1
|
Kang L, Liu S, Huang X, Zhang D, Zhao H, Zhao Y. Cyclopentylmalononitrile dye as an efficient photosensitizer for combined photodynamic and water-dependent reversible photoacidity therapy. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
2
|
Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS OMEGA 2022; 7:45882-45909. [PMID: 36570217 PMCID: PMC9773346 DOI: 10.1021/acsomega.2c05852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The clinical need for photodynamic therapy (PDT) has been growing for several decades. Notably, PDT is often used in oncology to treat a variety of tumors since it is a low-risk therapy with excellent selectivity, does not conflict with other therapies, and may be repeated as necessary. The mechanism of action of PDT is the photoactivation of a particular photosensitizer (PS) in a tumor microenvironment in the presence of oxygen. During PDT, cancer cells produce singlet oxygen (1O2) and reactive oxygen species (ROS) upon activation of PSs by irradiation, which efficiently kills the tumor. However, PDT's effectiveness in curing a deep-seated malignancy is constrained by three key reasons: a tumor's inadequate PS accumulation in tumor tissues, a hypoxic core with low oxygen content in solid tumors, and limited depth of light penetration. PDTs are therefore restricted to the management of thin and superficial cancers. With the development of nanotechnology, PDT's ability to penetrate deep tumor tissues and exert desired therapeutic effects has become a reality. However, further advancement in this field of research is necessary to address the challenges with PDT and ameliorate the therapeutic outcome. This review presents an overview of PSs, the mechanism of loading of PSs, nanomedicine-based solutions for enhancing PDT, and their biological applications including chemodynamic therapy, chemo-photodynamic therapy, PDT-electroporation, photodynamic-photothermal (PDT-PTT) therapy, and PDT-immunotherapy. Furthermore, the review discusses the mechanism of ROS generation in PDT advantages and challenges of PSs in PDT.
Collapse
|
3
|
Dumur F. Recent advances on benzylidene cyclopentanones as visible light photoinitiators of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Fomina MV, Freidzon AY, Kuz’mina LG, Moiseeva AA, Starostin RO, Kurchavov NA, Nuriev VN, Gromov SP. Synthesis, Structure and Photochemistry of Dibenzylidenecyclobutanones. Molecules 2022; 27:7602. [PMID: 36364429 PMCID: PMC9653593 DOI: 10.3390/molecules27217602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 09/10/2023] Open
Abstract
A series of symmetrical dibenzylidene derivatives of cyclobutanone were synthesized with the goal of studying the physicochemical properties of cross-conjugated dienones (ketocyanine dyes). The structures of the products were established and studied by X-ray diffraction and by NMR and electronic spectroscopy. All the products had E,E-geometry. The oxidation and reduction potentials of the dienones were determined by cyclic voltammetry. The potentials were shown to depend on the nature, position, and number of substituents in the benzene rings. A linear correlation was found between the difference of the electrochemical oxidation and reduction potentials and the energy of the long-wavelength absorption maximum. This correlation can be employed to analyze the properties of other compounds of this type. Quantum chemistry was used to explain the observed regularities in the electrochemistry, absorption, and fluorescence of the dyes. The results are in good agreement with the experimental redox potentials and spectroscopy data.
Collapse
Affiliation(s)
- Marina V. Fomina
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, 119421 Moscow, Russia
| | - Alexandra Y. Freidzon
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, 119421 Moscow, Russia
| | - Lyudmila G. Kuz’mina
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy Prosp. 31, 119991 Moscow, Russia
| | - Anna A. Moiseeva
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman O. Starostin
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nikolai A. Kurchavov
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, 119421 Moscow, Russia
| | - Vyacheslav N. Nuriev
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, 119421 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey P. Gromov
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, 119421 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Kang L, Zhao H, Liu S, Liu Y, Liu Y, Chen D, Qiu H, Yang J, Gu Y, Zhao Y. A water-dependent reversible photoacidity strategy for cancer treatment. Eur J Med Chem 2022; 242:114669. [PMID: 35987019 DOI: 10.1016/j.ejmech.2022.114669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/04/2022]
Abstract
In the reported mechanisms of reversible photoacidity, protons were dissociated from compounds which contained hydroxyl, indazole or formed hydroxyl via intramolecular hydrogen abstraction under irradiation. Herein, a water-dependent reversible photoacidity (W-RPA) mechanism mediated by a thiadiazoloquinoxaline compound (TQs-Th-PEG5) has been found, in which the proton is not dissociated from TQs-Th-PEG5 itself but from a water locked by TQs-Th-PEG5 under the irradiation of a 660 nm laser. After turning off the laser, the produced acid will disappear quickly. This process is repeatable with no consumption of TQs-Th-PEG5. More importantly, water is indispensable. Furthermore, it is confirmed that there is no other element involved in the process except TQs-Th-PEG5, light and water. Excitingly, W-RPA therapy mediated by TQs-Th-PEG5 nanoparticle exhibits remarkable antitumor effect both in vitro and in vivo, especially in hypoxic tumors with diameter larger than 10 mm owing to its oxygen-independent feature. This study not only discovers a W-RPA mechanism but also provides a novel phototherapy strategy for cancer treatment.
Collapse
Affiliation(s)
- Lin Kang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Shiyang Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yupeng Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China
| | - Yidi Liu
- Department of Laser Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China; Medical School of Chinese PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Defu Chen
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Haixia Qiu
- Department of Laser Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jian Yang
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Ying Gu
- Department of Laser Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
6
|
Wu M, Huang X, Gao L, Zhou G, Xie F. The application of photodynamic therapy in plastic and reconstructive surgery. Front Chem 2022; 10:967312. [PMID: 35936104 PMCID: PMC9353173 DOI: 10.3389/fchem.2022.967312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a modern clinical treatment paradigm with the advantages of high selectivity, non-invasiveness, rare side-effect, no obvious drug resistance and easy combination with other therapies. These features have endowed PDT with high focus and application prospects. Studies of photodynamic therapy have been expanded in a lot of biomedical and clinical fields, especially Plastic and Reconstructive Surgery (PRS) the author major in. In this review, we emphasize the mechanism and advances in PDT related to the PRS applications including benign pigmented lesions, vascular malformations, inflammatory lesions, tumor and others. Besides, combined with clinical data analysis, the limitation of PDT and current issues that need to be addressed in the field of PRS have also been discussed. At last, a comprehensive discussion and outlooking represent future progress of PDT in PRS.
Collapse
Affiliation(s)
- Min Wu
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Min Wu, ; Feng Xie,
| | - Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyu Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xie
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Min Wu, ; Feng Xie,
| |
Collapse
|
7
|
Glebov EM. Femtochemistry methods for studying the photophysics and photochemistry of halide complexes of platinum metals. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
|
9
|
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022; 51:1983-2030. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hui Tan
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Nan Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liping Zhang
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| |
Collapse
|
10
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 723] [Impact Index Per Article: 180.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
11
|
Zhang LP, Li X, Zhao H, Kang L, Liu S, Liu T, Zhao Y. Ultra-high photoactive thiadiazolo[3,4- g]quinoxaline nanoparticles with active-targeting capability for deep photodynamic therapy. J Mater Chem B 2021; 9:8330-8340. [PMID: 34523660 DOI: 10.1039/d1tb01306h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Improving the effective treatment depth of photodynamic therapy (PDT) is an important issue to resolve for its clinical application. In this study, a new biocompatible photosensitizer (PS), namely TQs-PEG4, based on thiadiazolo[3,4-g]quinoxaline (TQ) with ultra-high photoactive property is designed and synthesized. TQs-PEG4 possesses an ultra-high singlet oxygen quantum yield (ΦΔ = 1.04). After encapsulating it with a biodegradable copolymer (DSPE-mPEG2000-cRGD), well distributed organic TQs-PEG4 nanoparticles (NPs) are formed with good water dispersity and excellent active tumor-targeting property. In vitro PDT experiments reveal that TQs-PEG4 NPs present excellent phototoxicities towards different cancer cell lines with an ultra-low dosage (<0.3 μg mL-1). TQs-PEG4 NP mediated PDT significantly inhibited tumor growth even when the tumor was covered with a 6 mm thick piece of pork tissue under 660 nm laser irradiation. Both the histological analysis and biochemical testing demonstrated the good biosafety of TQs-PEG4 NPs towards mice. This study not only develops an ultra-high photoactive organic PS, TQs-PEG4, but also proves the great potential of TQs-PEG4 NPs for application in deep PDT.
Collapse
Affiliation(s)
- Li-Peng Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China.
| | - Xianqiang Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hongyou Zhao
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China.
| | - Lin Kang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shiyang Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 West Road Yuanmingyuan, Beijing, 100193, P. R. China.
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
A highly biocompatible bio-ink for 3D hydrogel scaffolds fabrication in the presence of living cells by two-photon polymerization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Sajjada F, Liua XY, Yanb YJ, Zhoua XP, Chena ZL. The Photodynamic Anti-Tumor Effects of New PPa-CDs Conjugate with pH Sensitivity and Improved Biocompatibility. Anticancer Agents Med Chem 2021; 22:1286-1295. [PMID: 33992066 DOI: 10.2174/1871520621666210513162457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Photodynamic therapy has been increasingly used to cope with the alarming problem of cancer. Porphyrins and its derivatives are widely used as potent photosensitizers (PS) for PDT. However, hydrophobicity of porphyrins poses a challenge for their use in clinics, while most of the carbon dots (CDs) are known for good biocompatibility, solubility, and pH sensitivity. OBJECTIVE To improve the properties/biocompatibility of the pyropheophorbide-α for PDT. METHODS PPa-CD conjugate was synthesized through covalent interaction using amide condensation. The structure of synthesized conjugate was confirmed by TEM, 1HNMR, and FTIR. The absorption and emission spectra were studied. In vitro, cytotoxicity of the conjugate was examined in the Human esophageal cancer cell line (Eca-109). RESULTS The results showed that the fluorescence of the drug was increased from its precursor. CD based conjugate could generate ROS as well as enhanced the biocompatibility by decreasing the cytotoxicity. The conjugated drug also showed pH sensitivity in different solutions. CONCLUSION The dark toxicity, as well as hemocompatibility, were improved.
Collapse
Affiliation(s)
- Faiza Sajjada
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Xu-Ying Liua
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yanb
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, 200433, China
| | - Xing-Ping Zhoua
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| | - Zhi-Long Chena
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Montaseri H, Kruger CA, Abrahamse H. Inorganic Nanoparticles Applied for Active Targeted Photodynamic Therapy of Breast Cancer. Pharmaceutics 2021; 13:pharmaceutics13030296. [PMID: 33668307 PMCID: PMC7996317 DOI: 10.3390/pharmaceutics13030296] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is an alternative modality to conventional cancer treatment, whereby a specific wavelength of light is applied to a targeted tumor, which has either a photosensitizer or photochemotherapeutic agent localized within it. This light activates the photosensitizer in the presence of molecular oxygen to produce phototoxic species, which in turn obliterate cancer cells. The incidence rate of breast cancer (BC) is regularly growing among women, which are currently being treated with methods, such as chemotherapy, radiotherapy, and surgery. These conventional treatment methods are invasive and often produce unwanted side effects, whereas PDT is more specific and localized method of cancer treatment. The utilization of nanoparticles in PDT has shown great advantages compared to free photosensitizers in terms of solubility, early degradation, and biodistribution, as well as far more effective intercellular penetration and uptake in targeted cancer cells. This review gives an overview of the use of inorganic nanoparticles (NPs), including: gold, magnetic, carbon-based, ceramic, and up-conversion NPs, as well as quantum dots in PDT over the last 10 years (2009 to 2019), with a particular focus on the active targeting strategies for the PDT treatment of BC.
Collapse
|
15
|
Li B, Zhang X, Lu Y, Zhao L, Guo Y, Guo S, Kang Q, Liu J, Dai L, Zhang L, Fan D, Ji Z. Protein 4.1R affects photodynamic therapy for B16 melanoma by regulating the transport of 5-aminolevulinic acid. Exp Cell Res 2021; 399:112465. [PMID: 33385415 DOI: 10.1016/j.yexcr.2020.112465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Melanoma is the most aggressive malignant tumor of skin cancer as it can grow rapidly and metastasize. Photodynamic therapy (PDT) is a promising cancer ablation method for skin tumors, although it lacks efficiency owing to factors such as tumor characteristics, delivery of photosensitizers, immune response in vivo etc. Extensive investigation of molecules that can potentially modulate treatment efficacy is required. Protein 4.1R is a cytoskeletal protein molecule. Previous studies have shown that protein 4.1R knockdown reduces PDT sensitivity in mouse embryonic fibroblast cells. However, the functional role of protein 4.1R in melanoma is unclear. In this study, we aimed to elucidate the effect of protein 4.1R on PDT for melanoma in mice and the mechanism of anti-tumor immunity. Our results indicated that CRISPR/Cas9-mediated protein 4.1R knockout promotes the proliferation, migration, and invasion of B16 cells. We further investigated the potential mechanism of protein 4.1R on tumor cell PDT sensitivity. Our results showed that protein 4.1R knockout reduced the expression of membrane transporters γ-aminobutyric acid transporter (GAT)-1 and (GAT)-2 in B16 cells, which affected 5-ALA transmembrane transport and reduced the efficiency of PDT on B16 cells. Protein 4.1R knockout downregulated the anti-tumor immune response triggered by PDT in vivo. In conclusion, our data suggest that protein 4.1R is an important regulator in PDT for tumors and may promote the progress and efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Bowen Li
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaolin Zhang
- People's Hospital of Zhengzhou, 33 Huanghe Road, Zhengzhou, 450000, Henan, China
| | - Yu Lu
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Luyang Zhao
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yaxin Guo
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuangshuang Guo
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jingjing Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liguo Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dandan Fan
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou, 450052, Henan, China.
| | - Zhenyu Ji
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
16
|
Sun Y, Geng X, Wang Y, Su X, Han R, Wang J, Li X, Wang P, Zhang K, Wang X. Highly Efficient Water-Soluble Photosensitizer Based on Chlorin: Synthesis, Characterization, and Evaluation for Photodynamic Therapy. ACS Pharmacol Transl Sci 2021; 4:802-812. [PMID: 33860203 DOI: 10.1021/acsptsci.1c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 01/10/2023]
Abstract
The clinical applications of many photosensitizers (PSs) are limited because of their poor water solubility, weak tissue penetration, low chemical purity, and severe toxicity in the absence of light. We designed a novel chlorin-based PS (designated as HPS) to achieve fluorescence image-guided photodynamic therapy (PDT) with efficient ROS generation. In addition to its simple fabrication process, HPS has other advantages such as excellent water solubility, strong NIR absorption, and high biocompatibility upon chemical functionalization for enhanced phototherapy. HPS exhibited high photodynamic performance against lung cancer and breast cancer cells by generating a large amount of singlet oxygen (1O2) under 654 nm laser irradiation. HPS accumulated into multiple organelles such as mitochondria and the endoplasmic reticulum and triggered cell apoptosis by laser exposure. In the tumor-bearing mice, in vivo, HPS showed an optimal half-life in circulation and achieved fluorescence-image-guided PDT within the irradiation window, resulting in effective tumor growth inhibition and the prolonged survival of animals. Moreover, the antitumor PDT effect of HPS was close to the clinical trial phase II stage of HPPH even at the low dosage of 0.32 mg/kg (under 75 J/cm2 laser), while the systemic safety of HPS was much higher. In conclusion, HPS is a novel water-soluble chlorin derivative with excellent PDT potential for clinical transformation.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Yihui Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaomin Su
- Shannxi Blood Center, Xi'an 710061, The People's Republic of China
| | - Ruyin Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Jiangyue Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xinyan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| |
Collapse
|
17
|
Gutrov VN, Zakharova GV, Fomina MV, Starostin RO, Nuriev VN, Gromov SP, Chibisov AK. Molecular Photonics of 2,4-Dibenzylidenecyclobutanone and Its Derivatives. HIGH ENERGY CHEMISTRY 2020. [DOI: 10.1134/s0018143920050069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Zhang LP, Li X, Liu T, Kang L, Huang X, Zhao Y. A water-soluble pyrazino[2,3-g]quinoxaline photosensitizer for high-efficiency one- and two-photon excited bioimaging and photodynamic therapy. Chem Commun (Camb) 2020; 56:5544-5547. [DOI: 10.1039/d0cc02285c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A water-soluble pyrazino[2,3-g]quinoxaline photosensitizer was synthesized and exhibited excellent performance for both one- and two photon excited bioimaging and photodynamic therapy.
Collapse
Affiliation(s)
- Li-Peng Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Xianqiang Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Nanopathology
- College of Veterinary Medicine
- China Agricultural University
- Beijing 100193
- P. R. China
| | - Lin Kang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Xing Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
19
|
Dai X, Du T, Han K. Engineering Nanoparticles for Optimized Photodynamic Therapy. ACS Biomater Sci Eng 2019; 5:6342-6354. [DOI: 10.1021/acsbiomaterials.9b01251] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinxin Dai
- College of Science, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, China
| | - Kai Han
- College of Science, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Pharmacy, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
20
|
Terenzi A, Gattuso H, Spinello A, Keppler BK, Chipot C, Dehez F, Barone G, Monari A. Targeting G-quadruplexes with Organic Dyes: Chelerythrine-DNA Binding Elucidated by Combining Molecular Modeling and Optical Spectroscopy. Antioxidants (Basel) 2019; 8:antiox8100472. [PMID: 31658666 PMCID: PMC6826623 DOI: 10.3390/antiox8100472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/24/2023] Open
Abstract
The DNA-binding of the natural benzophenanthridine alkaloid chelerythrine (CHE) has been assessed by combining molecular modeling and optical absorption spectroscopy. Specifically, both double-helical (B-DNA) and G-quadruplex sequences—representative of different topologies and possessing biological relevance, such as telomeric or regulatory sequences—have been considered. An original multiscale protocol, making use of molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations, allowed us to compare the theoretical and experimental circular dichroism spectra of the different DNA topologies, readily providing atomic-level details of the CHE–DNA binding modes. The binding selectivity towards G-quadruplexes is confirmed by both experimental and theoretical determination of the binding free energies. Overall, our mixed computational and experimental approach is able to shed light on the interaction of small molecules with different DNA conformations. In particular, CHE may be seen as the building block of promising drug candidates specifically targeting G-quadruplexes for both antitumoral and antiviral purposes.
Collapse
Affiliation(s)
- Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Währingerstrasse 42, A-1090 Vienna, Austria.
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, Spain.
| | - Hugo Gattuso
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
| | - Angelo Spinello
- CNR-IOM DEMOCRITOS c/o International School for Advanced Studies (SISSA), 34136 Trieste, Italy.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Währingerstrasse 42, A-1090 Vienna, Austria.
| | - Christophe Chipot
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA.
| | - François Dehez
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA.
| | - Giampaolo Barone
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
| |
Collapse
|
21
|
Valentini A, Nucci M, Frutos LM, Marazzi M. Photosensitized Retinal Isomerization in Rhodopsin Mediated by a Triplet State. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alessio Valentini
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
- Department of Biotechnology, Chemistry and PharmacyUniversity of Siena via A. Moro 2 53100 Siena Italy
- Theoretical Physical Chemistry, Research Unit MolSysUniversité de Liège Allée du 6 Aôut, 11 4000 Liège Belgium
| | - Martina Nucci
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
| | - Luis Manuel Frutos
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá E-28871 Alcalá de Henares, Madrid Spain
| | - Marco Marazzi
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá E-28871 Alcalá de Henares, Madrid Spain
| |
Collapse
|
22
|
Wang X, Huang X, Zhao Y. Effect of aggregation behavior on linear and nonlinear photophysical properties of lipid-water amphiphilic photosensitizers. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Sourdon A, Gary-Bobo M, Maynadier M, Garcia M, Majoral JP, Caminade AM, Mongin O, Blanchard-Desce M. Dendrimeric Nanoparticles for Two-Photon Photodynamic Therapy and Imaging: Synthesis, Photophysical Properties, Innocuousness in Daylight and Cytotoxicity under Two-Photon Irradiation in the NIR. Chemistry 2019; 25:3637-3649. [PMID: 30620107 DOI: 10.1002/chem.201805617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The synthesis and the photophysical properties of a new class of fully organic monodisperse nanoparticles for combined two-photon imaging and photodynamic therapy are described. The design of such nanoparticles is based on the covalent immobilization of a dedicated quadrupolar dye that combines excellent two-photon absorbing (2PA) properties, fluorescence and singlet oxygen generation ability, in a phosphorous-based dendrimeric architecture. First, a bifunctional quadrupolar dye bearing two different grafting moieties, a phenol function and an aldehyde function, was synthesized. It was then covalently grafted through its phenol function to a phosphorus-based dendrimer scaffold of generation 1. The remaining aldehyde functions were then used to continue the dendrimer synthesis up to generation 2, introducing finally 24 water-solubilizing triethyleneglycol chains at its periphery. A dendrimer confining 12 photoactive quadrupolar units in its inner scaffold and showing water solubility was thus obtained. Interestingly, the G1 and G2 dendrimers retain some fluorescence as well as significant singlet oxygen production efficiencies while they were found to show very high 2PA cross-sections in a broad range of the NIR biological spectral window. Hydrophilic dendrimer G2 was tested in vitro on breast cancer cells, first in one- and two-photon microscopy, which allowed for visualization of their cell internalization, then in two-photon photodynamic therapy. While being nontoxic in the dark and, more importantly, under exposure to daylight, dendrimer G2 proved to be a very efficient cell-death inducer only under two-photon irradiation in the NIR.
Collapse
Affiliation(s)
- Aude Sourdon
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Marie Maynadier
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Olivier Mongin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | | |
Collapse
|
24
|
Carrier-free core–shell nanodrugs for synergistic two-photon photodynamic therapy of cervical cancer. J Colloid Interface Sci 2019; 535:84-91. [DOI: 10.1016/j.jcis.2018.09.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 01/09/2023]
|
25
|
Liu H, Zheng T, Zhou Z, Hu A, Li M, Zhang Z, Yu G, Feng H, An Y, Peng J, Chen Y. Berberine nanoparticles for promising sonodynamic therapy of a HeLa xenograft tumour. RSC Adv 2019; 9:10528-10535. [PMID: 35515276 PMCID: PMC9062522 DOI: 10.1039/c8ra09172b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/06/2019] [Indexed: 01/05/2023] Open
Abstract
Here we show that berberine (BBR) nanoparticles (BBRNPs, ∼300 nm hydrodynamic diameter) is a promising sonosensitizer for cancer sonodynamic therapy (SDT).
Collapse
|
26
|
Sun X, Ji Z, He S. SHG-enhanced NIR-excited in vitro photodynamic therapy using composite nanoparticles of barium titanate and rose Bengal. RSC Adv 2019; 9:8056-8064. [PMID: 35521188 PMCID: PMC9061351 DOI: 10.1039/c9ra00432g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023] Open
Abstract
Near infrared (NIR) light excited photodynamic therapy (PDT) has been considered as a possible way to increase the therapy depth. Besides the traditional two-photon excited PDT and upconversion PDT by rare-earth ion materials, SHG has drawn much attention recently to act as an additional choice to achieve NIR light excited PDT. Herein, by using the electrostatic absorption method, barium titanate and rose Bengal composite nanoparticles (BT@PAH/RB/PAH, BT–RB) were synthesized. Compared with rose Bengal (RB) molecules and a mixture of barium titanate nanoparticles and RB (BT + RB), BT–RB nanoparticles were shown to be able to produce more reactive oxygen species (ROS) ex vivo and in vitro. Afterwards, the SHG-enhanced localized PDT was applied on Hela cells, in which BT–RB nanoparticles showed a better performance than BT + RB. Our work has shown that the SHG-enhanced PDT has good prospects and the close combination of harmonic nanoparticles and photosensitizers may facilitate the development of novel reagents for NIR light excited PDT. Composite nanoparticles of barium titanate and rose Bengal are used to achieve second harmonic generation (SHG) enhanced photodynamic therapy excited by near infrared (NIR) light.![]()
Collapse
Affiliation(s)
- Xianhe Sun
- State Key Laboratory of Modern Optical Instrumentations
- Centre for Optical and Electromagnetic Research
- Zhejiang University
- Hangzhou 310058
- China
| | - Zhang Ji
- State Key Laboratory of Modern Optical Instrumentations
- Centre for Optical and Electromagnetic Research
- Zhejiang University
- Hangzhou 310058
- China
| | - Sailing He
- State Key Laboratory of Modern Optical Instrumentations
- Centre for Optical and Electromagnetic Research
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
27
|
Bolze F, Jenni S, Sour A, Heitz V. Molecular photosensitisers for two-photon photodynamic therapy. Chem Commun (Camb) 2018; 53:12857-12877. [PMID: 29115314 DOI: 10.1039/c7cc06133a] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two-photon excitation has attracted the attention of biologists, especially after the development of two-photon excited microscopy in the nineties. Since then, new applications have rapidly emerged such as the release of biologically active molecules and photodynamic therapy (PDT) using two-photon excitation. PDT, which requires a light-activated drug (photosensitiser), is a clinically approved and minimally invasive treatment for cancer and for non-malignant diseases. This feature article focuses on the engineering of molecular two-photon photosensitisers for PDT, which should bring important benefits to the treatment, increase the treatment penetration depth with near-infrared light excitation, improve the spatial selectivity and reduce the photodamage to healthy tissues. After an overview of the two-photon absorption phenomenon and the methods to evaluate two-photon induced phototoxicity on cell cultures, the different classes of photosensitisers described in the literature are discussed. The two-photon PDT performed with historical one-photon sensitisers are briefly presented, followed by specifically engineered cyclic tetrapyrrole photosensitisers, purely organic photosensitisers and transition metal complexes. Finally, targeted two-photon photosensitisers and theranostic agents that should enhance the selectivity and efficiency of the treatment are discussed.
Collapse
Affiliation(s)
- F Bolze
- CAMB, UMR 7199, UdS/CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | | | | | | |
Collapse
|
28
|
Zhang H, Gattuso H, Dumont E, Cai W, Monari A, Chipot C, Dehez F. Accurate Estimation of the Standard Binding Free Energy of Netropsin with DNA. Molecules 2018; 23:molecules23020228. [PMID: 29370096 PMCID: PMC6017086 DOI: 10.3390/molecules23020228] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
DNA is the target of chemical compounds (drugs, pollutants, photosensitizers, etc.), which bind through non-covalent interactions. Depending on their structure and their chemical properties, DNA binders can associate to the minor or to the major groove of double-stranded DNA. They can also intercalate between two adjacent base pairs, or even replace one or two base pairs within the DNA double helix. The subsequent biological effects are strongly dependent on the architecture of the binding motif. Discriminating between the different binding patterns is of paramount importance to predict and rationalize the effect of a given compound on DNA. The structural characterization of DNA complexes remains, however, cumbersome at the experimental level. In this contribution, we employed all-atom molecular dynamics simulations to determine the standard binding free energy of DNA with netropsin, a well-characterized antiviral and antimicrobial drug, which associates to the minor groove of double-stranded DNA. To overcome the sampling limitations of classical molecular dynamics simulations, which cannot capture the large change in configurational entropy that accompanies binding, we resort to a series of potentials of mean force calculations involving a set of geometrical restraints acting on collective variables.
Collapse
Affiliation(s)
- Hong Zhang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Hugo Gattuso
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy, 54506 Vandoeuvre-lès-Nancy, France.
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS, 54506 Vandeouvre-lès-Nancy, France.
| | - Elise Dumont
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Université Claude Bernard Lyon 1, F-69342 Lyon, France.
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Antonio Monari
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy, 54506 Vandoeuvre-lès-Nancy, France.
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS, 54506 Vandeouvre-lès-Nancy, France.
| | - Christophe Chipot
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy, 54506 Vandoeuvre-lès-Nancy, France.
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS, 54506 Vandeouvre-lès-Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Champaign, Illinois, 54506 Vandeouvre-lès-Nancy, France.
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA.
| | - François Dehez
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy, 54506 Vandoeuvre-lès-Nancy, France.
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS, 54506 Vandeouvre-lès-Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Champaign, Illinois, 54506 Vandeouvre-lès-Nancy, France.
| |
Collapse
|
29
|
Sun Z, Wang Y, Fang DC, Zhao Y. The effects of bromine atoms on the photophysical and photochemical properties of 3-cinnamoylcoumarin derivatives. NEW J CHEM 2018. [DOI: 10.1039/c8nj00966j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coumarin derivatives modified using bromine atoms linked onto the right benzene ring (mainly in the HOMO) could enhance singlet oxygen generation capability.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
| | - Yu Wang
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
| | - De-Cai Fang
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Yuxia Zhao
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
30
|
Sun J, Xin Q, Yang Y, Shah H, Cao H, Qi Y, Gong JR, Li J. Nitrogen-doped graphene quantum dots coupled with photosensitizers for one-/two-photon activated photodynamic therapy based on a FRET mechanism. Chem Commun (Camb) 2018; 54:715-718. [DOI: 10.1039/c7cc08820e] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photosensitizers can be excited by nitrogen-doped graphene quantum dots under one-/two-photon excitation through an intramolecular FRET mechanism and induced phototoxicity.
Collapse
Affiliation(s)
- Jiaheng Sun
- School of Public Health, Jilin University
- Changchun
- China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
| | - Qi Xin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Hameed Shah
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Hongqian Cao
- School of Public Health, Jilin University
- Changchun
- China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
| | - Yanfei Qi
- School of Public Health, Jilin University
- Changchun
- China
| | - Jian Ru Gong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Junbai Li
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| |
Collapse
|
31
|
Dichiara M, Prezzavento O, Marrazzo A, Pittalà V, Salerno L, Rescifina A, Amata E. Recent advances in drug discovery of phototherapeutic non-porphyrinic anticancer agents. Eur J Med Chem 2017; 142:459-485. [DOI: 10.1016/j.ejmech.2017.08.070] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
|
32
|
Glebov EM, Grivin VP, Vasil’chenko DB, Zadesenets AV, Plyusnin VF. Two-quantum photochemistry of the complex cis,trans-[PtIV(en)(I)2(CH3COO)2]. HIGH ENERGY CHEMISTRY 2017. [DOI: 10.1134/s0018143917060078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
García-Iriepa C, Marazzi M. Level of Theory and Solvent Effects on DASA Absorption Properties Prediction: Comparing TD-DFT, CASPT2 and NEVPT2. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1025. [PMID: 28869516 PMCID: PMC5615680 DOI: 10.3390/ma10091025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/26/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are a very recent class of organic photoswitches that combine excellent properties, such as color and polarity change, a large structural modification, and excellent fatigue resistance. Despite their potential applications in different fields, very few studies have focused on rationalizing their electronic structure properties. Here, by means of different state-of-the-art theoretical methods, including solvent and vibrational effects, we show that while time dependent-density functional theory (TD-DFT) can qualitatively describe DASAs' excited states, multiconfigurational quantum chemistry methods along with dynamic electron correlation (CASPT2, NEVPT2) are required for a quantitative agreement with the experiment. This finding is reasoned based on the different charge transfer characteristics observed. Moreover, the TD-DFT computed two-photon absorption properties are reported and suggested to red-shift the absorption band, as required for biological applications.
Collapse
Affiliation(s)
- Cristina García-Iriepa
- Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France.
| | - Marco Marazzi
- Théorie-Modélisation-Simulation, Université de Lorraine-Nancy, SRSMC Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France.
- Théorie-Modélisation-Simulation, CNRS, SRSMC Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
34
|
Wu W, Mao D, Hu F, Xu S, Chen C, Zhang CJ, Cheng X, Yuan Y, Ding D, Kong D, Liu B. A Highly Efficient and Photostable Photosensitizer with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Anticancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700548. [PMID: 28671732 DOI: 10.1002/adma.201700548] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/05/2017] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy (PDT), which relies on photosensitizers (PS) and light to generate reactive oxygen species to kill cancer cells or bacteria, has attracted much attention in recent years. PSs with both bright emission and efficient singlet oxygen generation have also been used for image-guided PDT. However, simultaneously achieving effective 1 O2 generation, long wavelength absorption, and stable near-infrared (NIR) emission with low dark toxicity in a single PS remains challenging. In addition, it is well known that when traditional PSs are made into nanoparticles, they encounter quenched fluorescence and reduced 1 O2 production. In this contribution, these challenging issues have been successfully addressed through designing the first photostable photosensitizer with aggregation-induced NIR emission and very effective 1 O2 generation in aggregate state. The yielded nanoparticles show very effective 1 O2 generation, bright NIR fluorescence centered at 820 nm, excellent photostability, good biocompatibility, and negligible dark in vivo toxicity. Both in vitro and in vivo experiments prove that the nanoparticles are excellent candidates for image-guided photodynamic anticancer therapy.
Collapse
Affiliation(s)
- Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chong-Jing Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xiamin Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Youyong Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
35
|
Cai ZB, Bai L, Pan YL, Ma FF, Li SL, Tian YP. Multipolar symmetric and asymmetric N–heterocyclic compounds with efficient two−photon absorption. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Marazzi M, Besancenot V, Gattuso H, Lassalle HP, Grandemange S, Monari A. Photophysics of the Singlet Oxygen Sensor Green Chromophore: Self-Production of 1O2 Explained by Molecular Modeling. J Phys Chem B 2017; 121:7586-7592. [DOI: 10.1021/acs.jpcb.7b04383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Marazzi
- Theory-Modeling-Simulation
SRSMC, Université de Lorraine Nancy, 54506 Vandoeuvre-lès-Nancy, France
- Theory-Modeling-Simulation
SRSMC, CNRS, 54506 Vandoeuvre-lès-Nancy, France
| | - V. Besancenot
- Université de Lorraine Nancy and CNRS, CRAN, 54506 Vandoeuvre-lès-Nancy, France
| | - Hugo Gattuso
- Theory-Modeling-Simulation
SRSMC, Université de Lorraine Nancy, 54506 Vandoeuvre-lès-Nancy, France
- Theory-Modeling-Simulation
SRSMC, CNRS, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | - Antonio Monari
- Theory-Modeling-Simulation
SRSMC, Université de Lorraine Nancy, 54506 Vandoeuvre-lès-Nancy, France
- Theory-Modeling-Simulation
SRSMC, CNRS, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
37
|
Mojtahedi MM, Darvishi K, Abaee MS, Halvagar MR. Synthesis and fluorescence studies of novel bisarylmethylidene derivatives of 2-methoxy-2-methyl-1,3-dioxan-5-one. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first general procedure is described for the synthesis of novel bisarylmethylidenes of 2-methoxy-2-methyl-1,3-dioxan-5-one 1. Thus, several derivatives of 3 are obtained rapidly in high yields by reacting 1 with different aldehydes in the presence of catalytic quantities of pyrrolidine in EtOH at room temperature. Upon completion of the reactions, products are obtained directly by spontaneous precipitation avoiding time consuming and expensive chromatographic separations. All products were characterized by proton and carbon NMR spectroscopy methods, and in one case, the proposed structure was elucidated by X-ray crystallography, confirming the Z stereochemistry for the olefinic C=C bonds. Due to showing different colours in solid and solution states, products were studied for their photophysical properties as well.
Collapse
Affiliation(s)
- Mohammad M. Mojtahedi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
| | - Kiana Darvishi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
| | - M. Saeed Abaee
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
| | - Mohammad R. Halvagar
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Blvrd., 17th km of Tehran-Karaj Highway, P.O. Box 14335-186, Tehran, Iran
| |
Collapse
|
38
|
Qiu K, Wang J, Song C, Wang L, Zhu H, Huang H, Huang J, Wang H, Ji L, Chao H. Crossfire for Two-Photon Photodynamic Therapy with Fluorinated Ruthenium (II) Photosensitizers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18482-18492. [PMID: 28474527 DOI: 10.1021/acsami.7b02977] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synergistic photodynamic therapy (PDT) that combines photosensitizers (PSs) to attack different key sites in cancer cells is very attractive. However, the use of multiple PSs may increase dark cytotoxicity. Additionally, realizing the multiple vein passage of several PSs through dosing could be a challenge in clinical treatment. To address these issues, a novel strategy that enables a single PS to ablate two key sites (i.e., cytomembranes on the outside and mitochondria on the inside) of cancer cells synergistically was proposed. Five new fluorinated ruthenium (II) complexes (Ru1-Ru5), which possessed excellent two-photon properties and good singlet oxygen quantum yields, were designed and synthesized. When incubated with HeLa cells, the complexes were observed on the cytomembranes at first. With an extension of the treatment time, both the cytomembranes and mitochondria were lit up by the complexes. Under two-photon laser irradiation, the mitochondria and cytomembranes were ablated simultaneously, and the HeLa cells were destroyed effectively by the complexes, whether the cells were in a monolayer or in multicellular spheroids. With the largest phototoxicity index under the two-photon laser, Ru4 was used for two-photon PDT of in vivo xenograft tumors and successfully inhibited the growth of the tumors. Our results emphasized that the strategy of attacking two key sites with a single PS is an efficient method for PDT.
Collapse
Affiliation(s)
| | - Jinquan Wang
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University , Guangzhou 510006, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sengul O, Boydas EB, Pastore M, Sharmouk W, Gros PC, Catak S, Monari A. Probing optical properties of thiophene derivatives for two-photon absorption. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2094-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Green synthesis and photophysical properties of novel 1 H -imidazo[4,5- f ][1,10]phenanthroline derivatives with blue/cyan two-photon excited fluorescence. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
41
|
Wang D, Ren AM, Zou LY, Guo JF, Huang S. A theoretical investigation of a series of novel two-photon zinc ion fluorescent probes based on bipyridine. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Li MM, Cao J, Yang JC, Shen YJ, Cai XL, Chen YW, Qu CY, Zhang Y, Shen F, Xu LM. Effects of arginine-glycine-aspartic acid peptide-conjugated quantum dots-induced photodynamic therapy on pancreatic carcinoma in vivo. Int J Nanomedicine 2017; 12:2769-2779. [PMID: 28435257 PMCID: PMC5388266 DOI: 10.2147/ijn.s130799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Quantum dots (QDs) conjugated with integrin antagonist arginine-glycine-aspartic acid (RGD) peptides (QDs-RGD) are novel nanomaterials with a unique optical property: a high molar extinction coefficient. Previously, we have shown that QDs-RGD demonstrate a photodynamic therapy (PDT) effect as new photosensitizers for the pancreatic cancer cell line SW1990 in vitro. Here, we investigate the application of QDs-RGD in mice bearing pancreatic tumors using PDT. To ensure that more photosensitizers accumulated in tumors, QDs-RGD were injected intratumorally. After selection of an adequate dosage for injection from analyses of biodistribution images captured by an IVIS system, PDT was initiated. Three groups were created according to different PDT procedures. In group 1, mice were injected with QDs-RGD intratumorally, and an optical fiber connected to a laser light was inserted directly into the tumor. Irradiation was sustained for 20 min with a laser light (630 nm) at 100 mW/cm2. In group 2, the laser optical fiber was placed around, and not inserted into, tumors. In group 3, PDT was conducted as in group 1 but without injection of QDs-RGD. After 28 days of observation, tumors on the back of mice in group 1 grew slowly (V/V0 =3.24±0.70) compared with the control groups, whose tumors grew quickly, and the mean V/V0 reached 6.08±0.50 (group 2) and 7.25±0.82 (group 3). Histology of tumor tissues showed more necrotic tissues, more inflammatory cells, and less vascular tissue in the PDT group than those in the control groups. These results suggest that QDs-RGD-mediated PDT, with illumination using an optical fiber inserted directly into the tumor, can inhibit the growth of SW1990 tumors with high efficiency in nude mice.
Collapse
Affiliation(s)
- Ming-Ming Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Jia Cao
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Jia-Chun Yang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Yu-Jie Shen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Xiao-Lei Cai
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Chun-Ying Qu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Yi Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Feng Shen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Lei-Ming Xu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| |
Collapse
|
43
|
Liao PY, Wang XR, Zhang XH, Hu TS, Zheng MZ, Gao YH, Yan YJ, Chen ZL. Synthesis of 2-morpholinetetraphenylporphyrins and their photodynamic activities. Bioorg Chem 2017; 71:299-304. [PMID: 28267982 DOI: 10.1016/j.bioorg.2017.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/26/2017] [Accepted: 02/26/2017] [Indexed: 01/20/2023]
Abstract
A series of 2-morpholinetetraphenylporphyrins functionalized with various substituents (Cl, Me, MeO group) at 4-phenyl position were prepared via nucleophilic substitution of 2-nitroporphyrin copper derivatives with morpholine by refluxing under a nitrogen atmosphere and then demetalization. Their basic photophysical properties, intracellular localization, cytotoxicities in vitro and in vivo were also investigated. All synthesized photosensitizers exhibited longer maxima absorption wavelengths than Hematoporphyrin monomethyl ether (HMME). They showed low dark cytotoxicity compared with that of HMME and were more phototoxic than HMME against Eca-109 cells in vitro. M3 also exhibited better photodynamic antitumor efficacy on BALB/c nude mice at a lower concentration. Therefore, M3 is a promising antitumor photosensitizer in photodynamic therapy application.
Collapse
Affiliation(s)
- Ping-Yong Liao
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, PR China
| | - Xin-Rong Wang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, PR China
| | - Xiang-Hua Zhang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Tai-Shan Hu
- Shanghai Xianhui Pharmaceutical Co. Ltd., Shanghai 200433, China
| | - Mei-Zhen Zheng
- Shanghai Xianhui Pharmaceutical Co. Ltd., Shanghai 200433, China
| | - Ying-Hua Gao
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, PR China
| | - Yi-Jia Yan
- Shanghai Xianhui Pharmaceutical Co. Ltd., Shanghai 200433, China
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
44
|
Gattuso H, Monari A, Marazzi M. Photophysics of chlorin e6: from one- and two-photon absorption to fluorescence and phosphorescence. RSC Adv 2017. [DOI: 10.1039/c6ra28616j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Linear and non-linear optical properties of a known photosensitizer producing singlet oxygen, chlorin e6, have been studied, including dynamics effects.
Collapse
Affiliation(s)
- Hugo Gattuso
- Université de Lorraine – Nancy
- Theory-Modeling-Simulation SRSMC
- Vandoeuvre-les-Nancy
- France
- CNRS
| | - Antonio Monari
- Université de Lorraine – Nancy
- Theory-Modeling-Simulation SRSMC
- Vandoeuvre-les-Nancy
- France
- CNRS
| | - Marco Marazzi
- Université de Lorraine – Nancy
- Theory-Modeling-Simulation SRSMC
- Vandoeuvre-les-Nancy
- France
- CNRS
| |
Collapse
|
45
|
Pan YL, Cai ZB, Bai L, Li SL, Tian YP. Preparation and Photophysical Properties of All-trans Acceptor–π-Donor (Acceptor) Compounds Possessing Obvious Solvatochromic Effects. Aust J Chem 2017. [DOI: 10.1071/ch17021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of all-trans acceptor–π-donor (acceptor) compounds (BAQ, SFQ, BLQ, and XJQ) were conveniently synthesised and characterised by infrared, nuclear magnetic resonance, mass spectrometry, and elemental analysis. Their photophysical properties, including linear absorption, one-photon excited fluorescence, two-photon absorption, and two-photon excited fluorescence, were systematically investigated. All the compounds show obvious solvatochromic effects, such as significant bathochromic shifts of the emission spectra and larger Stokes shifts in more polar solvents. Under excitation from a femtosecond Ti : sapphire laser with a pulse width of 140 fs, they all exhibit strong two-photon excited fluorescence, and the two-photon absorption cross-sections in THF are 851 (BAQ), 216 (SFQ), 561 (BLQ), and 447 (XJQ) GM respectively. A combination of density functional theory (DFT) and time-dependent density functional theory (TDDFT) approaches was used to investigate the relationships between the structures and the photophysical properties of these compounds. The results show that they may have a potential application as polarity-sensitive two-photon fluorescent probes.
Collapse
|
46
|
Zhou X, Chen Y, Su J, Tian X, Luo Y, Luo L. In situ second-harmonic generation mediated photodynamic therapy by micelles co-encapsulating coordination nanoparticle and photosensitizer. RSC Adv 2017. [DOI: 10.1039/c7ra07334h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NIR-PDT strategy was introduced by employing a nonlinear optical conveyor bearing strong second-harmonic generation (SHG) property. A biocompatible micellic system co-delivered the conveyor and photosensitizer for in situ NIR-PDT.
Collapse
Affiliation(s)
- Xuyang Zhou
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
- P. R. China
| | - Yang Chen
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
- P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Xiaohe Tian
- Department of Chemistry
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province
- Anhui University
- Hefei 230039
- P. R. China
| | - Yonghuang Luo
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
- P. R. China
| | - Lei Luo
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
- P. R. China
| |
Collapse
|
47
|
Gattuso H, Besancenot V, Grandemange S, Marazzi M, Monari A. From non-covalent binding to irreversible DNA lesions: nile blue and nile red as photosensitizing agents. Sci Rep 2016; 6:28480. [PMID: 27329409 PMCID: PMC4916457 DOI: 10.1038/srep28480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
We report a molecular modeling study, coupled with spectroscopy experiments, on the behavior of two well known organic dyes, nile blue and nile red, when interacting with B-DNA. In particular, we evidence the presence of two competitive binding modes, for both drugs. However their subsequent photophysical behavior is different and only nile blue is able to induce DNA photosensitization via an electron transfer mechanism. Most notably, even in the case of nile blue, its sensitization capabilities strongly depend on the environment resulting in a single active binding mode: the minor groove. Fluorescence spectroscopy confirms the presence of competitive interaction modes for both sensitizers, while the sensitization via electron transfer, is possible only in the case of nile blue.
Collapse
Affiliation(s)
- Hugo Gattuso
- Université de Lorraine – Nancy, Theory-Modeling-Simulation SRSMC, Vandoeuvre-lès-Nancy, France
- CNRS, Theory-Modeling-Simulation SRSMC, Vandoeuvre-lès-Nancy, France
| | - Vanessa Besancenot
- Université de Lorraine – Nancy Santé, Biologie, Signal - CRAN, Vandoeuvre-lès-Nancy, France
- CNRS, Santé, Biologie, Signal, CRAN, Vandoeuvre-lès-Nancy, France
| | - Stéphanie Grandemange
- Université de Lorraine – Nancy Santé, Biologie, Signal - CRAN, Vandoeuvre-lès-Nancy, France
- CNRS, Santé, Biologie, Signal, CRAN, Vandoeuvre-lès-Nancy, France
| | - Marco Marazzi
- Université de Lorraine – Nancy, Theory-Modeling-Simulation SRSMC, Vandoeuvre-lès-Nancy, France
- CNRS, Theory-Modeling-Simulation SRSMC, Vandoeuvre-lès-Nancy, France
| | - Antonio Monari
- Université de Lorraine – Nancy, Theory-Modeling-Simulation SRSMC, Vandoeuvre-lès-Nancy, France
- CNRS, Theory-Modeling-Simulation SRSMC, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
48
|
Meng Z, Yu B, Han G, Liu M, Shan B, Dong G, Miao Z, Jia N, Tan Z, Li B, Zhang W, Zhu H, Sheng C, Yao J. Chlorin p6-Based Water-Soluble Amino Acid Derivatives as Potent Photosensitizers for Photodynamic Therapy. J Med Chem 2016; 59:4999-5010. [PMID: 27136389 DOI: 10.1021/acs.jmedchem.6b00352] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of novel photosensitizer with high phototoxicity, low dark toxicity, and good water solubility is a challenging task for photodynamic therapy (PDT). A series of chlorin p6-based water-soluble amino acid conjugates were synthesized and investigated for antitumor activity. Among them, aspartylchlorin p6 dimethylester (7b) showed highest phototoxicity against melanoma cells with weakest dark toxicity, which was more phototoxic than verteporfin while with less dark toxicity. It also exhibited better in vivo PDT antitumor efficacy on mice bearing B16-F10 tumor than verteporfin. The biological assays revealed that 7b was localized in multiple subcellular organelles and could cause both cell necrosis and apoptosis after PDT in a dose-dependent manner, resulting in more effective cell destruction. As a result, 7b represents a promising photosensitizer for PDT applications because of its strong absorption in the phototherapeutic window, relatively high singlet oxygen quantum yield, highest dark toxicity/phototoxicity ratio, good water solubility, and excellent in vivo PDT antitumor efficacy.
Collapse
Affiliation(s)
- Zhi Meng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Bin Yu
- Department of Cell Biology, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China
| | - Guiyan Han
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Minghui Liu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine , 1 Qiuyang Road, Fuzhou, 350122, China
| | - Bin Shan
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine , 1 Qiuyang Road, Fuzhou, 350122, China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Zhenyuan Miao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Ningyang Jia
- Department of Radiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University , 225 Changhai Road, Shanghai 200438, China
| | - Zou Tan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University , 32 Shangshan Road, Fujian 350007, China
| | - Buhong Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University , 32 Shangshan Road, Fujian 350007, China
| | - Wannian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Haiying Zhu
- Department of Cell Biology, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Jianzhong Yao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
49
|
Xing R, Jiao T, Liu Y, Ma K, Zou Q, Ma G, Yan X. Co-Assembly of Graphene Oxide and Albumin/Photosensitizer Nanohybrids towards Enhanced Photodynamic Therapy. Polymers (Basel) 2016; 8:E181. [PMID: 30979274 PMCID: PMC6431907 DOI: 10.3390/polym8050181] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/14/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023] Open
Abstract
The inactivation of photosensitizers before they reach the targeted tissues can be an important factor, which limits the efficacy of photodynamic therapy (PDT). Here, we developed co-assembled nanohybrids of graphene oxide (GO) and albumin/photosensitizer that have a potential for protecting the photosensitizers from the environment and releasing them in targeted sites, allowing for an enhanced PDT. The nanohybrids were prepared by loading the pre-assembled nanoparticles of chlorin e6 (Ce6) and bovine serum albumin (BSA) on GO via non-covalent interactions. The protection to Ce6 is evident from the inhibited fluorescence and singlet oxygen generation activities of Ce6⁻BSA⁻GO nanohybrids. Importantly, compared to free Ce6 and Ce6 directly loaded by GO (Ce6⁻GO), Ce6⁻BSA⁻GO nanohybrids showed enhanced cellular uptake and in vitro release of Ce6, leading to an improved PDT efficiency. These results indicate that the smart photosensitizer delivery system constructed by co-assembly of GO and albumin is promising to improve the stability, biocompatibility, and efficiency of PDT.
Collapse
Affiliation(s)
- Ruirui Xing
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Yamei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Kai Ma
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qianli Zou
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guanghui Ma
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
50
|
Zhang L, Lei K, Zhang J, Song W, Zheng Y, Tan S, Gao Y, Xu Y, Liu J, Qian X. One small molecule as a theranostic agent: naphthalimide dye for subcellular fluorescence localization and photodynamic therapy in vivo. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00104a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A small single-molecule theranostic agent based on naphthalimide was developed, which possessed both bright fluorescence imaging and effective photodynamic therapeutic treatment.
Collapse
|