1
|
Wu J, Mo H, An Z, Tang Z, Deng X, Zhou H, Gong Y, Zheng C, Zhuo L, Tan S. Discovery of 7-(1-methyl-1H-pyrazol-4-yl)-1,6-naphthyridine derivatives as potent inhibitors of rearranged during transfection (RET) and RET solvent-front mutants for overcoming selpercatinib resistance. Eur J Med Chem 2024; 279:116891. [PMID: 39316846 DOI: 10.1016/j.ejmech.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Rearranged during transfection kinase (RET) inhibition has been considered a promising therapeutic approach for treatment of a variety of cancers. However, the clinical therapeutic benefits of the second-generation RET inhibitor selpercatinib are greatly compromised by acquired resistance mediated by solvent-front mutations (e.g., RETG810 R/S/C). Herein, we report a class of 7-(1-methyl-1H-pyrazol-4-yl)-1,6-naphthyridine derivatives as potent RET and RET solvent-front mutant inhibitors for overcoming selpercatinib resistance. The representative compound 20p exhibited excellent in vitro inhibitory activities against solvent-front mutations (RETG810R, RETG810S, and RETG810C) with low nanomolar range (IC50 of 5.7-8.3 nM), which was 15-29-fold more potent than selpercatinib (IC50 of 95.3-244.1 nM). Additionally, 20p exhibited acceptable pharmacokinetic properties with oral bioavailability of 30.4 %. Importantly, 20p exhibited highly impressive antitumor potency in both a Ba/F3-KIF5B-RETWT-derived xenograft mouse model and a selpercatinib-resistant Ba/F3-KIF5B-RETG810R-positive mutant xenograft mouse model. Overall, 20p represents a novel and promising drug lead for overcoming RET solvent-front mutation-based resistance to selpercatinib.
Collapse
Affiliation(s)
- Junbo Wu
- Department of Colorectal Surgery, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China
| | - Hanxuan Mo
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhigang An
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zishu Tang
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinyu Deng
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huifang Zhou
- Department of Colorectal Surgery, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China
| | - Yi Gong
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, China
| | - Chenggong Zheng
- Pulmonary Hospital, Changsha Central Hospital, Changsha, Hunan, 410004, China
| | - Linsheng Zhuo
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuguang Tan
- Department of Colorectal Surgery, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Maturi A, Sastry KNV, Kumar S, Pogaku V, Kwon HJ, Ahn SM, Kim MH. Side Chain Investigation of Imidazopyridazine as a Hinge Binder for Targeting Actionable Mutations of RET Kinase. ACS Med Chem Lett 2024; 15:1566-1574. [PMID: 39291010 PMCID: PMC11403754 DOI: 10.1021/acsmedchemlett.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Actionable mutations of RET kinase have been identified as oncogenic drivers of solid tumors, including thyroid cancer, metastatic colorectal cancer, and nonsmall cell lung cancer. Although multikinase inhibitors and RET selective inhibitors are used to treat patients with RET alterations, there is insufficient research addressing certain issues: which actionable mutations arise from these therapies, how to improve the clinical response rate to RET inhibitors, and how to design new inhibitors to overcome drug resistance. Therefore, the development of sophisticated tool compounds is required to investigate the molecular mechanisms of actionable mutations and to develop breakthrough therapeutics for different RET alterations. Herein, we present our investigation into the side chains of imidazopyridazine hinge binders that are capable of inducing protein-ligand interaction patterns from the gatekeeper to the waterfront regions. Extending the substituents at the second and sixth positions enhanced the IC50 up to < 0.5 nM for diverse RET alterations.
Collapse
Affiliation(s)
- Arunkranthi Maturi
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kasinathuni Naga Visweswara Sastry
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Surendra Kumar
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Vinay Pogaku
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon 21936, Republic of Korea
| | | | - Sung-Min Ahn
- Gachon Institute of Genome Medicine and Sciences, Gachon University Gil Medical Center, Incheon 21936, Republic of Korea
- Immunoforge, Seoul 08591, Republic of Korea
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
3
|
La Monica G, Pizzolanti G, Baiamonte C, Bono A, Alamia F, Mingoia F, Lauria A, Martorana A. Design and Synthesis of Novel Thieno[3,2- c]quinoline Compounds with Antiproliferative Activity on RET-Dependent Medullary Thyroid Cancer Cells. ACS OMEGA 2023; 8:34640-34649. [PMID: 37779971 PMCID: PMC10536062 DOI: 10.1021/acsomega.3c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 10/03/2023]
Abstract
RET kinase gain-of-function mutations represent the main cause of the high aggressiveness and invasiveness of medullary thyroid cancer (MTC). The selective inhibition of the RET kinase is a suitable strategy for the treatment of this endocrine neoplasia. Herein, we performed an innovative ligand-based virtual screening protocol using the DRUDITonline web service, focusing on the RET kinase as a biological target. In this process, thieno[3,2-c]quinolines 6a-e and 7a-e were proposed as new potential RET inhibitors. The selected compounds were synthetized by appropriate synthetic strategies, and in vitro evaluation of antiproliferative properties conducted on the particularly aggressive MTC cell line TT(C634R) identified compounds 6a-d as promising anticancer agents, with IC50 values in the micromolar range. Further structure-based computational studies revealed a significant capability of the most active compounds to the complex RET tyrosine kinase domain. The interesting antiproliferative results supported by in silico predictions suggest that these compounds may represent a starting point for the development of a new series of small heterocyclic molecules for the treatment of MTC.
Collapse
Affiliation(s)
- Gabriele La Monica
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Giuseppe Pizzolanti
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Concetta Baiamonte
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Federica Alamia
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Francesco Mingoia
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Antonino Lauria
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze, Ed.17, 90128 Palermo, Italy
| |
Collapse
|
4
|
Zhang Y, Chan S, He R, Liu Y, Song X, Tu ZC, Ren X, Zhou Y, Zhang Z, Wang Z, Zhou F, Ding K. 1-Methyl-3-((4-(quinolin-4-yloxy)phenyl)amino)-1H-pyrazole-4-carboxamide derivatives as new rearranged during Transfection (RET) kinase inhibitors capable of suppressing resistant mutants in solvent-front regions. Eur J Med Chem 2022; 244:114862. [DOI: 10.1016/j.ejmech.2022.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022]
|
5
|
Kim N, Shin I, Kim Y, Jeon E, Lee J, Lee C, Nam Y, Lee S, Ju E, Kim C, Son W, Ryu S, Ko M, Sim T. Novel Small Molecules Capable of Blocking mtRAS-Signaling Pathway. Front Oncol 2021; 11:768022. [PMID: 34956887 PMCID: PMC8695447 DOI: 10.3389/fonc.2021.768022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
RAS mutants are involved in approximately 30% of all human cancers and have been regarded as undruggable targets owing to relatively smooth protein surface and obscure binding pockets. In our previous study, we have demonstrated that GNF-7, a multi-targeted kinase inhibitor, possesses potent anti-proliferative activity against Ba/F3 cells transformed with NRAS-G12D. Based on our further analysis using Ba/F3 cells transformed with mtRAS, we discovered a series of pyrimido[4,5-d]pyrimidin-2-one analogues as mtRAS-signaling pathway blockers. In addition, our efforts expanded the assessment to cancer cells with mtRAS, which revealed that these substances are also capable of strongly suppressing the proliferation of various cancer cells harboring KRAS-G12D (AsPC-1), KRAS-G12V (SW480, DU-145), KRAS-G12C (H358), KRAS-G13D (MDA-MB-231), KRAS-Q61L (HT-29), and NRAS-Q61L (OCI-AML3). We herein report novel and potent mtRAS-signaling pathway blockers, SIJ1795 and SIJ1772, possessing 2 to 10-fold increased anti-proliferative activities compared to those of GNF-7 on cancer cells harboring mtRAS as well as on Ba/F3 cells transformed with mtRAS. Both SIJ1795 and SIJ1772 attenuate phosphorylation of RAS downstream molecules (AKT and MEK) and induce apoptosis and G0/G1 cell cycle arrest on cancer cells with mtRAS. Moreover, both substances substantially suppress the migration, invasion, and colony formation of cancer cells harboring mtRAS. Taken together, this study led us to identification of SIJ1795 and SIJ1772 capable of strongly inhibiting mtRAS-signaling pathway on cancer cells harboring mtRAS.
Collapse
Affiliation(s)
- Namkyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Injae Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunhye Jeon
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon Lee
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Chaeyoung Lee
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yunju Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sumin Lee
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunhye Ju
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Chan Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Woolim Son
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Minjoo Ko
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Kaur BP, Sharma V, Sahoo SC, Chimni SS. Low catalyst loading enabled organocatalytic synthesis of chiral bis-heterocyclic frameworks containing pyrazole and isoxazole. Org Biomol Chem 2021; 19:9910-9924. [PMID: 34734954 DOI: 10.1039/d1ob01313k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The organocatalytic asymmetric synthesis of enantiopure bis-heterocyclic molecules containing pyrazole and isoxazole under mild reaction conditions has been reported via a low-catalyst loading Michael addition reaction of pyrazolyl nitroalkenes with 1,3-dicarbonyl derivatives. 4-Substituted pyrazole derivatives were obtained in 60-87% yields and with 82-97% ee. These pyrazolyl derivatives are further transformed into chiral bis-heterocyclic derivatives in up to 82% yields and up to 99% ee. The synthesized pyrazole and isoxazole based bis-heterocyclic derivatives are potential bio-active molecules expected to have significant applications. Additionally, the synthesis of these bis-heterocycles can efficiently be carried out in one pot without any loss of enantiopurity, which further adds to its significance.
Collapse
Affiliation(s)
- Banni Preet Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, India.
| | - Vivek Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, India.
| | | | | |
Collapse
|
7
|
Vandetanib versus Cabozantinib in Medullary Thyroid Carcinoma: A Focus on Anti-Angiogenic Effects in Zebrafish Model. Int J Mol Sci 2021; 22:ijms22063031. [PMID: 33809722 PMCID: PMC8002338 DOI: 10.3390/ijms22063031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a tumor deriving from the thyroid C cells. Vandetanib (VAN) and cabozantinib (CAB) are two tyrosine kinase inhibitors targeting REarranged during Transfection (RET) and other kinase receptors and are approved for the treatment of advanced MTC. We aim to compare the in vitro and in vivo anti-tumor activity of VAN and CAB in MTC. The effects of VAN and CAB on viability, cell cycle, and apoptosis of TT and MZ-CRC-1 cells are evaluated in vitro using an MTT assay, DNA flow cytometry with propidium iodide, and Annexin V-FITC/propidium iodide staining, respectively. In vivo, the anti-angiogenic potential of VAN and CAB is evaluated in Tg(fli1a:EGFP)y1 transgenic fluorescent zebrafish embryos by analyzing the effects on the physiological development of the sub-intestinal vein plexus and the tumor-induced angiogenesis after TT and MZ-CRC-1 xenotransplantation. VAN and CAB exert comparable effects on TT and MZ-CRC-1 viability inhibition and cell cycle perturbation, and stimulated apoptosis with a prominent effect by VAN in MZ-CRC-1 and CAB in TT cells. Regarding zebrafish, both drugs inhibit angiogenesis in a dose-dependent manner, in particular CAB shows a more potent anti-angiogenic activity than VAN. To conclude, although VAN and CAB show comparable antiproliferative effects in MTC, the anti-angiogenic activity of CAB appears to be more relevant.
Collapse
|
8
|
Bhujbal SP, Keretsu S, Cho SJ. Molecular Modelling Studies on Pyrazole Derivatives for the Design of Potent Rearranged during Transfection Kinase Inhibitors. Molecules 2021; 26:691. [PMID: 33525725 PMCID: PMC7865942 DOI: 10.3390/molecules26030691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 01/14/2023] Open
Abstract
RET (rearranged during transfection) kinase, one of the receptor tyrosine kinases, plays a crucial role in the development of the human nervous system. It is also involved in various cell signaling networks responsible for the normal cell division, growth, migration, and survival. Previously reported clinical studies revealed that deregulation or aberrant activation of RET signaling can cause several types of human cancer. For example, medullary thyroid carcinoma (MTC) and multiple endocrine neoplasia (MEN2A, MEN2B) occur due to sporadic mutation or germline RET mutation. A number of RET kinase inhibitors have been approved by the FDA for the treatment of cancer, such as cabozantinib, vandetanib, lenvatinib, and sorafenib. However, each of these drugs is a multikinase inhibitor. Hence, RET is an important therapeutic target for cancer drug design. In this work, we have performed various molecular modelling studies, such as molecular docking and dynamics simulation for the most active compound of the pyrazole series as RET kinase inhibitors. Furthermore, molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) free energy calculation and 3-dimensional quantitative structure-activity relationship (3D-QSAR) were performed using g_mmpbsa and SYBYL-X 2.1 package. The results of this study revealed the crucial binding site residues at the active site of RET kinase and contour map analysis showed important structural characteristics for the design of new highly active inhibitors. Therefore, we have designed ten RET kinase inhibitors, which showed higher inhibitory activity than the most active compound of the series. The results of our study provide insights to design more potent and selective RET kinase inhibitors.
Collapse
Affiliation(s)
- Swapnil P. Bhujbal
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Korea; (S.P.B.); (S.K.)
| | - Seketoulie Keretsu
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Korea; (S.P.B.); (S.K.)
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Korea; (S.P.B.); (S.K.)
- Department of Cellular Molecular Medicine, College of Medicine, Chosun University, Gwangju 501-759, Korea
| |
Collapse
|
9
|
Li X, Su J, Yang Y, Lian W, Deng Z, Yang Z, Chen G, Zhang B, Dong C, Liu X, Li L, Wang Z, Hu Z, Xu Q, Deng X. Discovery of 4-methyl-N-(4-((4-methylpiperazin- 1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-((6-(pyridin-3-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-yl)-oxy)benzamide as a potent inhibitor of RET and its gatekeeper mutant. Eur J Med Chem 2020; 207:112755. [PMID: 32882611 DOI: 10.1016/j.ejmech.2020.112755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 11/17/2022]
Abstract
The receptor tyrosine kinase rearranged during transfection (RET) plays pivotal roles in several cancers, including thyroid carcinoma and non-small cell lung cancer (NSCLC). Currently, there are several FDA-approved RET inhibitors, but their indication is limited to thyroid cancer, and none can overcome their gatekeeper mutants (V804L and V804M). Here, we report the discovery of 9x representing a new chemotype of potent and selective RET inhibitors, using a rational design strategy of type II kinase inhibitors. 9x exhibited both superior antiproliferative activities against NSCLC-related carcinogenic fusions KIF5B-RET and CCDC6-RET and gatekeeper mutant-transformed Ba/F3 cells, with the lowest GI50 of 9 nM, and substantial inhibitory activities against wild-type RET and RET mutant proteins, with the best IC50 of 4 nM. More importantly, 9x also showed nanomole potency against RET-positive NSCLC cells LC-2/ad, but not against a panel of RET-negative cancer cells, such as A549, H3122, A375 or parental Ba/F3 cells, demonstrating its selective 'on-target' effect. In mouse xenograft models, 9x repressed tumor growth driven by both wild type KIF5B-RET-Ba/F3 and gatekeeper mutant KIF5B-RET(V804M)-Ba/F3 cells in a dose-dependent manner. Together, these data establish that 9x provides a good starting point for the development of targeted therapeutics against RET-positive cancers, especially NSCLC.
Collapse
Affiliation(s)
- Xiaoyang Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jingyi Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanru Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenhua Lian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhou Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zaiyou Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Guyue Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Baoding Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chao Dong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xueyan Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zheng Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhiyu Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
10
|
Recent developments of RET protein kinase inhibitors with diverse scaffolds as hinge binders. Future Med Chem 2020; 13:45-62. [PMID: 33242992 DOI: 10.4155/fmc-2020-0170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RET is a proto-oncogene encoding a receptor tyrosine kinase. RET regulates key aspects of cellular proliferation, differentiation and survival. The activation of RET via gene fusions or point mutations is closely related to lung, thyroid and other cancers. This review summarizes the developments of a diversity of small molecule RET protein kinase inhibitors in the past 10 years. These RET inhibitors are classified according to their hinge binder chemotypes as: pyrimidines, including the pyrazolopyrimidines, pyrimidine oxazines, quinazolines, 4-aminopyrimidines and 4-aminopyridines; indolinones; 5-aminopyrazole-4-carboxamides; 3-trifluoromethylanilines; imidazopyridines, imidazopyridazines and pyrazopyridines; nicotinonitriles; pyridones and 1,2,4-triazoles. In each section, the biological activities of the inhibitors, their structure-activity relationships and possible binding modes with the RET kinase are introduced.
Collapse
|
11
|
Zia M, Hameed S, Ahmad I, Tabassum N, Yousuf S. Regio-isomeric isoxazole sulfonates: Synthesis, characterization, electrochemical studies and DNA binding activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Spanò V, Rocca R, Barreca M, Giallombardo D, Montalbano A, Carbone A, Raimondi MV, Gaudio E, Bortolozzi R, Bai R, Tassone P, Alcaro S, Hamel E, Viola G, Bertoni F, Barraja P. Pyrrolo[2',3':3,4]cyclohepta[1,2- d][1,2]oxazoles, a New Class of Antimitotic Agents Active against Multiple Malignant Cell Types. J Med Chem 2020; 63:12023-12042. [PMID: 32986419 PMCID: PMC7901646 DOI: 10.1021/acs.jmedchem.0c01315] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 02/08/2023]
Abstract
A new class of pyrrolo[2',3':3,4]cyclohepta[1,2-d][1,2]oxazoles was synthesized for the treatment of hyperproliferative pathologies, including neoplasms. The new compounds were screened in the 60 human cancer cell lines of the NCI drug screen and showed potent activity with GI50 values reaching the nanomolar level, with mean graph midpoints of 0.08-0.41 μM. All compounds were further tested on six lymphoma cell lines, and eight showed potent growth inhibitory effects with IC50 values lower than 500 nM. Mechanism of action studies showed the ability of the new [1,2]oxazoles to arrest cells in the G2/M phase in a concentration dependent manner and to induce apoptosis through the mitochondrial pathway. The most active compounds inhibited tubulin polymerization, with IC50 values of 1.9-8.2 μM, and appeared to bind to the colchicine site. The G2/M arrest was accompanied by apoptosis, mitochondrial depolarization, generation of reactive oxygen species, and PARP cleavage.
Collapse
Affiliation(s)
- Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical
Sciences and Technologies (STEBICEF), University of Palermo,
Via Archirafi 32, 90123 Palermo, Italy
| | - Roberta Rocca
- Net4Science srl, Academic Spinoff,
Università Magna Græcia di Catanzaro, Viale Europa, 88100
Catanzaro, Italy
- Dipartimento di Medicina Sperimentale e Clinica,
Università Magna Græcia di Catanzaro, Viale
Europa, 88100 Catanzaro, Italy
| | - Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical
Sciences and Technologies (STEBICEF), University of Palermo,
Via Archirafi 32, 90123 Palermo, Italy
- Institute of Oncology Research, Faculty
of Biomedical Sciences, Università della Svizzera Italiana, Via
Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Daniele Giallombardo
- Department of Biological, Chemical and Pharmaceutical
Sciences and Technologies (STEBICEF), University of Palermo,
Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical
Sciences and Technologies (STEBICEF), University of Palermo,
Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Department of Biological, Chemical and Pharmaceutical
Sciences and Technologies (STEBICEF), University of Palermo,
Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical
Sciences and Technologies (STEBICEF), University of Palermo,
Via Archirafi 32, 90123 Palermo, Italy
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty
of Biomedical Sciences, Università della Svizzera Italiana, Via
Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Roberta Bortolozzi
- Istituto di Ricerca Pediatrica IRP,
Fondazione Città della Speranza, Corso Stati Uniti 4, 35127 Padova,
Italy
| | - Ruoli Bai
- Screening Technologies Branch, Developmental Therapeutics
Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute, National Institutes of
Health, Frederick, Maryland 21702, United States
| | - Pierfrancesco Tassone
- Dipartimento di Medicina Sperimentale e Clinica,
Università Magna Græcia di Catanzaro, Viale
Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute,
Università Magna Græcia di Catanzaro, Viale
Europa, 88100 Catanzaro, Italy
- Net4Science srl, Academic Spinoff,
Università Magna Græcia di Catanzaro, Viale Europa, 88100
Catanzaro, Italy
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics
Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute, National Institutes of
Health, Frederick, Maryland 21702, United States
| | - Giampietro Viola
- Istituto di Ricerca Pediatrica IRP,
Fondazione Città della Speranza, Corso Stati Uniti 4, 35127 Padova,
Italy
- Dipartimento di Salute della Donna e del Bambino,
Laboratorio di Oncoematologia, Università di Padova, Via
Giustiniani 2, 35131 Padova, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty
of Biomedical Sciences, Università della Svizzera Italiana, Via
Vincenzo Vela 6, 6500 Bellinzona, Switzerland
- Oncology Institute of Southern
Switzerland, Via Ospedale, 6500 Bellinzona,
Switzerland
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical
Sciences and Technologies (STEBICEF), University of Palermo,
Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
13
|
Newton R, Waszkowycz B, Seewooruthun C, Burschowsky D, Richards M, Hitchin S, Begum H, Watson A, French E, Hamilton N, Jones S, Lin LY, Waddell I, Echalier A, Bayliss R, Jordan AM, Ogilvie D. Discovery and Optimization of wt-RET/KDR-Selective Inhibitors of RET V804M Kinase. ACS Med Chem Lett 2020; 11:497-505. [PMID: 32292556 PMCID: PMC7153033 DOI: 10.1021/acsmedchemlett.9b00615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
A combination of focused library and virtual screening, hit expansion, and rational design has resulted in the development of a series of inhibitors of RETV804M kinase, the anticipated drug-resistant mutant of RET kinase. These agents do not inhibit the wild type (wt) isoforms of RET or KDR and therefore offer a potential adjunct to RET inhibitors currently undergoing clinical evaluation.
Collapse
Affiliation(s)
- Rebecca Newton
- Drug
Discovery Unit, Cancer Research UK, Manchester
Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, U.K.
| | - Bohdan Waszkowycz
- Drug
Discovery Unit, Cancer Research UK, Manchester
Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, U.K.
| | - Chitra Seewooruthun
- Department
of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, U.K.
| | - Daniel Burschowsky
- Department
of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, U.K.
| | - Mark Richards
- Astbury
Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Samantha Hitchin
- Drug
Discovery Unit, Cancer Research UK, Manchester
Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, U.K.
| | - Habiba Begum
- Drug
Discovery Unit, Cancer Research UK, Manchester
Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, U.K.
| | - Amanda Watson
- Drug
Discovery Unit, Cancer Research UK, Manchester
Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, U.K.
| | - Eleanor French
- Drug
Discovery Unit, Cancer Research UK, Manchester
Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, U.K.
| | - Niall Hamilton
- Drug
Discovery Unit, Cancer Research UK, Manchester
Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, U.K.
| | - Stuart Jones
- Drug
Discovery Unit, Cancer Research UK, Manchester
Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, U.K.
| | - Li-Ying Lin
- Leicester
Drug Discovery & Diagnostics Centre (LD3), R407a, Hodgkin Building, Lancaster Road, Leicester LE1 7HB, U.K.
| | - Ian Waddell
- Drug
Discovery Unit, Cancer Research UK, Manchester
Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, U.K.
| | - Aude Echalier
- Department
of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, U.K.
| | - Richard Bayliss
- Astbury
Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Allan M. Jordan
- Drug
Discovery Unit, Cancer Research UK, Manchester
Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, U.K.
| | - Donald Ogilvie
- Drug
Discovery Unit, Cancer Research UK, Manchester
Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, U.K.
| |
Collapse
|
14
|
Nam Y, Hwang D, Kim N, Seo HS, Selim KB, Sim T. Identification of 1 H-pyrazolo[3,4-b]pyridine derivatives as potent ALK-L1196M inhibitors. J Enzyme Inhib Med Chem 2019; 34:1426-1438. [PMID: 31401883 PMCID: PMC6713165 DOI: 10.1080/14756366.2019.1639694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) has been recognised as a promising molecular target of targeted therapy for NSCLC. We performed SAR study of pyrazolo[3,4-b]pyridines to override crizotinib resistance caused by ALK-L1196M mutation and identified a novel and potent L1196M inhibitor, 10g. 10g displayed exceptional enzymatic activities (<0.5 nM of IC50) against ALK-L1196M as well as against ALK-wt. In addition, 10g is an extremely potent inhibitor of ROS1 (<0.5 nM of IC50) and displays excellent selectivity over c-Met. Moreover, 10g strongly suppresses proliferation of ALK-L1196M-Ba/F3 and H2228 cells harbouring EML4-ALK via apoptosis and the ALK signalling blockade. The results of molecular docking studies reveal that, in contrast to crizotinib, 10g engages in a favourable interaction with M1196 in the kinase domain of ALK-L1196M and hydrogen bonding with K1150 and E1210. This SAR study has provided a useful insight into the design of novel and potent inhibitors against ALK gatekeeper mutant.
Collapse
Affiliation(s)
- Yunju Nam
- a KU-KIST Graduate School of Converging Science and Technology, Korea University , Seoul , Republic of Korea
| | - Dongkeun Hwang
- a KU-KIST Graduate School of Converging Science and Technology, Korea University , Seoul , Republic of Korea
| | - Namdoo Kim
- b NDBio Therapeutics Inc. , Incheon , Republic of Korea
| | - Hong-Seog Seo
- a KU-KIST Graduate School of Converging Science and Technology, Korea University , Seoul , Republic of Korea.,c Cardiovascular Center, Korea University Guro Hospital , Seoul , Republic of Korea
| | - Khalid B Selim
- d Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST) , Seoul , Republic of Korea.,e Department of Pharmaceutical Organic Chemistry, Mansoura University , Mansoura , Egypt
| | - Taebo Sim
- a KU-KIST Graduate School of Converging Science and Technology, Korea University , Seoul , Republic of Korea.,d Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST) , Seoul , Republic of Korea
| |
Collapse
|
15
|
Guzmán PE, Sausa RC, Wingard LA, Pesce‐Rodriguez RA, Sabatini JJ. Synthesis and Characterization of Isoxazole‐Based Energetic Plasticizer Candidates EEIN and IDN. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pablo E. Guzmán
- Energetic Technology Branch U. S. Army Research Laboratory 21005 Aberdeen Proving Ground MD USA
| | - Rosario C. Sausa
- Energetic Material Science Branch U. S. Army Research Laboratory 21005 Aberdeen Proving Ground MD USA
| | - Leah A. Wingard
- Energetic Technology Branch U. S. Army Research Laboratory 21005 Aberdeen Proving Ground MD USA
| | - Rose A. Pesce‐Rodriguez
- Energetic Material Science Branch U. S. Army Research Laboratory 21005 Aberdeen Proving Ground MD USA
| | - Jesse J. Sabatini
- Energetic Technology Branch U. S. Army Research Laboratory 21005 Aberdeen Proving Ground MD USA
| |
Collapse
|
16
|
Cho H, Shin I, Ju E, Choi S, Hur W, Kim H, Hong E, Kim ND, Choi HG, Gray NS, Sim T. First SAR Study for Overriding NRAS Mutant Driven Acute Myeloid Leukemia. J Med Chem 2018; 61:8353-8373. [PMID: 30153003 DOI: 10.1021/acs.jmedchem.8b00882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
GNF-7, a multitargeted kinase inhibitor, served as a dual kinase inhibitor of ACK1 and GCK, which provided a novel therapeutic strategy for overriding AML expressing NRAS mutation. This SAR study with GNF-7 derivatives, designed to target NRAS mutant-driven AML, led to identification of the extremely potent inhibitors, 10d, 10g, and 11i, which possess single-digit nanomolar inhibitory activity against both ACK1 and GCK. These substances strongly suppress proliferation of mutant NRAS expressing AML cells via apoptosis and AKT/mTOR signaling blockade. Compound 11i is superior to GNF-7 in terms of kinase inhibitory activity, cellular activity, and differential cytotoxicity. Moreover, 10k possessing a favorable mouse pharmacokinetic profile prolonged life-span of Ba/F3-NRAS-G12D injected mice and significantly delayed tumor growth of OCI-AML3 xenograft model without causing the prominent level of toxicity found with GNF-7. Taken together, this study provides insight into the design of novel ACK1 and GCK dual inhibitors for overriding NRAS mutant-driven AML.
Collapse
Affiliation(s)
- Hanna Cho
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Injae Shin
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Eunhye Ju
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Seunghye Choi
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Wooyoung Hur
- Chemical Kinomics Research Center , Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Haelee Kim
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu , Daegu 42019 , Republic of Korea
| | - Eunmi Hong
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu , Daegu 42019 , Republic of Korea
| | - Nam Doo Kim
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu , Daegu 42019 , Republic of Korea.,NDBio Therapeutics Inc. , 32 Songdogwahak-ro, Yeonsu-gu , Incheon 21984 , Republic of Korea
| | - Hwan Geun Choi
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu , Daegu 42019 , Republic of Korea
| | - Nathanael S Gray
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry & Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea.,Chemical Kinomics Research Center , Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| |
Collapse
|
17
|
Zhu J, Mo J, Lin HZ, Chen Y, Sun HP. The recent progress of isoxazole in medicinal chemistry. Bioorg Med Chem 2018; 26:3065-3075. [DOI: 10.1016/j.bmc.2018.05.013] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/06/2018] [Accepted: 05/10/2018] [Indexed: 11/15/2022]
|
18
|
Subramanian P, Kaliappan KP. Transition-Metal-Free Multicomponent Approach to Stereoenriched Cyclopentyl-isoxazoles through C-C Bond Cleavage. Chem Asian J 2018; 13:2031-2039. [PMID: 29920954 DOI: 10.1002/asia.201800608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/11/2018] [Indexed: 01/01/2023]
Abstract
An efficient multicomponent reaction for the synthesis of stereoenriched cyclopentyl-isoxazoles from camphor-derived α-oximes, alkynes, and MeOH is reported. Our method involved a series of cascade transformations, including the in situ generation of an IIII catalyst, which catalyzed the addition of MeOH to a sterically hindered ketone. Oxidation of the oxime, and rearrangement of the α-hydroxyiminium ion generated a nitrile oxide in situ, which, upon [3+2] cycloaddition reaction with an alkyne, delivered the regioselective product. This reaction was very selective for the syn-oxime. This multicomponent approach was also extended to the synthesis of a new glycoconjugate, camphoric ester-isoxazole C-galactoside.
Collapse
Affiliation(s)
- Parthasarathi Subramanian
- Department of Chemistry, Indian Institute of Technology Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Krishna P Kaliappan
- Department of Chemistry, Indian Institute of Technology Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| |
Collapse
|
19
|
Redaelli S, Plaza-Menacho I, Mologni L. Novel targeted therapeutics for MEN2. Endocr Relat Cancer 2018; 25:T53-T68. [PMID: 29348306 DOI: 10.1530/erc-17-0297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/28/2023]
Abstract
The rearranged during transfection (RET) proto-oncogene was recognized as the multiple endocrine neoplasia type 2 (MEN2) causing gene in 1993. Since then, much effort has been put into a clear understanding of its oncogenic signaling, its biochemical function and ways to block its aberrant activation in MEN2 and related cancers. Several small molecules have been designed, developed or redirected as RET inhibitors for the treatment of MEN2 and sporadic MTC. However, current drugs are mostly active against several other kinases, as they were not originally developed for RET. This limits efficacy and poses safety issues. Therefore, there is still much to do to improve targeted MEN2 treatments. New, more potent and selective molecules, or combinatorial strategies may lead to more effective therapies in the near future. Here, we review the rationale for RET targeting in MEN2, the use of currently available drugs and novel preclinical and clinical RET inhibitor candidates.
Collapse
Affiliation(s)
- Sara Redaelli
- School of Medicine and SurgeryUniversity of Milano-Bicocca, Monza, Italy
| | | | - Luca Mologni
- School of Medicine and SurgeryUniversity of Milano-Bicocca, Monza, Italy
| |
Collapse
|
20
|
Bhujbal SP, Balasubramanian PK, Joo Cho S. In silico studies on 2-substituted phenol quinazoline derivatives as RET receptor tyrosine kinase antagonists. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2016-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Yang J, Chen K, Zhang G, Yang QY, Li YS, Huang SZ, Wang YL, Yang W, Jiang XJ, Yan HX, Zhu JQ, Xiang R, Luo YF, Li WM, Wei YQ, Li LL, Yang SY. Structural optimization and structure-activity relationship studies of N-phenyl-7,8-dihydro-6H-pyrimido[5,4-b][1,4]oxazin-4-amine derivatives as a new class of inhibitors of RET and its drug resistance mutants. Eur J Med Chem 2017; 143:1148-1164. [PMID: 29133048 DOI: 10.1016/j.ejmech.2017.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 02/05/2023]
Abstract
The RET tyrosine kinase is an important therapeutic target for medullary thyroid cancer (MTC), and drug resistance mutations of RET, particularly V804M and V804L, are a main challenge for the current targeted therapy of MTC based on RET inhibitors. In this investigation, we report the structural optimization and structure-activity relationship studies of N-phenyl-7,8-dihydro-6H-pyrimido[5,4-b][1,4]oxazin-4-amine derivatives as a new class of RET inhibitors. Among all the obtained kinase inhibitors, 1-(5-(tert-butyl)isoxazol-3-yl)-3-(4-((6,7,8,9-tetrahydropyrimido[5,4-b][1,4]oxazepin-4-yl)amino)phenyl)urea (17d) is a multi-kinase inhibitor and potently inhibits RET and its drug resistance mutants. It showed IC50 (half maximal inhibitory concentration) values of 0.010 μM, 0.015 μM, and 0.009 μM against RET-wild-type, RET-V804M, and RET-V804L, respectively. 17d displayed significant anti-viability potencies against various RET-driving tumor cell lines. In a xenograft mouse model of NIH3T3-RET-C634Y, 17d exhibited potent in vivo anti-tumor activity, and no obvious toxicity was observed. Mechanisms of action were also investigated by Western blot and immunohistochemical assays. Collectively, 17d could be a promising agent for the treatment of MTC, hence deserving a further investigation.
Collapse
Affiliation(s)
- Jiao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Kai Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Guo Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Qiu-Yuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yue-Shan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Shen-Zhen Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yan-Lin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Wei Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Xiao-Juan Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Heng-Xiu Yan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Jing-Qiang Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University, Tianjin 300071, China
| | - You-Fu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Wei-Min Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Lin-Li Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China.
| |
Collapse
|
22
|
De Falco V, Carlomagno F, Li HY, Santoro M. The molecular basis for RET tyrosine-kinase inhibitors in thyroid cancer. Best Pract Res Clin Endocrinol Metab 2017; 31:307-318. [PMID: 28911727 PMCID: PMC5624797 DOI: 10.1016/j.beem.2017.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RET receptor tyrosine kinase acts as a mutated oncogenic driver in several human malignancies and it is over-expressed in other cancers. Small molecule compounds with RET tyrosine kinase inhibitory activity are being investigated for the targeted treatment of these malignancies. Multi-targeted compounds with RET inhibitory concentration in the nanomolar range have entered clinical practice. This review summarizes mechanisms of RET oncogenic activity and properties of new compounds that, at the preclinical stage, have demonstrated promising anti-RET activity.
Collapse
Affiliation(s)
- Valentina De Falco
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Via S Pansini 5, 80131 Naples, Italy.
| | - Francesca Carlomagno
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Via S Pansini 5, 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via S Pansini 5, 80131 Naples, Italy.
| | - Hong-Yu Li
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock AR 72202, USA.
| | - Massimo Santoro
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Via S Pansini 5, 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via S Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
23
|
Xu F, Kang WF, Wang XN, Zhu YY, Chen SX, Kong YJ, Fang SM. Hypervalent iodine-induced formation of 3,5-disubstituted isoxazoles via [3 + 2] cycloaddition of diynes with aldoximes. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-016-1907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Wang C, Liu H, Song Z, Ji Y, Xing L, Peng X, Wang X, Ai J, Geng M, Zhang A. Synthesis and structure-activity relationship study of pyrazolo[3,4-d]pyrimidines as tyrosine kinase RET inhibitors. Bioorg Med Chem Lett 2017; 27:2544-2548. [PMID: 28404375 DOI: 10.1016/j.bmcl.2017.03.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 11/28/2022]
Abstract
Three series of pyrazolo[3,4-d]pyrimidine derivatives were synthesized and evaluated as RET kinase inhibitors. Compounds 23a and 23c were identified to show significant activity both in the biochemical and the BaF3/CCDC6-RET cell assays. Compound 23c was found to significantly inhibit RET phosphorylation and down-stream signaling in BaF3/CCDC6-RET cells, confirming its potent cellular RET-targeting profile. Different from other RET inhibitors with equal potency against KDR that associated with severe toxicity, 23c did not show significant KDR-inhibition even at the concentration of 1μM. These results demonstrated that 23c is a potent and selective RET inhibitor.
Collapse
Affiliation(s)
- Chengyan Wang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Hongchun Liu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Zilan Song
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinchun Ji
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Xing
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Xia Peng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Xisheng Wang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China.
| | - Jing Ai
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
25
|
Spanò V, Pennati M, Parrino B, Carbone A, Montalbano A, Lopergolo A, Zuco V, Cominetti D, Diana P, Cirrincione G, Zaffaroni N, Barraja P. [1,2]Oxazolo[5,4- e ]isoindoles as promising tubulin polymerization inhibitors. Eur J Med Chem 2016; 124:840-851. [DOI: 10.1016/j.ejmech.2016.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 12/20/2022]
|
26
|
Yoon H, Shin I, Nam Y, Kim ND, Lee KB, Sim T. Identification of a novel 5-amino-3-(5-cyclopropylisoxazol-3-yl)-1-isopropyl-1H-pyrazole-4-carboxamide as a specific RET kinase inhibitor. Eur J Med Chem 2016; 125:1145-1155. [PMID: 27814560 DOI: 10.1016/j.ejmech.2016.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 01/01/2023]
Abstract
Activating mutations of REarrange during Transfection (RET) kinase frequently occur in human thyroid and lung cancers. An enormous effort has been devoted to discover potent and selective inhibitors of RET. Selective and potent inhibitors against constitutively active RET mutants are rare to date as identification of selective RET inhibitors is challenging. In a recent effort we identified a novel and specific RET inhibitor of 5-aminopyrazole-4-carboxamide scaffold, which was designed to enhance the metabolic stability of the pyrazolopyrimidine scaffold. In the SAR study described in the current report, we identified the 5-aminopyrazole-4-carboxamide analog 15l, which displays high metabolic stability. Compound 15l is potent against gatekeeper mutant (IC50 = 252 nM) of RET as well as against wild-type RET (IC50 = 44 nM). This substance effectively suppresses growth of Ba/F3 cells transformed with wild-type RET and its gatekeeper mutant (V804M), and thyroid-cancer derived TT cells while it does not affect parental Ba/F3 cells and Nthy ori-3-1, normal thyroid cells. Also, the results of a global kinase profiling assay on a panel of 369 kinases, show that 15l exclusively inhibits RET. Based on its exceptional kinase selectivity, great potency and metabolic stability, 15l represents a promising lead for the discovery of RET directed therapeutic agent and should be a key tool in studies aimed at understanding RET biology.
Collapse
Affiliation(s)
- Hojong Yoon
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Injae Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yunju Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Kyung-Bok Lee
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Taebo Sim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
27
|
Morita T, Fuse S, Nakamura H. Generation of an 4-Isoxazolyl Anion Species: Facile Access to Multifunctionalized Isoxazoles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Taiki Morita
- Laboratory for Chemistry and Life Science Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Shinichiro Fuse
- Laboratory for Chemistry and Life Science Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
28
|
Morita T, Fuse S, Nakamura H. Generation of an 4-Isoxazolyl Anion Species: Facile Access to Multifunctionalized Isoxazoles. Angew Chem Int Ed Engl 2016; 55:13580-13584. [DOI: 10.1002/anie.201608039] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Taiki Morita
- Laboratory for Chemistry and Life Science Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Shinichiro Fuse
- Laboratory for Chemistry and Life Science Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|