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| |
Collapse
|
4
|
Li XZ, Jiang SY, Li GQ, Jiang QR, Li JW, Li CC, Han YQ, Song BL, Ma XR, Qi W, Qiu WW. Synthesis of heterocyclic ring-fused analogs of HMG499 as novel degraders of HMG-CoA reductase that lower cholesterol. Eur J Med Chem 2022; 236:114323. [DOI: 10.1016/j.ejmech.2022.114323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 01/02/2023]
|
5
|
Tamil Selvan S, Ravichandar R, Kanta Ghosh K, Mohan A, Mahalakshmi P, Gulyás B, Padmanabhan P. Coordination chemistry of ligands: Insights into the design of amyloid beta/tau-PET imaging probes and nanoparticles-based therapies for Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Liu MM, Liu H, Li SH, Zhong Y, Chen Y, Guo ZZ, Chen W, Lin XH, Lei Y, Liu AL. Integrated paper-based 3D platform for long-term cell culture and in situ cell viability monitoring of Alzheimer's disease cell model. Talanta 2021; 223:121738. [PMID: 33298264 DOI: 10.1016/j.talanta.2020.121738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
Reactive oxygen species including superoxide anion, hydrogen peroxide (H2O2) and hydroxyl radicals, as a conflicting class of biological metabolites in living organism, act crucial effect on Alzheimer's disease (AD). In this work, a facile integrated platform composed of a paper-based three-dimension (3D) cell culture system and an electrochemical sensor was developed for the construction of AD cell model in third dimensional structure and in situ cell viability monitoring by H2O2 released from PC12 cells cultured on paper scaffold were divided into three groups containing control group, amyloid beta peptide 25-35 (Aβ25-35) group and Aβ25-35+curcumin (Aβ25-35+cur) group, respectively. In addition, the paper-based 3D platform displayed excellent properties, such as sensitivity, selectivity, reproducibility and stability. The levels of H2O2 expressed in PC12 cells of the three groups were monitored through a paper-based 3D platform. The viability of cells cultured on the 96-well plate was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Results of this paper-based platform are consistent with those of MTT, both displaying improved cell viability and decreased H2O2 production in Aβ25-35+cur group compared to Aβ25-35 group, which indicates that curcumin has effective cytoprotection. The paper-based 3D platform provides a convenient, economic and universal platform for in situ cell activity monitoring by key small molecules released from living cells.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Hui Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shan-Hong Li
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yu Zhong
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yao Chen
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zi-Zhen Guo
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Wei Chen
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Xin-Hua Lin
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
7
|
Toyota K, Mikami S. Iodine-Containing 4,7-Dihalobenzo[b]thiophene Building Blocks and Related Iodobenzo[b]thiophenes: Promising Molecular Scaffolds for Bio-Inspired Molecular Architecture. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Putta RR, Chun S, Choi SH, Lee SB, Oh DC, Hong S. Iron(0)-Catalyzed Transfer Hydrogenative Condensation of Nitroarenes with Alcohols: A Straightforward Approach to Benzoxazoles, Benzothiazoles, and Benzimidazoles. J Org Chem 2020; 85:15396-15405. [DOI: 10.1021/acs.joc.0c02191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ramachandra Reddy Putta
- BK 21 Plus Project, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Watanabe H, Tatsumi H, Kaide S, Shimizu Y, Iikuni S, Ono M. Structure-Activity Relationships of Radioiodinated 6,5,6-Tricyclic Compounds for the Development of Tau Imaging Probes. ACS Med Chem Lett 2020; 11:120-126. [PMID: 32071677 DOI: 10.1021/acsmedchemlett.9b00456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/06/2020] [Indexed: 01/12/2023] Open
Abstract
Tau aggregate, which is the main component of the neurofibrillary tangle, is an attractive imaging target for diagnosing and monitoring the progression of Alzheimer's disease (AD). In this study, we designed and synthesized six radioiodinated 6,5,6-tricyclic compounds to explore novel scaffolds for tau imaging probes. On in vitro autoradiography of AD brain sections, pyridoimidazopyridine and benzimidazopyrimidine derivatives ([125I]21 and [125I]22, respectively) showed selective binding affinity for tau aggregates, whereas carbazole, pyrrolodipyridine, and pyridoimidazopyrimidine derivatives ([125I]10, [125I]12, and [125I]23, respectively) bound β-amyloid aggregates. In a biodistribution study using normal mice, [125I]21 and [125I]22 showed high initial uptakes (5.73 and 5.66% ID/g, respectively, at 2 min postinjection) into and rapid washout (0.14 and 0.10% ID/g, respectively, at 60 min postinjection) from the brain. Taken together, two novel scaffolds including pyridoimidazopyridine and benzimidazopyrimidine may be applied to develop useful tau imaging probes.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruka Tatsumi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Kaide
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoichi Shimizu
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Li Z, Jin G, Qin J, Tan Z, He J. Efficient and Divergent Synthesis of Benzoxazoles and 1,2-Benzisoxazoles from o-Hydroxyaryl Ketoximes. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Gulcan HO, Mavideniz A, Sahin MF, Orhan IE. Benzimidazole-derived Compounds Designed for Different Targets of Alzheimer’s Disease. Curr Med Chem 2019; 26:3260-3278. [DOI: 10.2174/0929867326666190124123208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/22/2018] [Accepted: 01/01/2019] [Indexed: 12/21/2022]
Abstract
Benzimidazole scaffold has been efficiently used for the design of various pharmacologically active molecules. Indeed, there are various benzimidazole drugs, available today, employed for the treatment of different diseases. Although there is no benzimidazole moiety containing a drug used in clinic today for the treatment of Alzheimer’s Disease (AD), there have been many benzimidazole derivative compounds designed and synthesized to act on some of the validated and non-validated targets of AD. This paper aims to review the literature to describe these benzimidazole containing molecules designed to target some of the biochemical cascades shown to be involved in the development of AD.
Collapse
Affiliation(s)
- Hayrettin Ozan Gulcan
- Eastern Mediterranean University, Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Famagusta, TRNC, via Mersin 10, Turkey
| | - Açelya Mavideniz
- Eastern Mediterranean University, Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Famagusta, TRNC, via Mersin 10, Turkey
| | - Mustafa Fethi Sahin
- Eastern Mediterranean University, Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Famagusta, TRNC, via Mersin 10, Turkey
| | - Ilkay Erdogan Orhan
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Etiler, Ankara, Turkey
| |
Collapse
|
12
|
Bai J, Xie J, Xing Y, Wang LT, Xie J, Yang F, Liu T, Liu M, Tang J, Yi Z, Qiu WW. Synthesis and biological evaluation of methylpyrimidine-fused tricyclic diterpene analogs as novel oral anti-late-onset hypogonadism agents. Eur J Med Chem 2019; 176:21-40. [DOI: 10.1016/j.ejmech.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
|
13
|
Patel UN, Jagtap RA, Punji B. Scope and Mechanistic Aspect of Nickel-Catalyzed Alkenylation of Benzothiazoles and Related Azoles with Styryl Bromides. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Yang F, Wang K, Zhou K, Dai B, Dai J, Liang Y, Cui M. Synthesis and bioevaluation of technetium-99 m / rhenium labeled phenylquinoxaline derivatives as Tau imaging probes. Eur J Med Chem 2019; 177:291-301. [PMID: 31158745 DOI: 10.1016/j.ejmech.2019.05.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
Based on our previous research on the fluorinated phenylquinoxaline scaffold, in this study, different positions of N,N-dimethyl amino group, and alkyl linkers with various lengths were introduced into this scaffold to regulate their lipophilicity and binding affinity to Tau. Four novel 99mTc/Re complexes with diethyl iminodiacetate chelator were synthesized and evaluated as Tau imaging tracers in the brain of Alzheimer's disease. Their specific binding to neurofibrillary tangles was verified by in vitro fluorescence staining and further confirmed by the results of immunofluorescence staining on the same brain sections from AD patient and Tg-tau mice. From in vitro binding assay using recombinant Tau aggregates, complex 4.2 with 6-N(CH3)2 and longer carbon chain (n = 4) displayed the highest affinity (Kd = 59.95 nM). [99mTc]4.2 was achieved by the ligand exchange reaction between dicarboxylic precursor and [99mTc(CO)3(H2O)3]+ intermediate with radiochemical yield over 45%. Ex vivo biodistribution studies on normal ICR mice revealed that [99mTc]4.2 exhibited moderate initial brain uptake (0.61% ID/g) and more structure optimizations are still required to improve the blood-brain barrier permeability.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Kan Wang
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Kaixiang Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Bin Dai
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
15
|
Sravani C, Lone MY, Jha PC, Sathiyanarayanan KI, Sivaramakrishna A. Synthesis and photophysical studies on 2‑styryl phenanthro[9,10‑d]oxazole derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:171-180. [PMID: 30453193 DOI: 10.1016/j.saa.2018.10.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/16/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
A new series of 2‑styryl phenanthro[9,10‑d]oxazoles was readily accessible from the condensation reaction of 9,10‑phenanthroquinone with cinnamaldehydes in the presence of lactic acid. All these styryl dyes were isolated in good yields and characterized by various analytical and spectroscopic techniques. One of the dyes containing NO2 group (3d) was structurally characterized by single crystal X-ray analysis. These dyes displayed emission in blue to green region with larger Stokes shift values characteristic to the nature of substituents. In addition, positive solvatochromic trend was observed by increasing the solvent polarity suggestive of a more stabilized polar excited state. Moreover, the addition of trifluoroacetic acid leads to a prominent blue-shift in visible and emission color changes owing to the protonation of the nitrogen atom of oxazole moiety. Among the all, the oxazole derivative having NMe2 group (3b) exhibits good response to acidic pH in the range of 3.0 to 5.6 with a good linearity upon decreasing the pH from 8.0 to 2.16. The absorption studies were further supported by density functional theory calculations.
Collapse
Affiliation(s)
- Chinduluri Sravani
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India; Centre for Applied Sciences, Department of Basic Sciences and Humanities, Sree Vidyanikethan Engineering College, Tirupati 517 102, India
| | - Mohsin Y Lone
- Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, Gujarat 382 030, India
| | - Prakash C Jha
- Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, Gujarat 382 030, India
| | - K I Sathiyanarayanan
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
16
|
Watanabe H, Yoshimura M, Sano K, Shimizu Y, Kaide S, Nakamoto Y, Togashi K, Ono M, Saji H. Characterization of Novel 18F-Labeled Phenoxymethylpyridine Derivatives as Amylin Imaging Probes. Mol Pharm 2018; 15:5574-5584. [PMID: 30407835 DOI: 10.1021/acs.molpharmaceut.8b00756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Deposition of islet amyloid consisting of amylin constitutes one of pathological hallmarks of type 2 diabetes mellitus (T2DM), and it may be involved in the development and progression of T2DM. However, the details about the relationship between the deposition of islet amyloid and the pathology of T2DM remain unclear, since no useful imaging tracer enabling the visualization of pancreatic amylin is available. In the present study, we synthesized and evaluated six novel 18F-labeled phenoxymethylpyridine (PMP) derivatives as amylin imaging probes. All 18F-labeled PMP derivatives showed not only affinity for islet amyloid in the post-mortem T2DM pancreatic sections but also excellent pharmacokinetics in normal mice. Furthermore, ex vivo autoradiographic studies demonstrated that [18F]FPMP-5 showed intense labeling of islet amyloids in the diabetes model mouse pancreas in vivo. The preclinical studies suggested that [18F]FPMP-5 may have potential as an imaging probe that targets amylin aggregates in the T2DM pancreas.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Masashi Yoshimura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Kohei Sano
- Division of Clinical Radiology Service , Kyoto University Hospital , 54 Shogoin Kawahara-cho , Sakyo-ku, Kyoto 606-8507 , Japan
| | - Yoichi Shimizu
- Division of Clinical Radiology Service , Kyoto University Hospital , 54 Shogoin Kawahara-cho , Sakyo-ku, Kyoto 606-8507 , Japan
| | - Sho Kaide
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine , Kyoto University , 54 Shogoin Kawahara-cho , Sakyo-ku, Kyoto 606-8507 , Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine , Kyoto University , 54 Shogoin Kawahara-cho , Sakyo-ku, Kyoto 606-8507 , Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho , Sakyo-ku, Kyoto 606-8501 , Japan
| |
Collapse
|
17
|
Li C, Takahashi T, Shrestha T, Kinoshita E, Matsubara T, Matsumoto M, Maruyama H. 4',6-Diamidino-2-Phenylindole Distinctly Labels Tau Deposits. J Histochem Cytochem 2018; 66:737-751. [PMID: 30106598 DOI: 10.1369/0022155418793600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tau deposits have distinct biochemical characteristics and vary morphologically based on identification with tau antibodies and several chemical dyes. Here, we report 4',6-diamidino-2-phenylindole (DAPI)-positivity of tau deposits. Furthermore, we investigated the cause for this positivity. DAPI was positive in 3R/4R (3-repeat/4-repeat) tau deposits in Alzheimer's disease, myotonic dystrophy, and neurodegeneration with brain iron accumulation, and in 4R tau deposits in corticobasal degeneration, but negative in 4R tau deposits in frontotemporal dementia with parkinsonism-17 and progressive supranuclear palsy. The peak emission wavelength of DAPI after binding to a tau deposit was similar to that after binding to a nucleus. This DAPI-positivity was conspicuous at the optimum concentration of 2 μg/ml. DAPI-positivity was diminished after formic acid treatment, but preserved after nucleic acid elimination and phosphate moiety blocking. Our results suggest that staining with 2 μg/ml DAPI is a common but useful tool to differentially detect tau deposits in various tauopathies.
Collapse
Affiliation(s)
- Chengyu Li
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tejashwi Shrestha
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyasu Matsubara
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Sakai City Medical Center, Sakai, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Kaide S, Ono M, Watanabe H, Kitada A, Yoshimura M, Shimizu Y, Ihara M, Saji H. Structure-Activity Relationships of Radioiodinated Benzoimidazopyridine Derivatives for Detection of Tau Pathology. ACS Med Chem Lett 2018; 9:478-483. [PMID: 29795763 DOI: 10.1021/acsmedchemlett.8b00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/29/2018] [Indexed: 02/02/2023] Open
Abstract
It is generally accepted that neurofibrillary tangles consisting of tau proteins are involved in the pathogenesis of Alzheimer's disease (AD). For selective detection of tau pathology, we synthesized and evaluated radioiodinated benzoimidazopyridine (BIP) derivatives with an alkylamino group as tau imaging probes. In vitro selectivity to tau aggregates and in vivo pharmacokinetics of BIP derivatives varied markedly, being strongly dependent on the alkylamino group. In in vitro autoradiography with AD brain sections, the BIP derivative with a dimethylamino group (BIP-NMe2) showed the highest selectivity to tau aggregates. Regarding the biodistribution using normal mice, the BIP derivative with an ethylamino group (BIP-NHEt) showed the highest uptake (6.04% ID/g at 2 min postinjection) into and rapid washout (0.12% ID/g at 60 min postinjection) from the brain. These results suggest that the introduction of an optimal alkylamino group into the BIP scaffold may lead to the development of more potential tau imaging probes.
Collapse
Affiliation(s)
- Sho Kaide
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ayane Kitada
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masashi Yoshimura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoichi Shimizu
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Conversion of iodine to fluorine-18 based on iodinated chalcone and evaluation for β-amyloid PET imaging. Bioorg Med Chem 2018; 26:3352-3358. [PMID: 29751990 DOI: 10.1016/j.bmc.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 01/19/2023]
Abstract
In the amyloid cascade hypothesis, β-amyloid (Aβ) plaques is one of the major pathological biomarkers in the Alzheimer's disease (AD) brain. We report the synthesis and evaluation of novel radiofluorinated chalcones, [18F]4-dimethylamino-4'-fluoro-chalcone ([18F]DMFC) and [18F]4'-fluoro-4-methylamino-chalcone ([18F]FMC), as Aβ imaging probes. The conversion of iodine directly introduced to the chalcone backbone into fluorine was successfully carried out by 18F-labeling via the corresponding boronate precursors, achieving the direct introduction of fluorine-18 into the chalcone backbone to prepare [18F]DMFC and [18F]FMC. In a biodistribution study using normal mice, [18F]DMFC and [18F]FMC showed a higher initial uptake (4.43 and 5.47% ID/g at 2 min postinjection, respectively) into and more rapid clearance (0.52 and 0.66% ID/g at 30 min postinjection, respectively) from the brain than a Food and Drug Administration (FDA)-approved Aβ imaging agent ([18F]Florbetapir), meaning the improvement of the probability of detecting Aβ plaques and the reduction of non-specific binding in the brain. In the in vitro binding studies using aggregates of recombinant Aβ peptides, [18F]DMFC and [18F]FMC showed high binding affinity to recombinant Aβ aggregates at the Kd values of 4.47 and 6.50 nM, respectively. In the in vitro autoradiography (ARG) experiment with AD brain sections, [18F]DMFC and [18F]FMC markedly accumulated only in a region with abundant Aβ plaques, indicating that they clearly recognized human Aβ plaques in vitro. These encouraging results suggest that [18F]DMFC and [18F]FMC may be promising PET probes for the detection of an amyloid pathology and the early diagnosis of AD with marked accuracy.
Collapse
|
20
|
Zhang M, Yang J, Xu Q, Dong C, Han LB, Shen R. Copper-Catalyzed Dehydrative Cyclization of 1-(2-Hydroxyphenyl)propargyl Alcohols with P(O)H Compounds for the Synthesis of 2-Phosphorylmethylbenzofurans. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701368] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering; Nanjing Tech University; Nanjing 210009 People's Republic of China
| | - Jianlin Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering; Nanjing Tech University; Nanjing 210009 People's Republic of China
| | - Qing Xu
- College of Chemistry and Materials Engineering; Wenzhou University, Wenzhou; Zhejiang 325035 People's Republic of China
| | - Chao Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering; Nanjing Tech University; Nanjing 210009 People's Republic of China
| | - Li-Biao Han
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba; Ibaraki 305-8565 Japan
| | - Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering; Nanjing Tech University; Nanjing 210009 People's Republic of China
| |
Collapse
|
21
|
Recent advance in oxazole-based medicinal chemistry. Eur J Med Chem 2018; 144:444-492. [DOI: 10.1016/j.ejmech.2017.12.044] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023]
|
22
|
Gayen KS, Chatterjee N, Khamarui S, Tarafdar PK. Recent Advances in Iodosobenzene-Mediated Construction of Heterocyclic Scaffolds: Transition-Metal-Free Approaches and Scope. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Saikat Khamarui
- Government General Degree College at Kalna; University of Burdwan; -1 India
| | - Pradip Kumar Tarafdar
- Indian Institute of Science Education and Research (IISER, Kolkata); West Bengal India
| |
Collapse
|
23
|
Watanabe H, Ariyoshi T, Ozaki A, Ihara M, Ono M, Saji H. Synthesis and biological evaluation of novel radioiodinated benzimidazole derivatives for imaging α-synuclein aggregates. Bioorg Med Chem 2017; 25:6398-6403. [DOI: 10.1016/j.bmc.2017.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022]
|
24
|
Selective synthesis of 2-aminobenzoxazoles and 2-mercaptobenzoxazoles by using o-aminophenols as starting material. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
|
26
|
Watanabe H. Development of SPECT Probes for In Vivo Imaging of β-Amyloid and Tau Aggregates in the Alzheimer's Disease Brain. YAKUGAKU ZASSHI 2017; 137:1361-1365. [DOI: 10.1248/yakushi.17-00156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Watanabe H, Ono M, Ariyoshi T, Katayanagi R, Saji H. Novel Benzothiazole Derivatives as Fluorescent Probes for Detection of β-Amyloid and α-Synuclein Aggregates. ACS Chem Neurosci 2017; 8:1656-1662. [PMID: 28467708 DOI: 10.1021/acschemneuro.6b00450] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Deposits of β-amyloid (Aβ) and α-synuclein (α-syn) are the hallmark of Alzheimer's disease (AD) and Parkinson's disease (PD), respectively. The detection of these protein aggregates with fluorescent probes is particularly of interest for preclinical studies using fluorescence microscopy on human brain tissue. In this study, we newly designed and synthesized three push-pull benzothiazole (PP-BTA) derivatives as fluorescent probes for detection of Aβ and α-syn aggregates. Fluorescence intensity of all PP-BTA derivatives significantly increased upon binding to Aβ(1-42) and α-syn aggregates in solution. In in vitro saturation binding assays, PP-BTA derivatives demonstrated affinity for both Aβ(1-42) (Kd = 40-148 nM) and α-syn (Kd = 48-353 nM) aggregates. In particular, PP-BTA-4 clearly stained senile plaques composed of Aβ aggregates in the AD brain section. Moreover, it also labeled Lewy bodies composed of α-syn aggregates in the PD brain section. These results suggest that PP-BTA-4 may serve as a promising fluorescent probe for the detection of Aβ and α-syn aggregates.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Taisuke Ariyoshi
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rikako Katayanagi
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideo Saji
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Abstract
Frontotemporal dementia (FTD) is the second most common cause of dementia following Alzheimer's disease (AD). Between 20 and 50% of cases are familial. Mutations in MAPT, GRN and C9orf72 are found in 60% of familial FTD cases. C9orf72 mutations are the most common and account for 25%. Rarer mutations (<5%) occur in other genes such as VPC, CHMP2B, TARDP, FUS, ITM2B, TBK1 and TBP. The diagnosis is often challenging due to symptom overlap with AD and other conditions. We review the genetics, clinical presentations, neuroimaging, neuropathology, animal studies and therapeutic trials in FTD. We describe clinical scenarios including the original family with the tau stem loop mutation (+14) and also the recently discovered 'missing tau' mutation +15 that 'closed the loop' in 2015.
Collapse
|
29
|
Synthesis of heterocyclic ring-fused tricyclic diterpene analogs as novel inhibitors of RANKL-induced osteoclastogenesis and bone resorption. Eur J Med Chem 2017; 131:48-67. [DOI: 10.1016/j.ejmech.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/27/2022]
|
30
|
Giacomelli C, Daniele S, Martini C. Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochem Pharmacol 2017; 131:1-15. [PMID: 28159621 DOI: 10.1016/j.bcp.2017.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The aggregation of specific proteins plays a pivotal role in the etiopathogenesis of several neurodegenerative diseases (NDs). β-Amyloid (Aβ) peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated protein tau are the two main neuropathological lesions in Alzheimer's disease. Meanwhile, Parkinson's disease is defined by the presence of intraneuronal inclusions (Lewy bodies), in which α-synuclein (α-syn) has been identified as a major protein component. The current literature provides considerable insights into the mechanisms underlying oligomeric-related neurodegeneration, as well as the relationship between protein aggregation and ND, thus facilitating the development of novel putative biomarkers and/or pharmacological targets. Recently, α-syn, tau and Aβ have been shown to interact each other or with other "pathological proteins" to form toxic heteroaggregates. These latest findings are overcoming the concept that each neurodegenerative disease is related to the misfolding of a single specific protein. In this review, potential opportunities and pharmacological approaches targeting α-syn, tau and Aβ and their oligomeric forms are highlighted with examples from recent studies. Protein aggregation as a biomarker of NDs, in both the brain and peripheral fluids, is deeply explored. Finally, the relationship between biomarker establishment and assessment and their use as diagnostics or therapeutic targets are discussed.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
31
|
Affiliation(s)
- Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University
- Kyoto University Research Administration Office
| |
Collapse
|
32
|
Safir Filho M, Fiorucci S, Martin AR, Benhida R. Design, synthesis and photophysical studies of styryl-based push–pull fluorophores with remarkable solvatofluorochromism. NEW J CHEM 2017. [DOI: 10.1039/c7nj03142d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A library of 20 styryl-based push–pull dyes derived from 6-amino substituted benzothiazoles were prepared by an efficient and practical synthetic route from low-cost starting materials.
Collapse
Affiliation(s)
- Mauro Safir Filho
- Université Côte d'Azur
- CNRS
- Institut de Chimie de Nice UMR7272
- 06108 Nice
- France
| | - Sebastien Fiorucci
- Université Côte d'Azur
- CNRS
- Institut de Chimie de Nice UMR7272
- 06108 Nice
- France
| | - Anthony R. Martin
- Université Côte d'Azur
- CNRS
- Institut de Chimie de Nice UMR7272
- 06108 Nice
- France
| | - Rachid Benhida
- Université Côte d'Azur
- CNRS
- Institut de Chimie de Nice UMR7272
- 06108 Nice
- France
| |
Collapse
|
33
|
Dou WT, Chen W, He XP, Su J, Tian H. Vibration-Induced-Emission (VIE) for imaging amyloid β fibrils. Faraday Discuss 2017; 196:395-402. [DOI: 10.1039/c6fd00156d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This paper discusses the use of N,N′-disubstituted-dihydrodibenzo[a,c]phenazines with typical Vibration-Induced-Emission (VIE) properties for imaging amyloid β (Aβ) fibrils, which are a signature of neurological disorders such as Alzheimer's disease. A water-soluble VIEgen with a red fluorescence emission shows a pronounced, blue-shifted emission with Aβ peptide monomers and fibrils. The enhancement in blue fluorescence can be ascribed to the restriction of the molecular vibration by selectively binding to Aβ. We determine an increasing blue-to-red emission ratio of the VIEgen with both the concentration and fibrogenesis time of Aβ, thereby enabling a ratiometric detection of Aβ in its different morphological forms. Importantly, the VIEgen was proven to be suitable for the fluorescence imaging of small Aβ plaques in the hippocampus of a transgenic mouse brain (five months old), with the blue and red emissions well overlapped on the Aβ. This research offers a new rationale to design molecular VIE probes for biological applications.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Wei Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Jianhua Su
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| |
Collapse
|
34
|
Fluselenamyl: A Novel Benzoselenazole Derivative for PET Detection of Amyloid Plaques (Aβ) in Alzheimer's Disease. Sci Rep 2016; 6:35636. [PMID: 27805057 PMCID: PMC5090206 DOI: 10.1038/srep35636] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/30/2016] [Indexed: 02/02/2023] Open
Abstract
Fluselenamyl (5), a novel planar benzoselenazole shows traits desirable of enabling noninvasive imaging of Aβ pathophysiology in vivo; labeling of both diffuse (an earlier manifestation of neuritic plaques) and fibrillar plaques in Alzheimer's disease (AD) brain sections, and remarkable specificity for mapping Aβ compared with biomarker proteins of other neurodegenerative diseases. Employing AD homogenates, [18F]-9, a PET tracer demonstrates superior (2-10 fold higher) binding affinity than approved FDA tracers, while also indicating binding to high affinity site on Aβ plaques. Pharmacokinetic studies indicate high initial influx of [18F]-9 in normal mice brains accompanied by rapid clearance in the absence of targeted plaques. Following incubation in human serum, [18F]-9 indicates presence of parental compound up to 3h thus indicating its stability. Furthermore, in vitro autoradiography studies of [18F]-9 with AD brain tissue sections and ex vivo autoradiography studies in transgenic mouse brain sections show cortical Aβ binding, and a fair correlation with Aβ immunostaining. Finally, multiphoton- and microPET/CT imaging indicate its ability to penetrate brain and label parenchymal plaques in transgenic mice. Following further validation of its performance in other AD rodent models and nonhuman primates, Fluselenamyl could offer a platform technology for monitoring earliest stages of Aβ pathophysiology in vivo.
Collapse
|
35
|
Fu WC, Wu Y, So CM, Wong SM, Lei A, Kwong FY. Catalytic Direct C2-Alkenylation of Oxazoles at Parts per Million Levels of Palladium/PhMezole-Phos Complex. Org Lett 2016; 18:5300-5303. [DOI: 10.1021/acs.orglett.6b02619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wai Chung Fu
- State
Key Laboratory of Chirosciences and Department of Applied Biology
and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 852, Hong Kong
| | - Yong Wu
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Chau Ming So
- State
Key Laboratory of Chirosciences and Department of Applied Biology
and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 852, Hong Kong
| | - Shun Man Wong
- State
Key Laboratory of Chirosciences and Department of Applied Biology
and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 852, Hong Kong
| | - Aiwen Lei
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P.R. China
| | - Fuk Yee Kwong
- State
Key Laboratory of Chirosciences and Department of Applied Biology
and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 852, Hong Kong
| |
Collapse
|
36
|
Highly Selective Tau-SPECT Imaging Probes for Detection of Neurofibrillary Tangles in Alzheimer's Disease. Sci Rep 2016; 6:34197. [PMID: 27687137 PMCID: PMC5043239 DOI: 10.1038/srep34197] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/09/2016] [Indexed: 11/08/2022] Open
Abstract
Neurofibrillary tangles composed of aggregates of hyperphosphorylated tau proteins are one of the neuropathological hallmarks of Alzheimer's disease (AD) in addition to the deposition of β-amyloid plaques. Since the deposition of tau aggregates is closely associated with the severity of AD, the in vivo detection of tau aggregates may be useful as a biomarker for the diagnosis and progression of AD. In this study, we designed and synthesized a new series of radioiodinated benzoimidazopyridine (BIP) derivatives, and evaluated their utility as single photon emission computed tomography (SPECT) imaging agents targeting tau aggregates in AD brains. Five radioiodinated BIP derivatives were successfully prepared in high radiochemical yields and purities. In in vitro autoradiographic studies using postmortem AD brains, all BIP derivatives displayed high accumulation of radioactivity in the brain sections with abundant neurofibrillary tangles, while no marked radioactivity accumulation was observed in the brain sections with only β-amyloid aggregates, indicating that the BIP derivatives exhibited selective binding to tau aggregates. Biodistribution studies in normal mice showed high brain uptake at 2 min postinjection (3.5-4.7% ID/g) and rapid clearance at 60 min postinjection (0.04-0.23% ID/g), which is highly desirable for tau imaging agents. The results of the present study suggest that [123I]BIP derivatives may be useful SPECT agents for the in vivo imaging of tau aggregates in AD.
Collapse
|
37
|
Okamura N, Harada R, Furukawa K, Furumoto S, Tago T, Yanai K, Arai H, Kudo Y. Advances in the development of tau PET radiotracers and their clinical applications. Ageing Res Rev 2016; 30:107-13. [PMID: 26802556 DOI: 10.1016/j.arr.2015.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease and other neurodegenerative dementias belong to the family of tauopathies. These diseases are characterized by the deposition of insoluble tau aggregates possessing an enriched β-sheet structure. In vivo imaging of the tau deposits by positron emission tomography (PET) will facilitate the early and accurate diagnosis of these diseases, tracking of disease progression, assessment of disease severity, and prediction of disease prognosis. Furthermore, this technology is expected to play a vital role in the monitoring of treatment outcomes and in the selection of patients for the therapeutic trials of anti-dementia drugs. Recently, several tau PET tracers have been successfully developed and demonstrated as having high binding affinity and selectivity to tau protein deposits. Recent clinical studies using these tracers have demonstrated significant tracer retention in sites susceptible to tau deposition in Alzheimer's disease, as well as correlations with the disease severity and cognitive impairment in cases with dementia. These tracers, thus, have the potential to effectively diagnose the tauopathies. Further longitudinal assessment will clarify the effect of the tau deposition on the neurodegenerative process and cognitive decline and the interaction of tau with amyloid-β in the human brain.
Collapse
|
38
|
Characteristics of Tau and Its Ligands in PET Imaging. Biomolecules 2016; 6:7. [PMID: 26751494 PMCID: PMC4808801 DOI: 10.3390/biom6010007] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/14/2022] Open
Abstract
Tau deposition is one of the neuropathological hallmarks in Alzheimer’s disease as well as in other neurodegenerative disorders called tauopathies. Recent efforts to develop selective tau radiopharmaceuticals have allowed the visualization of tau deposits in vivo. In vivo tau imaging allows the assessment of the regional distribution of tau deposits in a single human subject over time for determining the pathophysiology of tau accumulation in aging and neurodegenerative conditions as well as for application in drug discovery of anti-dementia drugs as surrogate markers. However, tau deposits show complicated characteristics because of different isoform composition, histopathology, and ultrastructure in various neurodegenerative conditions. In addition, since tau radiopharmaceuticals possess different chemotype classes, they may show different binding characteristics with heterogeneous tau deposits. In this review, we describe the characteristics of tau deposits and their ligands that have β-sheet binding properties, and the status of tau imaging in clinical studies.
Collapse
|