1
|
Strauss A, Gonzalez-Hernandez AJ, Lee J, Abreu N, Selvakumar P, Salas-Estrada L, Kristt M, Arefin A, Huynh K, Marx DC, Gilliland K, Melancon BJ, Filizola M, Meyerson J, Levitz J. Structural basis of positive allosteric modulation of metabotropic glutamate receptor activation and internalization. Nat Commun 2024; 15:6498. [PMID: 39090128 PMCID: PMC11294631 DOI: 10.1038/s41467-024-50548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The metabotropic glutamate receptors (mGluRs) are neuromodulatory family C G protein coupled receptors which assemble as dimers and allosterically couple extracellular ligand binding domains (LBDs) to transmembrane domains (TMDs) to drive intracellular signaling. Pharmacologically, mGluRs can be targeted at the LBDs by glutamate and synthetic orthosteric compounds or at the TMDs by allosteric modulators. Despite the potential of allosteric compounds as therapeutics, an understanding of the functional and structural basis of their effects is limited. Here we use multiple approaches to dissect the functional and structural effects of orthosteric versus allosteric ligands. We find, using electrophysiological and live cell imaging assays, that both agonists and positive allosteric modulators (PAMs) can drive activation and internalization of group II and III mGluRs. The effects of PAMs are pleiotropic, boosting the maximal response to orthosteric agonists and serving independently as internalization-biased agonists across mGluR subtypes. Motivated by this and intersubunit FRET analyses, we determine cryo-electron microscopy structures of mGluR3 in the presence of either an agonist or antagonist alone or in combination with a PAM. These structures reveal PAM-driven re-shaping of intra- and inter-subunit conformations and provide evidence for a rolling TMD dimer interface activation pathway that controls G protein and beta-arrestin coupling.
Collapse
Affiliation(s)
- Alexa Strauss
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional Program in Chemical Biology, New York, NY, 10065, USA
| | | | - Joon Lee
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nohely Abreu
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Purushotham Selvakumar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kevin Huynh
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Dagan C Marx
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kristen Gilliland
- Warren Center for Neuroscience Drug Discovery at Vanderbilt University, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bruce J Melancon
- Warren Center for Neuroscience Drug Discovery at Vanderbilt University, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA.
- Tri-Institutional Program in Chemical Biology, New York, NY, 10065, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Georgiou N, Karta D, Cheilari A, Merzel F, Tzeli D, Vassiliou S, Mavromoustakos T. Synthesis of Thiazolidin-4-Ones Derivatives, Evaluation of Conformation in Solution, Theoretical Isomerization Reaction Paths and Discovery of Potential Biological Targets. Molecules 2024; 29:2458. [PMID: 38893334 PMCID: PMC11173912 DOI: 10.3390/molecules29112458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Thiazolin-4-ones and their derivatives represent important heterocyclic scaffolds with various applications in medicinal chemistry. For that reason, the synthesis of two 5-substituted thiazolidin-4-one derivatives was performed. Their structure assignment was conducted by NMR experiments (2D-COSY, 2D-NOESY, 2D-HSQC and 2D-HMBC) and conformational analysis was conducted through Density Functional Theory calculations and 2D-NOESY. Conformational analysis showed that these two molecules adopt exo conformation. Their global minimum structures have two double bonds (C=N, C=C) in Z conformation and the third double (C=N) in E. Our DFT results are in agreement with the 2D-NMR measurements. Furthermore, the reaction isomerization paths were studied via DFT to check the stability of the conformers. Finally, some potential targets were found through the SwissADME platform and docking experiments were performed. Both compounds bind strongly to five macromolecules (triazoloquinazolines, mglur3, Jak3, Danio rerio HDAC6 CD2, acetylcholinesterase) and via SwissADME it was found that these two molecules obey Lipinski's Rule of Five.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (D.K.); (S.V.)
| | - Danai Karta
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (D.K.); (S.V.)
| | - Antigoni Cheilari
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Franci Merzel
- Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece;
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Stamatia Vassiliou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (D.K.); (S.V.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (D.K.); (S.V.)
| |
Collapse
|
3
|
Liu N, Eshak F, Malhaire F, Brabet I, Prézeau L, Renard E, Pin JP, Acher FC, Staudt M, Bunch L. Design, Synthesis, Pharmacology, and In Silico Studies of (1 S,2 S,3 S)-2-(( S)-Amino(carboxy)methyl)-3-(carboxymethyl)cyclopropane-1-carboxylic Acid (LBG30300): A Picomolar Potency Subtype-Selective mGlu 2 Receptor Agonist. J Med Chem 2024; 67:1314-1326. [PMID: 38170918 DOI: 10.1021/acs.jmedchem.3c01811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Metabotropic glutamate (Glu) receptors (mGlu receptors) play a key role in modulating excitatory neurotransmission in the central nervous system (CNS). In this study, we report the structure-based design and pharmacological evaluation of densely functionalized, conformationally restricted glutamate analogue (1S,2S,3S)-2-((S)-amino(carboxy)methyl)-3-(carboxymethyl)cyclopropane-1-carboxylic acid (LBG30300). LBG30300 was synthesized in a stereocontrolled fashion in nine steps from a commercially available optically active epoxide. Functional characterization of all eight mGlu receptor subtypes showed that LBG30300 is a picomolar agonist at mGlu2 with excellent selectivity over mGlu3 and the other six mGlu receptor subtypes. Bioavailability studies on mice (IV administration) confirm CNS exposure, and an in silico study predicts a binding mode of LBG30300 which induces a flipping of Tyr144 to allow for a salt bridge interaction of the acetate group with Arg271. The Tyr144 residue now prevents Arg271 from interacting with Asp146, which is a residue of differentiation between mGlu2 and mGlu3 and thus could explain the observed subtype selectivity.
Collapse
Affiliation(s)
- Na Liu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, OE, Denmark
| | - Floriane Eshak
- Faculty of Basic and Biomedical Sciences, SPPIN CNRS UMR 8003, Université Paris Cité, 75006 Paris, France
| | - Fanny Malhaire
- Institute of Functional Genomics, University of Montpellier, CNRS, 34094 Inserm, Montpellier, France
| | - Isabelle Brabet
- Institute of Functional Genomics, University of Montpellier, CNRS, 34094 Inserm, Montpellier, France
| | - Laurent Prézeau
- Institute of Functional Genomics, University of Montpellier, CNRS, 34094 Inserm, Montpellier, France
| | - Emma Renard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, OE, Denmark
| | - Jean-Philippe Pin
- Institute of Functional Genomics, University of Montpellier, CNRS, 34094 Inserm, Montpellier, France
| | - Francine C Acher
- Faculty of Basic and Biomedical Sciences, SPPIN CNRS UMR 8003, Université Paris Cité, 75006 Paris, France
| | - Markus Staudt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, OE, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, OE, Denmark
| |
Collapse
|
4
|
Strauss A, Gonzalez-Hernandez AJ, Lee J, Abreu N, Selvakumar P, Salas-Estrada L, Kristt M, Marx DC, Gilliland K, Melancon BJ, Filizola M, Meyerson J, Levitz J. Structural basis of allosteric modulation of metabotropic glutamate receptor activation and desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.552748. [PMID: 37645747 PMCID: PMC10461995 DOI: 10.1101/2023.08.13.552748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The metabotropic glutamate receptors (mGluRs) are neuromodulatory family C G protein coupled receptors which assemble as dimers and allosterically couple extracellular ligand binding domains (LBDs) to transmembrane domains (TMDs) to drive intracellular signaling. Pharmacologically, mGluRs can be targeted either at the LBDs by glutamate and synthetic orthosteric compounds or at the TMDs by allosteric modulators. Despite the potential of allosteric TMD-targeting compounds as therapeutics, an understanding of the functional and structural basis of their effects on mGluRs is limited. Here we use a battery of approaches to dissect the distinct functional and structural effects of orthosteric versus allosteric ligands. We find using electrophysiological and live cell imaging assays that both agonists and positive allosteric modulators (PAMs) can drive activation and desensitization of mGluRs. The effects of PAMs are pleiotropic, including both the ability to boost the maximal response to orthosteric agonists and to serve independently as desensitization-biased agonists across mGluR subtypes. Conformational sensors reveal PAM-driven inter-subunit re-arrangements at both the LBD and TMD. Motivated by this, we determine cryo-electron microscopy structures of mGluR3 in the presence of either an agonist or antagonist alone or in combination with a PAM. These structures reveal PAM-driven re-shaping of intra- and inter-subunit conformations and provide evidence for a rolling TMD dimer interface activation pathway that controls G protein and beta-arrestin coupling. Highlights -Agonists and PAMs drive mGluR activation, desensitization, and endocytosis-PAMs are desensitization-biased and synergistic with agonists-Four combinatorial ligand conditions reveal an ensemble of full-length mGluR structures with novel interfaces-Activation and desensitization involve rolling TMD interfaces which are re-shaped by PAM.
Collapse
|
5
|
Lecat-Guillet N, Quast RB, Liu H, Bourrier E, Møller TC, Rovira X, Soldevila S, Lamarque L, Trinquet E, Liu J, Pin JP, Rondard P, Margeat E. Concerted conformational changes control metabotropic glutamate receptor activity. SCIENCE ADVANCES 2023; 9:eadf1378. [PMID: 37267369 PMCID: PMC10413646 DOI: 10.1126/sciadv.adf1378] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/27/2023] [Indexed: 06/04/2023]
Abstract
Allosteric modulators bear great potential to fine-tune neurotransmitter action. Promising targets are metabotropic glutamate (mGlu) receptors, which are associated with numerous brain diseases. Orthosteric and allosteric ligands act in synergy to control the activity of these multidomain dimeric GPCRs. Here, we analyzed the effect of such molecules on the concerted conformational changes of full-length mGlu2 at the single-molecule level. We first established FRET sensors through genetic code expansion combined with click chemistry to monitor conformational changes on live cells. We then used single-molecule FRET and show that orthosteric agonist binding leads to the stabilization of most of the glutamate binding domains in their closed state, while the reorientation of the dimer into the active state remains partial. Allosteric modulators, interacting with the transmembrane domain, are required to stabilize the fully reoriented active dimer. These results illustrate how concerted conformational changes within multidomain proteins control their activity, and how these are modulated by allosteric ligands.
Collapse
Affiliation(s)
- Nathalie Lecat-Guillet
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Robert B. Quast
- Centre de Biologie Structurale (CBS), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Hongkang Liu
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
- Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | | | - Thor C. Møller
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Xavier Rovira
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | | | | | - Eric Trinquet
- PerkinElmer Cisbio, Parc Marcel Boiteux, 30200 Codolet, France
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
6
|
Atsumi N, Yasumatsu K, Takashina Y, Ito C, Yasui N, Margolskee RF, Yamashita A. Chloride ions evoke taste sensations by binding to the extracellular ligand-binding domain of sweet/umami taste receptors. eLife 2023; 12:84291. [PMID: 36852482 PMCID: PMC9977269 DOI: 10.7554/elife.84291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
Salt taste sensation is multifaceted: NaCl at low or high concentrations is preferably or aversively perceived through distinct pathways. Cl- is thought to participate in taste sensation through an unknown mechanism. Here, we describe Cl- ion binding and the response of taste receptor type 1 (T1r), a receptor family composing sweet/umami receptors. The T1r2a/T1r3 heterodimer from the medaka fish, currently the sole T1r amenable to structural analyses, exhibited a specific Cl- binding in the vicinity of the amino-acid-binding site in the ligand-binding domain (LBD) of T1r3, which is likely conserved across species, including human T1r3. The Cl- binding induced a conformational change in T1r2a/T1r3LBD at sub- to low-mM concentrations, similar to canonical taste substances. Furthermore, oral Cl- application to mice increased impulse frequencies of taste nerves connected to T1r-expressing taste cells and promoted their behavioral preferences attenuated by a T1r-specific blocker or T1r3 knock-out. These results suggest that the Cl- evokes taste sensations by binding to T1r, thereby serving as another preferred salt taste pathway at a low concentration.
Collapse
Affiliation(s)
- Nanako Atsumi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
| | - Keiko Yasumatsu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
- Tokyo Dental Junior CollegeTokyoJapan
- Monell Chemical Senses CenterPhiladelphiaUnited States
| | - Yuriko Takashina
- School of Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
| | - Chiaki Ito
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
| | - Norihisa Yasui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
- School of Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
| | | | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
- School of Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
| |
Collapse
|
7
|
Cuevas-Galindo ME, Rubio-Velázquez BA, Jarillo-Luna RA, Padilla-Martínez II, Soriano-Ursúa MA, Trujillo-Ferrara JG. Synthesis, In Silico, In Vivo, and Ex Vivo Evaluation of a Boron-Containing Quinolinate Derivative with Presumptive Action on mGluRs. INORGANICS 2023; 11:94. [DOI: 10.3390/inorganics11030094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2024] Open
Abstract
In the brain, canonical excitatory neurotransmission is mediated by L-glutamate and its ionotropic (iGluR) and metabotropic (mGluR) receptors. The wide diversity of these often limits the development of glutamatergic drugs. This is due to the arduousness of achieving selectivity with specific ligands. In the present article, encouraged by reports of bioactive organoboron compounds, a diphenylboroxazolidone derived from quinolinate (BZQuin) was evaluated. BZQuin was synthesized with a yield of 87%. Its LD50 was 174 mg/kg in male CD-1 mice, as estimated by a modified Lorke’s method. BZQuin exerted a reduced ability to cause seizures when compared against its precursor, quinolinate. The latter suggested that it does not directly stimulate the ionotropic NMDA receptors or other ionic channels. The observation that the antiglutamatergic drugs riluzole and memantine displaced the BZQuin effect left the mGluRs as their possible targets. This is in line with results from molecular-docking simulations. During these simulations, BZQuin bound only to orthosteric sites on mGluR1, mGluR2, and mGluR7, with higher affinity than quinolinate. The survival of the neurons of mice previously administered with BZQuin or quinolinate was quantified in four neuroanatomical structures of the brain. The BZQuin effect was more appreciable in brain regions with a high expression of the previously mentioned mGluRs, while both antiglutamatergic drugs exerted a neuroprotective effect against it. Together, these results suggest that BZQuin exerts a positive influence on glutamatergic neurotransmission while selectively interacting with certain mGluRs.
Collapse
Affiliation(s)
- Mario Emilio Cuevas-Galindo
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico
| | - Brenda Anaid Rubio-Velázquez
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico
| | - Rosa Adriana Jarillo-Luna
- Laboratorio de Morfología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico
| | - Itzia I. Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna-Ticomán, Alc. Gustavo A. Madero, Mexico City 07340, Mexico
| | - Marvin A. Soriano-Ursúa
- Academia de Fisiología Humana y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col, Casco de Santo Tomás, lc. Miguel Hidalgo, Mexico City 11340, Mexico
| | - José G. Trujillo-Ferrara
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico
| |
Collapse
|
8
|
Zhang Y, Zhu X, Zhang H, Yan J, Xu P, Wu P, Wu S, Bai C. Mechanism Study of Proteins under Membrane Environment. MEMBRANES 2022; 12:membranes12070694. [PMID: 35877897 PMCID: PMC9322369 DOI: 10.3390/membranes12070694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Membrane proteins play crucial roles in various physiological processes, including molecule transport across membranes, cell communication, and signal transduction. Approximately 60% of known drug targets are membrane proteins. There is a significant need to deeply understand the working mechanism of membrane proteins in detail, which is a challenging work due to the lack of available membrane structures and their large spatial scale. Membrane proteins carry out vital physiological functions through conformational changes. In the current study, we utilized a coarse-grained (CG) model to investigate three representative membrane protein systems: the TMEM16A channel, the family C GPCRs mGlu2 receptor, and the P4-ATPase phospholipid transporter. We constructed the reaction pathway of conformational changes between the two-end structures. Energy profiles and energy barriers were calculated. These data could provide reasonable explanations for TMEM16A activation, the mGlu2 receptor activation process, and P4-ATPase phospholipid transport. Although they all belong to the members of membrane proteins, they behave differently in terms of energy. Our work investigated the working mechanism of membrane proteins and could give novel insights into other membrane protein systems of interest.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Xiaohong Zhu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Honghui Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Junfang Yan
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Peiyi Xu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Peng Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
- Correspondence: (S.W.); (C.B.)
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.Z.); (X.Z.); (H.Z.); (J.Y.); (P.X.)
- Warshel Institute for Computational Biology, Shenzhen 518172, China
- Chenzhu Biotechnology Co., Ltd., Hangzhou 310005, China
- Correspondence: (S.W.); (C.B.)
| |
Collapse
|
9
|
Acher FC, Cabayé A, Eshak F, Goupil-Lamy A, Pin JP. Metabotropic glutamate receptor orthosteric ligands and their binding sites. Neuropharmacology 2022; 204:108886. [PMID: 34813860 DOI: 10.1016/j.neuropharm.2021.108886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) have been discovered almost four decades ago. Since then, their pharmacology has been largely developed as well as their structural organization. Indeed mGluRs are attractive therapeutic targets for numerous psychiatric and neurological disorders because of their modulating role of synaptic transmission. The more recent drug discovery programs have mostly concentrated on allosteric modulators. However, orthosteric agonists and antagonists have remained unavoidable pharmacological tools as, although not expected, many of them can reach the brain, or can be modified to reach the brain. This review focuses on the most common orthosteric ligands as well as on the few allosteric modulators interacting with the glutamate binding domain. The 3D-structures of these ligands at their binding sites are reported. For most of them, X-Ray structures or docked homology models are available. Because of the high conservation of the binding site, subtype selective agonists were not easy to find. Yet, some were discovered when extending their chemical structures in order to reach selective sites of the receptors.
Collapse
Affiliation(s)
- Francine C Acher
- Faculty of Basic and Biomedical Sciences, University of Paris, CNRS, 75270 Paris Cedex 06, France.
| | - Alexandre Cabayé
- Faculty of Basic and Biomedical Sciences, University of Paris, CNRS, 75270 Paris Cedex 06, France; BIOVIA, Dassault Systèmes, F-78140 Vélizy-Villacoublay Cedex, France
| | - Floriane Eshak
- Faculty of Basic and Biomedical Sciences, University of Paris, CNRS, 75270 Paris Cedex 06, France
| | - Anne Goupil-Lamy
- BIOVIA, Dassault Systèmes, F-78140 Vélizy-Villacoublay Cedex, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, 34094 Montpellier Cedex 5, France
| |
Collapse
|
10
|
McCullock TW, Kammermeier PJ. The evidence for and consequences of metabotropic glutamate receptor heterodimerization. Neuropharmacology 2021; 199:108801. [PMID: 34547332 DOI: 10.1016/j.neuropharm.2021.108801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are an essential component of the mammalian central nervous system. These receptors modulate neuronal excitability in response to extracellular glutamate through the activation of intracellular heterotrimeric G proteins. Like most other class C G protein-coupled receptors, mGluRs function as obligate dimer proteins, meaning they need to form dimer complexes before becoming functional receptors. All mGluRs possess the ability to homodimerize, but studies over the past ten years have demonstrated these receptors are also capable of forming heterodimers in specific patterns. These mGluR heterodimers appear to have their own unique biophysical behavior and pharmacology with both native and synthetic compounds with few rules having been identified that allow for prediction of the consequences of any particular mGluR pair forming heterodimers. Here, we review the relevant literature demonstrating the existence and consequences of mGluR heterodimerization. By collecting biophysical and pharmacological data of several mGluR heterodimers we demonstrate the lack of generalizable behavior of these complexes indicating that each individual dimeric pair needs to be investigated independently. Additionally, by combining sequence alignment and structural analysis, we propose that interactions between the β4-A Helix Loop and the D Helix in the extracellular domain of these receptors are the structural components that dictate heterodimerization compatibility. Finally, we discuss the potential implications of mGluR heterodimerization from the viewpoints of further developing our understanding of neuronal physiology and leveraging mGluRs as a therapeutic target for the treatment of pathophysiology.
Collapse
Affiliation(s)
- Tyler W McCullock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA.
| | - Paul J Kammermeier
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA.
| |
Collapse
|
11
|
Seven AB, Barros-Álvarez X, de Lapeyrière M, Papasergi-Scott MM, Robertson MJ, Zhang C, Nwokonko RM, Gao Y, Meyerowitz JG, Rocher JP, Schelshorn D, Kobilka BK, Mathiesen JM, Skiniotis G. G-protein activation by a metabotropic glutamate receptor. Nature 2021; 595:450-454. [PMID: 34194039 DOI: 10.1038/s41586-021-03680-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/01/2021] [Indexed: 01/14/2023]
Abstract
Family C G-protein-coupled receptors (GPCRs) operate as obligate dimers with extracellular domains that recognize small ligands, leading to G-protein activation on the transmembrane (TM) domains of these receptors by an unknown mechanism1. Here we show structures of homodimers of the family C metabotropic glutamate receptor 2 (mGlu2) in distinct functional states and in complex with heterotrimeric Gi. Upon activation of the extracellular domain, the two transmembrane domains undergo extensive rearrangement in relative orientation to establish an asymmetric TM6-TM6 interface that promotes conformational changes in the cytoplasmic domain of one protomer. Nucleotide-bound Gi can be observed pre-coupled to inactive mGlu2, but its transition to the nucleotide-free form seems to depend on establishing the active-state TM6-TM6 interface. In contrast to family A and B GPCRs, G-protein coupling does not involve the cytoplasmic opening of TM6 but is facilitated through the coordination of intracellular loops 2 and 3, as well as a critical contribution from the C terminus of the receptor. The findings highlight the synergy of global and local conformational transitions to facilitate a new mode of G-protein activation.
Collapse
Affiliation(s)
- Alpay B Seven
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ximena Barros-Álvarez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chensong Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert M Nwokonko
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Gao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin G Meyerowitz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Lin S, Han S, Cai X, Tan Q, Zhou K, Wang D, Wang X, Du J, Yi C, Chu X, Dai A, Zhou Y, Chen Y, Zhou Y, Liu H, Liu J, Yang D, Wang MW, Zhao Q, Wu B. Structures of G i-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature 2021; 594:583-588. [PMID: 34135510 DOI: 10.1038/s41586-021-03495-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/25/2021] [Indexed: 01/15/2023]
Abstract
The metabotropic glutamate receptors (mGlus) have key roles in modulating cell excitability and synaptic transmission in response to glutamate (the main excitatory neurotransmitter in the central nervous system)1. It has previously been suggested that only one receptor subunit within an mGlu homodimer is responsible for coupling to G protein during receptor activation2. However, the molecular mechanism that underlies the asymmetric signalling of mGlus remains unknown. Here we report two cryo-electron microscopy structures of human mGlu2 and mGlu4 bound to heterotrimeric Gi protein. The structures reveal a G-protein-binding site formed by three intracellular loops and helices III and IV that is distinct from the corresponding binding site in all of the other G-protein-coupled receptor (GPCR) structures. Furthermore, we observed an asymmetric dimer interface of the transmembrane domain of the receptor in the two mGlu-Gi structures. We confirmed that the asymmetric dimerization is crucial for receptor activation, which was supported by functional data; this dimerization may provide a molecular basis for the asymmetric signal transduction of mGlus. These findings offer insights into receptor signalling of class C GPCRs.
Collapse
Affiliation(s)
- Shuling Lin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Cai
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiuxiang Tan
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kexiu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dejian Wang
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinwei Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Du
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Cuiying Yi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Chu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Antao Dai
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Zhou
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong Liu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dehua Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Wei Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,School of Pharmacy, Fudan University, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Qiang Zhao
- University of Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,Zhongshan Branch, Institute of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China.
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
13
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
14
|
Singh DR, Pandey K, Mishra AK, Pandey P, Vivcharuk V. Glutamate binding triggers monomerization of unliganded mGluR2 dimers. Arch Biochem Biophys 2020; 697:108632. [PMID: 33075300 DOI: 10.1016/j.abb.2020.108632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022]
Abstract
The Metabotropic glutamate receptor 2 (mGluR2) is involved in several neurological and psychiatric disorders and is an attractive drug target. It is believed to form a strict dimer and the dimeric assembly is necessary for glutamate induced activation. Although many studies have focused on glutamate induced conformational changes, the dimerization propensity of mGluR2 with and without glutamate has never been investigated. Also, the role of the unstructured loop in dimerization of mGluR2 is not clear. Here, using Forster Resonance Energy Transfer (FRET) based assay in live cells we show that mGluR2 does not form a "strict dimer" rather it exists in a dynamic monomer-dimer equilibrium. The unstructured loop moderately destabilizes the dimers. Furthermore, binding of glutamate to mGluR2 induces conformational change that promotes monomerization of mGluR2. In the absence of an unstructured loop, mGluR2 neither undergoes conformational change nor monomerizes upon binding to glutamate.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Biochemistry, Weill Cornell Medical College, NYC, NY, USA; Department of Cell and Molecular Physiology, Stritch School of Medicine, Maywood, IL, USA; Department of Oncology, University of Wisconsin, Madison, WI, USA.
| | - Kalpana Pandey
- Department of Biochemistry, Weill Cornell Medical College, NYC, NY, USA; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| | - Ashish K Mishra
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pankaj Pandey
- Department of Zoology, Brahmanand College, Kanpur, UP, India
| | - Victor Vivcharuk
- Department of Biochemistry, Weill Cornell Medical College, NYC, NY, USA
| |
Collapse
|
15
|
Xu C, Wei N, Zhu D, Wang M. Cyclopentene Synthesis by a Catalytic [3+2] Annulation of Donor‐Acceptor Cyclopropanes with Polarized Alkenes. ChemistrySelect 2020. [DOI: 10.1002/slct.202002967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Cong Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University 5268 Renmin Street Changchun, 130024 China
| | - Na Wei
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University 5268 Renmin Street Changchun, 130024 China
| | - Dongsheng Zhu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University 5268 Renmin Street Changchun, 130024 China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University 5268 Renmin Street Changchun, 130024 China
| |
Collapse
|
16
|
Watanabe M, Marcy B, Kinoshita K, Fukasawa M, Hikichi H, Chaki S, Okuyama S, Gevorkyan H, Yoshida S. Safety and pharmacokinetic profiles of MGS0274 besylate (TS-134), a novel metabotropic glutamate 2/3 receptor agonist prodrug, in healthy subjects. Br J Clin Pharmacol 2020; 86:2286-2301. [PMID: 32353162 PMCID: PMC7576618 DOI: 10.1111/bcp.14331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Aims The safety and pharmacokinetics of single and multiple doses of a novel mGlu2/3 receptor agonist prodrug, MGS0274 besylate (TS‐134), were investigated in healthy subjects. Methods Phase 1 single‐ascending dose (5–20 mg) and multiple‐ascending dose titration (5–80 mg) studies were conducted in healthy male and female subjects. Both studies were randomized, double‐blinded and placebo‐controlled. In one cohort of single‐ascending dose study (10 mg), concentrations of MGS0008, the active compound, in the cerebrospinal fluid (CSF) were measured for up to 24 hours postdose. Results Following single and multiple oral administrations, MGS0274 was rapidly absorbed and extensively converted into MGS0008, which reached a maximum concentration (Cmax) in plasma within 4 hours postdose and declined with a terminal half‐life (t1/2) of around 10 hours. Plasma exposure to MGS0274 was minimal, accounting for approximately 3% of the area under the concentration–time curve (AUC) of MGS0008. Plasma Cmax and AUC of MGS0008 at steady state increased dose proportionally (5–80 mg). MGS0008 penetrated into CSF, with a CSF‐to‐plasma Cmax ratio of 3.66%, and was eliminated with a t1/2 of approximately 16 hours. The most frequent treatment‐emergent adverse events observed following single and multiple oral administration included headache, nausea, somnolence, dizziness and vomiting. Conclusion TS‐134 is orally bioavailable in humans and converts rapidly and extensively to MGS0008, which exhibits good CSF penetration. Orally administered TS‐134 was safe and generally well‐tolerated; hence, TS‐134 is a promising candidate for further clinical development for the treatment of disorders in which glutamatergic abnormalities are involved, such as schizophrenia.
Collapse
|
17
|
Unstructured loop is essential for the activation of mGluR2. Biochem Biophys Res Commun 2020; 521:775-778. [DOI: 10.1016/j.bbrc.2019.10.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022]
|
18
|
Hao J, Chen Q. Insights into the Structural Aspects of the mGlu Receptor Orthosteric Binding Site. Curr Top Med Chem 2019; 19:2421-2446. [PMID: 31660833 DOI: 10.2174/1568026619666191011094935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
The amino terminal domain (ATD) of the metabotropic glutamate (mGlu) receptors contains the orthosteric glutamate recognition site, which is highly conserved across the eight mGlu receptor subtypes. In total, 29 X-ray crystal structures of the mGlu ATD proteins have been reported to date. These structures span across 3 subgroups and 6 subtypes, and include apo, agonist- and antagonist-bound structures. We will discuss the insights gained from the analysis of these structures with the focus on the interactions contributing to the observed group and subtype selectivity for select agonists. Furthermore, we will define the full expanded orthosteric ligand binding pocket (LBP) of the mGlu receptors, and discuss the macroscopic features of the mGlu ATD proteins.
Collapse
Affiliation(s)
- Junliang Hao
- Discovery Chemistry Research and Technologies, Lilly Research Laboratory, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| | - Qi Chen
- Discovery Chemistry Research and Technologies, Lilly Research Laboratory, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| |
Collapse
|
19
|
Reyes MM, Gravina SA, Hayes JE. Evaluation of Sweetener Synergy in Humans by Isobole Analyses. Chem Senses 2019; 44:571-582. [PMID: 31424498 DOI: 10.1093/chemse/bjz056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The chemical senses and pharmaceuticals fundamentally depend on similar biological processes, but novel molecule discovery has classically been approached from vastly different vantage points. From the perspective of ingredient and flavor companies, there are countless ingredients that act via largely unknown mechanisms, whereas the pharmaceutical industry has numerous mechanisms in search of novel compounds. Mixtures of agonists can result in synergistic (superadditive) responses, which can be quantified via isobole analysis, a well-proven clinical approach in pharmacology. For the food and beverage industries, bulk (caloric) sweeteners like sugars are a key ingredient in sweetened foods and beverages, but consumers also desire products with fewer calories, which has led to the development of sweet enhancers and sweetener blends intended to achieve synergy or superadditivity. Synergistic mixtures are highly attractive targets commercially as they enable lower usage levels and enhanced efficacy. Although the psychophysical literature contains numerous prior reports of sweetener synergy, others have also noted that classical additive models fail to account for nonlinear dose-response functions. To address this shortcoming, here we systematically apply the isobole method from pharmacology to quantify the presence or absence of psychophysical synergy for binary pairs of sweeteners in a series of 15 separate experiments, each with ~100 adult volunteers (total n = 1576). Generally, these data support the hypothesis that structurally similar sweeteners acting as agonists will not synergize, whereas structurally dissimilar sweeteners binding to overlapping or distal sites can act as allosteric agonists or agonist-antagonists, respectively.
Collapse
Affiliation(s)
- M Michelle Reyes
- Sensory Evaluation Center, The Pennsylvania State University, University Park, PA, USA.,Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - John E Hayes
- Sensory Evaluation Center, The Pennsylvania State University, University Park, PA, USA.,Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
20
|
Hao J, Chen Q. On the origin of the 2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate scaffold's unique group II selectivity for the mGlu receptors. Bioorg Med Chem Lett 2019; 29:297-301. [PMID: 30470494 DOI: 10.1016/j.bmcl.2018.11.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/11/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022]
Abstract
Analogs based on the 2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate scaffold showed high potency and selectivity as both group II mGlu receptors orthosteric agonists and antagonists. This scaffold was initially designed to mimic the fully extended glutamate backbone conformation that was hypothesized to be the active conformation for the group II mGlu receptors. With the availability of crystal structures of l-Glu-bound amino terminal domain proteins from multiple mGlu receptor subtypes spanning all three subgroups, a new steric hindrance hypothesis was proposed to account for the scaffold's unique group II selectivity that explores the subtle distance differences between the α-carbon of l-Glu and the center of the tyrosine phenyl ring from the bottom lobe (e.g. Y216 of mGlu2).
Collapse
Affiliation(s)
- Junliang Hao
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Qi Chen
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| |
Collapse
|
21
|
Chen Q, Ho JD, Ashok S, Vargas MC, Wang J, Atwell S, Bures M, Schkeryantz JM, Monn JA, Hao J. Structural Basis for ( S)-3,4-Dicarboxyphenylglycine (DCPG) As a Potent and Subtype Selective Agonist of the mGlu 8 Receptor. J Med Chem 2018; 61:10040-10052. [PMID: 30365309 DOI: 10.1021/acs.jmedchem.8b01120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
( S)-3,4-Dicarboxyphenylglycine (DCPG) was first reported in 2001 as a potent orthosteric agonist with high subtype selectivity for the mGlu8 receptor, but the structural basis for its high selectivity is not well understood. We have solved a cocrystal structure of recombinant human mGlu8 amino terminal domain (ATD) protein bound to ( S)-DCPG, which possesses the largest lobe opening angle observed to date among known agonist-bound mGlu ATD crystal structures. The binding conformation of ( S)-DCPG observed in the crystal structure is significantly different from that in the homology model built from an l-glutamate-bound rat mGlu1 ATD crystal structure, which has a smaller lobe opening angle. This highlights the importance of considering various lobe opening angles when modeling mGlu ATD-ligand complex. New homology models of other mGlu receptors based on the ( S)-DCPG-bound mGlu8 ATD crystal structure were explored to rationalize ( S)-DCPG's high mGlu8 receptor subtype selectivity.
Collapse
|
22
|
Belhocine A, Veglianese P, Hounsou C, Dupuis E, Acher F, Durroux T, Goudet C, Pin JP. Profiling of orthosteric and allosteric group-III metabotropic glutamate receptor ligands on various G protein-coupled receptors with Tag-lite ® assays. Neuropharmacology 2018; 140:233-245. [PMID: 30099051 DOI: 10.1016/j.neuropharm.2018.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022]
Abstract
Group-III metabotropic glutamate (mGlu) receptors are important synaptic regulators and are potential druggable targets for Parkinson disease, autism and pain. Potential drugs include orthosteric agonists in the glutamate binding extracellular domain and positive allosteric modulators interacting with seven-pass transmembrane domains. Orthosteric agonists are rarely completely specific for an individual group-III mGlu subtype. Furthermore they often fail to pass the blood-brain barrier and they constitutively activate their target receptor. These properties limit the potential therapeutic use of orthosteric agonists. Allosteric modulators are more specific and maintain the biological activity of the targeted receptor. However, they bind in a hydrophobic pocket and this limits their bio-availability and increases possible off-target action. It is therefore important to characterize the action of potential drug targets with a multifaceted and deeply informative assay. Here we aimed at multifaceted deep profiling of the effect of seven different agonists, and seven positive allosteric modulators on 34 different G protein-coupled receptors by a Tag-lite® assay. Our results did not reveal off-target activity of mGlu orthosteric agonists. However, five allosteric modulators had either positive or negative effects on non-cognate G protein-coupled receptors. In conclusion, we demonstrate the power of the Tag-lite® assay for potential drug ligand profiling on G protein-coupled receptors and its potential to identify positive allosteric compounds.
Collapse
Affiliation(s)
| | | | | | | | - Francine Acher
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Cyril Goudet
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
23
|
Doornbos ML, Vermond SC, Lavreysen H, Tresadern G, IJzerman AP, Heitman LH. Impact of allosteric modulation: Exploring the binding kinetics of glutamate and other orthosteric ligands of the metabotropic glutamate receptor 2. Biochem Pharmacol 2018; 155:356-365. [DOI: 10.1016/j.bcp.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/14/2018] [Indexed: 01/22/2023]
|
24
|
Tora AS, Rovira X, Cao AM, Cabayé A, Olofsson L, Malhaire F, Scholler P, Baik H, Van Eeckhaut A, Smolders I, Rondard P, Margeat E, Acher F, Pin JP, Goudet C. Chloride ions stabilize the glutamate-induced active state of the metabotropic glutamate receptor 3. Neuropharmacology 2018; 140:275-286. [PMID: 30102917 DOI: 10.1016/j.neuropharm.2018.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/25/2018] [Accepted: 08/09/2018] [Indexed: 02/06/2023]
Abstract
Due to the essential roles of glutamate, detection and response to a large range of extracellular concentrations of this excitatory amino acid are necessary for the fine-tuning of brain functions. Metabotropic glutamate receptors (mGluRs) are implicated in shaping the activity of many synapses in the central nervous system. Among the eight mGluR subtypes, there is increasing interest in studying the mGlu3 receptor which has recently been linked to various diseases, including psychiatric disorders. This receptor displays striking functional properties, with a high and, often, full basal activity, making its study elusive in heterologous systems. Here, we demonstrate that Cl- ions exert strong positive allosteric modulation of glutamate on the mGlu3 receptor. We have also identified the molecular and structural determinants lying behind this allostery: a unique interactive "chloride-lock" network. Indeed, Cl- ions dramatically stabilize the glutamate-induced active state of the extracellular domain of the mGlu3 receptor. Thus, the mGlu3 receptors' large basal activity does not correspond to a constitutive activity in absence of agonist. Instead, it results mostly from a Cl-mediated amplified response to low ambient glutamate concentrations, such as those measured in cell media. This strong interaction between glutamate and Cl- ions allows the mGlu3 receptor to sense and efficiently react to sub-micromolar concentrations of glutamate, making it the most sensitive member of mGluR family.
Collapse
Affiliation(s)
- Amélie S Tora
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, F-34094, Montpellier, France
| | - Xavier Rovira
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, F-34094, Montpellier, France; Present Address: Molecular Photopharmacology Research Group, The Tissue Repair and Regeneration Laboratory, University of Vic - Central University of Catalonia, C. de La Laura,13, 08500, Vic, Spain
| | - Anne-Marinette Cao
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34094, Montpellier, France
| | - Alexandre Cabayé
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, F-75270, Paris Cedex 6, France
| | - Linnéa Olofsson
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34094, Montpellier, France
| | - Fanny Malhaire
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, F-34094, Montpellier, France
| | - Pauline Scholler
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, F-34094, Montpellier, France
| | - Hayeon Baik
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, F-34094, Montpellier, France
| | - Ann Van Eeckhaut
- Research Group Experimental Pharmacology (EFAR/FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), 1090, Brussel, Belgium
| | - Ilse Smolders
- Research Group Experimental Pharmacology (EFAR/FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), 1090, Brussel, Belgium
| | - Philippe Rondard
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, F-34094, Montpellier, France
| | - Emmanuel Margeat
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34094, Montpellier, France
| | - Francine Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, F-75270, Paris Cedex 6, France.
| | - Jean-Philippe Pin
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, F-34094, Montpellier, France.
| | - Cyril Goudet
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, F-34094, Montpellier, France.
| |
Collapse
|
25
|
Mehta MA, Schmechtig A, Kotoula V, McColm J, Jackson K, Brittain C, Tauscher-Wisniewski S, Kinon BJ, Morrison PD, Pollak T, Mant T, Williams SCR, Schwarz AJ. Group II metabotropic glutamate receptor agonist prodrugs LY2979165 and LY2140023 attenuate the functional imaging response to ketamine in healthy subjects. Psychopharmacology (Berl) 2018; 235:1875-1886. [PMID: 29564482 DOI: 10.1007/s00213-018-4877-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/08/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Aberrant glutamate neurotransmission, and in particular dysfunction of the N-methyl-D-aspartate receptor (NMDAR), has been implicated in psychiatric disorders and represents a novel therapeutic target. Low-dose administration of the NMDA antagonist ketamine in healthy volunteers elicits a strong blood oxygenation level dependent (BOLD) imaging signal that can be attenuated by pretreatment with single, therapeutically effective doses of marketed medicines interacting with the glutamate system. OBJECTIVE To test the attenuation of the ketamine-induced BOLD signal by pretreatment with either a metabotropic glutamate receptor (mGluR) 2/3 or a mGluR2 agonist in healthy volunteers METHODS: We used a ketamine challenge pharmacological magnetic resonance imaging (phMRI) paradigm to assess the modulatory effects of single acute doses of LY2140023 (pomaglumetad methionil), the methionine prodrug of the mGluR2/3 agonist LY404039 (10, 40, and 160 mg; N = 16 subjects) and of LY2979165, and the alanine prodrug of the selective orthosteric mGluR2 agonist 2812223 (20 and 60 mg; N = 16 subjects). RESULTS A reduction in the ketamine-evoked BOLD phMRI signal relative to placebo was observed at the highest doses tested of both LY2140023 and LY2979165. A relationship was observed between reduction of the BOLD signal and increasing plasma levels of 2812223 in the LY2979165 cohort. CONCLUSIONS These results identify pharmacologically active doses of the group II mGluR agonist prodrugs LY2140023 and LY2979165 in humans. They also extend the classes of compounds that have been experimentally shown to reverse the ketamine-evoked phMRI signal in humans, further supporting the use of this method as a neuroimaging biomarker for assessing functional effects.
Collapse
Affiliation(s)
- Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| | - Anne Schmechtig
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Vasileia Kotoula
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Juliet McColm
- Eli Lilly and Company, Sunninghill Road, Windlesham, Surrey, UK
| | | | - Claire Brittain
- Eli Lilly and Company, Sunninghill Road, Windlesham, Surrey, UK
| | | | | | - Paul D Morrison
- Psychosis Studies Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Thomas Pollak
- Psychosis Studies Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | | |
Collapse
|
26
|
Monn JA, Henry SS, Massey SM, Clawson DK, Chen Q, Diseroad BA, Bhardwaj RM, Atwell S, Lu F, Wang J, Russell M, Heinz BA, Wang XS, Carter JH, Getman BG, Adragni K, Broad LM, Sanger HE, Ursu D, Catlow JT, Swanson S, Johnson BG, Shaw DB, McKinzie DL, Hao J. Synthesis and Pharmacological Characterization of C4 β-Amide-Substituted 2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1 S,2 S,4 S,5 R,6 S)-2-Amino-4-[(3-methoxybenzoyl)amino]bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY2794193), a Highly Potent and Selective mGlu 3 Receptor Agonist. J Med Chem 2018; 61:2303-2328. [PMID: 29350927 DOI: 10.1021/acs.jmedchem.7b01481] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multiple therapeutic opportunities have been suggested for compounds capable of selective activation of metabotropic glutamate 3 (mGlu3) receptors, but small molecule tools are lacking. As part of our ongoing efforts to identify potent, selective, and systemically bioavailable agonists for mGlu2 and mGlu3 receptor subtypes, a series of C4β-N-linked variants of (1 S,2 S,5 R,6 S)-2-amino-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 1 (LY354740) were prepared and evaluated for both mGlu2 and mGlu3 receptor binding affinity and functional cellular responses. From this investigation we identified (1 S,2 S,4 S,5 R,6 S)-2-amino-4-[(3-methoxybenzoyl)amino]bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 8p (LY2794193), a molecule that demonstrates remarkable mGlu3 receptor selectivity. Crystallization of 8p with the amino terminal domain of hmGlu3 revealed critical binding interactions for this ligand with residues adjacent to the glutamate binding site, while pharmacokinetic assessment of 8p combined with its effect in an mGlu2 receptor-dependent behavioral model provides estimates for doses of this compound that would be expected to selectively engage and activate central mGlu3 receptors in vivo.
Collapse
|
27
|
Selvam C, Lemasson IA, Brabet I, Oueslati N, Karaman B, Cabaye A, Tora AS, Commare B, Courtiol T, Cesarini S, McCort-Tranchepain I, Rigault D, Mony L, Bessiron T, McLean H, Leroux FR, Colobert F, Daniel H, Goupil-Lamy A, Bertrand HO, Goudet C, Pin JP, Acher FC. Increased Potency and Selectivity for Group III Metabotropic Glutamate Receptor Agonists Binding at Dual sites. J Med Chem 2018; 61:1969-1989. [DOI: 10.1021/acs.jmedchem.7b01438] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chelliah Selvam
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle A. Lemasson
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle Brabet
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Nadia Oueslati
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Berin Karaman
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Alexandre Cabaye
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Amélie S. Tora
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Bruno Commare
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Tiphanie Courtiol
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Sara Cesarini
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle McCort-Tranchepain
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Delphine Rigault
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Laetitia Mony
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
- Institut de Biologie, Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, PSL University, 46 rue d’Ulm, 75005 Paris, France
| | - Thomas Bessiron
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Heather McLean
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Frédéric R. Leroux
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Françoise Colobert
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Hervé Daniel
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Anne Goupil-Lamy
- BIOVIA, Dassault Systèmes, 10 rue Marcel Dassault, CS 40501, 78946 Vélizy-Villacoublay Cedex, France
| | - Hugues-Olivier Bertrand
- BIOVIA, Dassault Systèmes, 10 rue Marcel Dassault, CS 40501, 78946 Vélizy-Villacoublay Cedex, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Jean-Philippe Pin
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Francine C. Acher
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
28
|
Determination of L-AP4-bound human mGlu8 receptor amino terminal domain structure and the molecular basis for L-AP4’s group III mGlu receptor functional potency and selectivity. Bioorg Med Chem Lett 2018; 28:612-617. [DOI: 10.1016/j.bmcl.2018.01.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 01/28/2023]
|
29
|
McColm J, Brittain C, Suriyapperuma S, Swanson S, Tauscher-Wisniewski S, Foster J, Soon D, Jackson K. Evaluation of single and multiple doses of a novel mGlu2 agonist, a potential antipsychotic therapy, in healthy subjects. Br J Clin Pharmacol 2017; 83:1654-1667. [PMID: 28156011 DOI: 10.1111/bcp.13252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/20/2017] [Accepted: 01/27/2017] [Indexed: 01/04/2023] Open
Abstract
AIMS The safety, tolerability, pharmacokinetics (PK) and pharmacodynamics of single and multiple doses of a novel mGlu2 agonist were assessed in healthy males. METHODS In two, Phase 1 investigator- and subject-blind, placebo-controlled studies, oral doses of prodrug LY2979165 were evaluated: single doses (20-150 mg, N = 30) and multiple once-daily (QD) doses (20-400 mg; N = 84), using a titration regimen. The plasma and urine PK of LY2979165 and active moiety, 2812223, were measured. Cerebrospinal fluid (CSF) was collected to determine PK and neurotransmitter levels. Safety parameters were assessed throughout. RESULTS Nausea and vomiting were dose limiting following single doses; dose titration allowed higher doses to be tested over 14 days. The most common adverse events related to LY2979165 were dizziness, vomiting, nausea, somnolence and headache. The plasma PK of 2812223 were approximately linear with minimal accumulation with QD dosing. Conversion of LY2979165 to 2812223 was extensive, with minimal LY2979165 measurable in plasma. There was no effect of food on the PK of LY2979165 and 2812223. After 60 mg LY2979165 single-dose, 2812223 exposure in CSF was approximately 2-6% and plasma exposure and peak concentrations were approximately four-fold higher than the mGlu2 agonist in vitro EC50 value. No consistent effects were observed on CSF neurotransmitter levels. CONCLUSIONS Oral doses of LY2979165 up to 60 mg as a single dose and up to 400 mg given as multiple QD doses, using a titration regimen, were well tolerated with linear PK. Overall, these data support further clinical evaluation of LY2979165.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Danny Soon
- Lilly-NUS Centre for Clinical Pharmacology, Singapore
| | | |
Collapse
|
30
|
Jin C, Ma S. Recent advances in the medicinal chemistry of group II and group III mGlu receptors. MEDCHEMCOMM 2017; 8:501-515. [PMID: 30108768 PMCID: PMC6072351 DOI: 10.1039/c6md00612d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/03/2017] [Indexed: 11/21/2022]
Abstract
Metabotropic glutamate receptors (mGlu receptors) belong to the G-protein-coupled receptors superfamily. They are divided into three groups, in which group II and group III belong to presynaptic receptors that negatively modulate glutamate and γ-aminobutyric acid (GABA) release when activated. In this review, we introduce not only the functions of mGlu receptors, but also the group II and group III allosteric modulators and agonists/antagonists reported over the past five years according to a classification of their structures, with a specific focus on their biological activity and selectivity. In particular, the structure of these compounds and the future directions of ideal candidates are highlighted.
Collapse
Affiliation(s)
- Chaobin Jin
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P.R. China .
| | - Shutao Ma
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P.R. China .
| |
Collapse
|
31
|
Leach K, Gregory KJ. Molecular insights into allosteric modulation of Class C G protein-coupled receptors. Pharmacol Res 2017; 116:105-118. [DOI: 10.1016/j.phrs.2016.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
|
32
|
Felder CC, Schober DA, Tu Y, Quets A, Xiao H, Watt M, Siuda E, Nisenbaum E, Xiang C, Heinz B, Prieto L, McKinzie DL, Monn JA. Translational Pharmacology of the Metabotropic Glutamate 2 Receptor–Preferring Agonist LY2812223 in the Animal and Human Brain. J Pharmacol Exp Ther 2017; 361:190-197. [DOI: 10.1124/jpet.116.237859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
|
33
|
Witkin JM, Mitchell SN, Wafford KA, Carter G, Gilmour G, Li J, Eastwood BJ, Overshiner C, Li X, Rorick-Kehn L, Rasmussen K, Anderson WH, Nikolayev A, Tolstikov VV, Kuo MS, Catlow JT, Li R, Smith SC, Mitch CH, Ornstein PL, Swanson S, Monn JA. Comparative Effects of LY3020371, a Potent and Selective Metabotropic Glutamate (mGlu) 2/3 Receptor Antagonist, and Ketamine, a Noncompetitive N-Methyl-d-Aspartate Receptor Antagonist in Rodents: Evidence Supporting the Use of mGlu2/3 Antagonists, for the Treatment of Depression. J Pharmacol Exp Ther 2017; 361:68-86. [PMID: 28138040 DOI: 10.1124/jpet.116.238121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022] Open
Abstract
The ability of the N-methyl-d-aspartate receptor antagonist ketamine to alleviate symptoms in patients suffering from treatment-resistant depression (TRD) is well documented. In this paper, we directly compare in vivo biologic responses in rodents elicited by a recently discovered metabotropic glutamate (mGlu) 2/3 receptor antagonist 2-amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY3020371) with those produced by ketamine. Both LY3020371 and ketamine increased the number of spontaneously active dopamine cells in the ventral tegmental area of anesthetized rats, increased O2 in the anterior cingulate cortex, promoted wakefulness, enhanced the efflux of biogenic amines in the prefrontal cortex, and produced antidepressant-related behavioral effects in rodent models. The ability of LY3020371 to produce antidepressant-like effects in the forced-swim assay in rats was associated with cerebrospinal fluid (CSF) drug levels that matched concentrations required for functional antagonist activity in native rat brain tissue preparations. Metabolomic pathway analyses from analytes recovered from rat CSF and hippocampus demonstrated that both LY3020371 and ketamine activated common pathways involving GRIA2 and ADORA1. A diester analog of LY3020371 [bis(((isopropoxycarbonyl)oxy)-methyl) (1S,2R,3S,4S,5R,6R)-2-amino-3-(((3,4-difluorophenyl)thio)methyl)-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylate (LY3027788)] was an effective oral prodrug; when given orally, it recapitulated effects of intravenous doses of LY3020371 in the forced-swim and wake-promotion assays, and augmented the antidepressant-like effects of fluoxetine or citalopram without altering plasma or brain levels of these compounds. The broad overlap of biologic responses produced by LY3020371 and ketamine supports the hypothesis that mGlu2/3 receptor blockade might be a novel therapeutic approach for the treatment of TRD patients. LY3020371 and LY3027788 represent molecules that are ready for clinical tests of this hypothesis.
Collapse
Affiliation(s)
- J M Witkin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - S N Mitchell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - K A Wafford
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - G Carter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - G Gilmour
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - J Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - B J Eastwood
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - C Overshiner
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - X Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - L Rorick-Kehn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - K Rasmussen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - W H Anderson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - A Nikolayev
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - V V Tolstikov
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - M-S Kuo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - J T Catlow
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - R Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - S C Smith
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - C H Mitch
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - P L Ornstein
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - S Swanson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| | - J A Monn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN (J.M.W., C.O., X.L., L.R.-K., K.R., W.H.A., A.N., V.V.T., M.-S.K., J.T.C., R.L., S.C.S., C.H.M., P.L.O., S.S., J.A.M.); and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom (S.N.M., K.A.W., G.C., G.G., J.L., B.J.E.)
| |
Collapse
|
34
|
Chappell MD, Li R, Smith SC, Dressman BA, Tromiczak EG, Tripp AE, Blanco MJ, Vetman T, Quimby SJ, Matt J, Britton TC, Fivush AM, Schkeryantz JM, Mayhugh D, Erickson JA, Bures MG, Jaramillo C, Carpintero M, Diego JED, Barberis M, Garcia-Cerrada S, Soriano JF, Antonysamy S, Atwell S, MacEwan I, Condon B, Sougias C, Wang J, Zhang A, Conners K, Groshong C, Wasserman SR, Koss JW, Witkin JM, Li X, Overshiner C, Wafford KA, Seidel W, Wang XS, Heinz BA, Swanson S, Catlow JT, Bedwell DW, Monn JA, Mitch CH, Ornstein PL. Discovery of (1S,2R,3S,4S,5R,6R)-2-Amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid Hydrochloride (LY3020371·HCl): A Potent, Metabotropic Glutamate 2/3 Receptor Antagonist with Antidepressant-Like Activity. J Med Chem 2016; 59:10974-10993. [DOI: 10.1021/acs.jmedchem.6b01119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Carlos Jaramillo
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - Mercedes Carpintero
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - José Eugenio de Diego
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - Mario Barberis
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - Susana Garcia-Cerrada
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - José F. Soriano
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - Stephen Antonysamy
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Shane Atwell
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Iain MacEwan
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Bradley Condon
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Christine Sougias
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Jing Wang
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Aiping Zhang
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Kris Conners
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Chris Groshong
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Stephen R. Wasserman
- Structural Biology,
Eli Lilly and Company, Advanced Photon Source, Argonne National Laboratory, Building 438A, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - John W. Koss
- Structural Biology,
Eli Lilly and Company, Advanced Photon Source, Argonne National Laboratory, Building 438A, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | | | | | | | - Keith A. Wafford
- Neuroscience Research, Eli Lilly and Company, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, U.K. GU20 6PH
| | - Wesley Seidel
- Neuroscience Research, Eli Lilly and Company, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, U.K. GU20 6PH
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Malik R, Mehta P, Srivastava S, Choudhary BS, Sharma M. Structure-based screening, ADMET profiling, and molecular dynamic studies on mGlu2 receptor for identification of newer antiepileptic agents. J Biomol Struct Dyn 2016; 35:3433-3448. [DOI: 10.1080/07391102.2016.1257440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Pakhuri Mehta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Shubham Srivastava
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Bhanwar Singh Choudhary
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Manish Sharma
- School of Pharmacy, Maharishi Markandeshwar University, Sadopur, Ambala, Haryana 134007, India
| |
Collapse
|
36
|
Racine S, Hegedüs B, Scopelliti R, Waser J. Divergent Reactivity of Thioalkynes in Lewis Acid Catalyzed Annulations with Donor-Acceptor Cyclopropanes. Chemistry 2016; 22:11997-2001. [PMID: 27431096 DOI: 10.1002/chem.201602755] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 01/20/2023]
Abstract
Efficient methods for the convergent synthesis of (poly)cyclic scaffolds are urgently needed in synthetic and medicinal chemistry. Herein, we describe new annulation reactions of thioalkynes with phthalimide-substituted donor-acceptor cyclopropanes, which gave access to highly substituted cyclopentenes and polycyclic ring systems. With silyl-thioalkynes, the Lewis acid catalyzed [3+2] annulation reaction with donor-acceptor cyclopropanes took place to afford 1-thio-cyclopenten-3-amines. On the other hand, an unprecedented polycyclic compound was formed with alkyl-thioalkynes through a reaction pathway directly involving the phthalimide group. The two transformations proceeded in good yields and tolerated a large variety of functional groups.
Collapse
Affiliation(s)
- Sophie Racine
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| | - Bence Hegedüs
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland.
| |
Collapse
|