1
|
Huang G, Hucek D, Cierpicki T, Grembecka J. Applications of oxetanes in drug discovery and medicinal chemistry. Eur J Med Chem 2023; 261:115802. [PMID: 37713805 DOI: 10.1016/j.ejmech.2023.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Devon Hucek
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Chen X, Wang M, Wang X, Liu J, Zhang Z, Tian C. Anticancer potentiating effect and downregulation of PD-L1 expression: Study on the 2-[(p-fluorophenyl)amino]-6-substituted-9H-purine analogues as novel CHK1 inhibitors. Chem Biol Drug Des 2023; 101:626-637. [PMID: 36314430 DOI: 10.1111/cbdd.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/30/2022]
Abstract
In this study, a series of 2-[p-fluorophenyl]-6-substituted-9H-purine analogues were designed and synthesized as CHK1 inhibitors, among which compound b22 was the most potent. b22 exhibited nearly no antiproliferative activity toward HT29 cells and displayed a significant antitumor potentiating effect on HT29 cells when treated in combination with gemcitabine (Gem). A time-dependent assay found that treatment with Gem for 8 h before adding b22 achieved the optimal effect. Furthermore, the immunofluorescence and qPCR results demonstrated that b22 can remarkably reverse the upregulation of PD-L1 induced by Gem, which suggested dual effects of b22 in antitumor potentiation and antitumor immunity.
Collapse
Affiliation(s)
- Xuanzhen Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meng Wang
- College of Pharmacy, Beihua University, Jilin, China
| | - Xiaowei Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Junyi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhili Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chao Tian
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Chen M, Li Z, Shao X, Maienfisch P. Scaffold-Hopping Approach To Identify New Chemotypes of Dimpropyridaz. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11109-11122. [PMID: 35412307 DOI: 10.1021/acs.jafc.2c00636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dimpropyridaz is a pyrazole carboxamide insecticide with a novel mode of action, currently under worldwide development by BASF, providing excellent activity against sucking pests. A series of dimpropyridaz analogues were designed to investigate the impact of bioisosteric heterocyclic replacements on the biological activity and molecular properties. Focus was given to prepare analogues where the 4-pyridazinyl moiety was replaced by 5-pyrimidinyl, 2-pyrimidinyl, 3-pyridazinyl, and 2-pyrazinyl groups. Five different synthetic routes were developed for the preparation of these analogues, delivering the target compounds in moderate to good yields. We explained some aspects of the observed structure-activity relationship by a density functional theory (DFT) calculation and DFT-derived Multiwfn and VMD program models. These findings provide first insights into the important role of the 4-pyridazinyl heterocyclic moiety in the pyrazole carboxamide insecticide chemical class and the mechanism of action of dimpropyridaz.
Collapse
Affiliation(s)
- Meijun Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- CreInSol Consulting & Biocontrols, CH-4118 Rodersdorf, Switzerland
| |
Collapse
|
4
|
Xu Z, Wang H, Jiang S, Lu S, Mao Y. New and convergent synthesis of erdafitinib. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhiyong Xu
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| | - Han Wang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| | - Shun Jiang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| | - Sheng Lu
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| | - Yongjun Mao
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| |
Collapse
|
5
|
Andrianov GV, Ong WJG, Serebriiskii I, Karanicolas J. Efficient Hit-to-Lead Searching of Kinase Inhibitor Chemical Space via Computational Fragment Merging. J Chem Inf Model 2021; 61:5967-5987. [PMID: 34762402 PMCID: PMC8865965 DOI: 10.1021/acs.jcim.1c00630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In early-stage drug discovery, the hit-to-lead optimization (or "hit expansion") stage entails starting from a newly identified active compound and improving its potency or other properties. Traditionally, this process relies on synthesizing and evaluating a series of analogues to build up structure-activity relationships. Here, we describe a computational strategy focused on kinase inhibitors, intended to expedite the process of identifying analogues with improved potency. Our protocol begins from an inhibitor of the target kinase and generalizes the synthetic route used to access it. By searching for commercially available replacements for the individual building blocks used to make the parent inhibitor, we compile an enumerated library of compounds that can be accessed using the same chemical transformations; these huge libraries can exceed many millions─or billions─of compounds. Because the resulting libraries are much too large for explicit virtual screening, we instead consider alternate approaches to identify the top-scoring compounds. We find that contributions from individual substituents are well described by a pairwise additivity approximation, provided that the corresponding fragments position their shared core in precisely the same way relative to the binding site. This key insight allows us to determine which fragments are suitable for merging into single new compounds and which are not. Further, the use of pairwise approximation allows interaction energies to be assigned to each compound in the library without the need for any further structure-based modeling: interaction energies instead can be reliably estimated from the energies of the component fragments, and the reduced computational requirements allow for flexible energy minimizations that allow the kinase to respond to each substitution. We demonstrate this protocol using libraries built from six representative kinase inhibitors drawn from the literature, which target five different kinases: CDK9, CHK1, CDK2, EGFRT790M, and ACK1. In each example, the enumerated library includes additional analogues reported by the original study to have activity, and these analogues are successfully prioritized within the library. We envision that the insights from this work can facilitate the rapid assembly and screening of increasingly large libraries for focused hit-to-lead optimization. To enable adoption of these methods and to encourage further analyses, we disseminate the computational tools needed to deploy this protocol.
Collapse
Affiliation(s)
- Grigorii V. Andrianov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111-2497,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Wern Juin Gabriel Ong
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111-2497,Bowdoin College, Brunswick, ME 04011
| | - Ilya Serebriiskii
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111-2497,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111-2497,To whom correspondence should be addressed. , 215-728-7067
| |
Collapse
|
6
|
Modified organophosphorus fire retardant with low toxicity/high flame retardancy using the pharmacophore model associated with Mamdani fuzzy inference approach. Biochem J 2020; 477:4655-4674. [PMID: 33216871 DOI: 10.1042/bcj20200779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/09/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
The bi-directional selective low toxicity/high flame retardancy organophosphorus fire retardants (OPFRs) derivatives were designed by a comprehensive effect 3D quantitative structure-activity relationship (QSAR) pharmacophore model, and the toxicity and flame retardancy mechanism of OPFR derivatives were explored. The 3D-QSAR comprehensive pharmacophore model was constructed using the toxicity/flame retardancy comprehensive evaluation values of OPFRs for molecular modifications, which were obtained by the Mamdani fuzzy inference approach. The environment-friendly OPFR derivatives (CDPP-F, CDPP-NO2, TPHP-F, TDCIPP-CH2CH3, and TDCIPP-Br) with high flame retardancy showed significantly reduced multi-toxicity effects (biotoxicity, reproductive toxicity, and neurotoxicity) in the comprehensive model. The spatial overlapping volumes of the toxicity/flame retardancy comprehensive effect model with the toxic effect and with flame retardant effect were 1 : 1. The trend (1 : 1) was similar to the degree of improvement of toxicity and flame retardancy of the OPFR derivatives. The toxicity and flame retardancy were decreased by more than 50%. This indicated that the spatial overlapping volumes in the comprehensive model with the toxic and flame retardant mono-models have significant effects. Based on the 2D-QSAR model, molecular docking, and density functional theory, it was found that, in molecular modification, the introduction of electronegative groups to improve the electronic parameters (q+) can reduce the toxicity of OPFRs. An increase in the bond length and bond angle of the molecular side chain increased the steric parameter (MR) that improved the molecular flame retardancy of OPFRs.
Collapse
|
7
|
Verma S, Kumar M, Mishra PK, Verma AK. Metal-Free Carbonyl-Assisted Regioselective Hydration of Alkynes: An Access to Dicarbonyls. Org Lett 2019; 21:5059-5063. [PMID: 31199155 DOI: 10.1021/acs.orglett.9b01649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal-free regioselective hydration of o-alkynylaldehydes with the assistance of neighboring carbonyl oxygen is disclosed. The developed protocol provides a facile route to synthesize a series of multisubstituted carbonyl containing scaffolds that enable the potential application toward the synthesis of highly diversified 5-azaindoles. γ-Carbolines and 2,8-diazacarbazoles can also be accessed directly without isolating the dicarbonyl compounds. The developed methodology is operationally simple and environment-friendly, tolerates a wide variety of functional groups, and is applicable toward large scale synthesis.
Collapse
Affiliation(s)
- Shalini Verma
- Department of Chemistry , University of Delhi , Delhi 110007 , India
| | - Manoj Kumar
- Department of Chemistry , University of Delhi , Delhi 110007 , India
| | - Pawan K Mishra
- Department of Chemistry , University of Delhi , Delhi 110007 , India
| | - Akhilesh K Verma
- Department of Chemistry , University of Delhi , Delhi 110007 , India
| |
Collapse
|
8
|
Tong L, Song P, Jiang K, Xu L, Jin T, Wang P, Hu X, Fang S, Gao A, Zhou Y, Liu T, Li J, Hu Y. Discovery of (R)-5-((5-(1-methyl-1H-pyrazol-4-yl)-4-(methylamino)pyrimidin-2-yl)amino)-3-(piperidin-3-yloxy)picolinonitrile, a novel CHK1 inhibitor for hematologic malignancies. Eur J Med Chem 2019; 173:44-62. [DOI: 10.1016/j.ejmech.2019.03.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 11/17/2022]
|
9
|
Gao X, Han L, Ren Y. In Silico Exploration of 1,7-Diazacarbazole Analogs as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and Molecular Dynamics Simulations. Molecules 2016; 21:molecules21050591. [PMID: 27164065 PMCID: PMC6273173 DOI: 10.3390/molecules21050591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 12/11/2022] Open
Abstract
Checkpoint kinase 1 (Chk1) is an important serine/threonine kinase with a self-protection function. The combination of Chk1 inhibitors and anti-cancer drugs can enhance the selectivity of tumor therapy. In this work, a set of 1,7-diazacarbazole analogs were identified as potent Chk1 inhibitors through a series of computer-aided drug design processes, including three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling, molecular docking, and molecular dynamics simulations. The optimal QSAR models showed significant cross-validated correlation q2 values (0.531, 0.726), fitted correlation r2 coefficients (higher than 0.90), and standard error of prediction (less than 0.250). These results suggested that the developed models possess good predictive ability. Moreover, molecular docking and molecular dynamics simulations were applied to highlight the important interactions between the ligand and the Chk1 receptor protein. This study shows that hydrogen bonding and electrostatic forces are key interactions that confer bioactivity.
Collapse
Affiliation(s)
- Xiaodong Gao
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Liping Han
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yujie Ren
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
10
|
Liu Y, Zhu Z, Zhang M, Zheng H. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses. Vet Res 2015; 46:127. [PMID: 26511922 PMCID: PMC4625562 DOI: 10.1186/s13567-015-0273-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) leader protein (Lpro) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. Lpro exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. Lpro self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its role as a viral proteinase, Lpro also has the ability to antagonize host antiviral effects. To promote FMDV replication, Lpro can suppress host antiviral responses by three different mechanisms: (1) cleavage of eukaryotic translation initiation factor 4 γ (eIF4G) to shut off host protein synthesis; (2) inhibition of host innate immune responses through restriction of interferon-α/β production; and (3) Lpro can also act as a deubiquitinase and catalyze deubiquitination of innate immune signaling molecules. In the light of recent functional and biochemical findings regarding Lpro, this review introduces the basic properties of Lpro and the mechanisms by which it antagonizes host antiviral responses.
Collapse
Affiliation(s)
- Yingqi Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China. .,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| | - Miaotao Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| |
Collapse
|