1
|
Huang AX, Li R, Lv QY, Yu B. Photocatalytic Sulfonylation: Innovations and Applications. Chemistry 2024; 30:e202402416. [PMID: 39003604 DOI: 10.1002/chem.202402416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed. In this review, the recent advances in photocatalyzed sulfonylation have been reviewed since 2020, with a primary focus on discussing reaction design and mechanism.
Collapse
Affiliation(s)
- An-Xiang Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Qi-Yan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Huang T, Yin H, Li T, Yu C, Zhang K, Yao C. NHC catalyzed radical tandem cyclization: an efficient synthesis of α,α-difluoro-γ-lactam derivatives. Org Biomol Chem 2024; 22:6988-6998. [PMID: 39140215 DOI: 10.1039/d4ob01012d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, an N-heterocyclic carbene (NHC) catalyzed radical tandem cyclization reaction of N-allylbromodifluoroacetamides and aldehydes has been developed. This method is an efficient protocol for synthesizing α,α-difluoro-γ-lactam derivatives in moderate to good yields (27 examples, up to 88% yield and 10 : 1 dr). This strategy features mild and metal-free conditions, high efficiency, and a broad substrate scope.
Collapse
Affiliation(s)
- Tianjiao Huang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Huiping Yin
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Tuanjie Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Chenxia Yu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Kai Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Changsheng Yao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| |
Collapse
|
3
|
Zeng FL, Wang L, Luo Y, Chen J, Li J, Yuan J. Visible-light-induced photocatalyst-free cascade cyclization of 3-(2-(ethynyl)phenyl)quinazolinones to sulfonated quinolino[2,1- b]quinazolinones. Chem Commun (Camb) 2024; 60:7228-7231. [PMID: 38912666 DOI: 10.1039/d4cc01970a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A visible-light-induced K2S2O8-promoted cascade sulfonation/cyclization reaction was established using 3-(2-(ethynyl)phenyl)quinazolinones as efficient substrates under mild conditions. A series of sulfonated quinolino[2,1-b]quinazolinones were successfully synthesized under transition-metal- and photocatalyst-free conditions. Notably, this strategy has the advantages of room temperature and simple operation, easy scale-up, and good functional group tolerance.
Collapse
Affiliation(s)
- Fan-Lin Zeng
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Lili Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Yuxin Luo
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Jianan Chen
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Jinling Li
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Jinwei Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| |
Collapse
|
4
|
Wang Y, Jia S, Chen Y, Liao X, Jie R, Jiang L, Wang T, Wen H, Gan W, Cui H. Taking advantage of the interaction between the sulfoxide and heme cofactor to develop indoleamine 2, 3-dioxygenase 1 inhibitors. Bioorg Chem 2024; 148:107426. [PMID: 38733750 DOI: 10.1016/j.bioorg.2024.107426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Taking advantage of key interactions between sulfoxide and heme cofactor, we used the sulfoxide as the anchor functional group to develop two series of indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors: 2-benzylsulfinylbenzoxazoles (series 1) and 2-phenylsulfinylbenzoxazoles (series 2). In vitro enzymatic screening shows that both series can inhibit the activity of IDO1 in low micromolar (series 1) or nanomolar (series 2) levels. They also show inhibitory selectivity between IDO1 and tryptophan 2, 3-dioxygenase 2. Interestingly, although series 1 is less potent IDO1 inhibitors of these two series, it exhibited stronger inhibitory activity toward kynurenine production in interferon-γ stimulated BxPC-3 cells. Enzyme kinetics and binding studies demonstrated that 2-sulfinylbenzoxazoles are non-competitive inhibitors of tryptophan, and they interact with the ferrous form of heme. These results demonstrated 2-sulfinylbenzoxazoles as type II IDO1 inhibitors. Furthermore, molecular docking studies supports the sulfoxide being of the key functional group that interacts with the heme cofactor. Compound 22 (series 1) can inhibit NO production in a concentration dependent manner in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and can relieve pulmonary edema and lung injury in LPS induced mouse acute lung injury models.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Shumi Jia
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Ru Jie
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Lei Jiang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Wenqiang Gan
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
5
|
Deeksha, Bittu, Singh R. Synthetic strategies for the construction of C3-fluorinated oxindoles. Org Biomol Chem 2023; 21:6456-6467. [PMID: 37531214 DOI: 10.1039/d3ob01012k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
C3-fluorinated oxindoles are important scaffolds known to demonstrate various biological properties. As bio-isosteres of oxindoles, these compounds have shown tremendous potential in drug research discovery programs. Besides, they also serve as starting materials for synthesizing other fluorine-containing new architectures, thus launching research for developing new methods for their synthesis. Consequently, various approaches have been developed over the years to synthesize C3-fluorinated oxindoles. This review highlights the strategies developed to date to access C3-difluoro and monofluorooxindoles via intermolecular and intramolecular approaches. The key findings of the strategies developed are discussed along with the prevailing mechanism.
Collapse
Affiliation(s)
- Deeksha
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India.
| | - Bittu
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India.
| | - Ritesh Singh
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
6
|
Ding R, Li L, Yu YT, Zhang B, Wang PL. Photoredox-Catalyzed Synthesis of 3-Sulfonylated Pyrrolin-2-ones via a Regioselective Tandem Sulfonylation Cyclization of 1,5-Dienes. Molecules 2023; 28:5473. [PMID: 37513345 PMCID: PMC10386375 DOI: 10.3390/molecules28145473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
A mild, visible-light-induced, regioselective cascade sulfonylation-cyclization of 1,5-dienes with sulfonyl chlorides through the intermolecular radical addition/cyclization of alkenes C(sp2)-H was developed. This procedure proceeds well and affords a mild and efficient route to a range of monosulfonylated pyrrolin-2-ones at room temperatures.
Collapse
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Liang Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Ya-Ting Yu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Bing Zhang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Pei-Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
- Information College, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
7
|
Ye H, Zhou L, Chen Y, Tong H. Visible light driven multicomponent synthesis of difluoroamidosulfonyl quinoline derivatives. Org Biomol Chem 2023; 21:846-850. [PMID: 36602158 DOI: 10.1039/d2ob02069f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A visible-light-induced photocatalyst-free three-component radical tandem cyclization of N-propargylamine and N-allylbromodifluoroacetamides with the insertion of sulfur dioxide has been developed. Diverse difluoroamidosulfonylated quinolines are obtained in moderate to good yields. This protocol features broad functional group tolerance and high regioselectivity. Moreover, mechanistic studies reveal the involvement of the radical pathway and the formation of an electron donor-acceptor (EDA) complex in this reaction.
Collapse
Affiliation(s)
- Haiwei Ye
- Chemical Pharmaceutical Research Institute, Taizhou Vocational & Technical College, Taizhou, 318000, P.R. China.
| | - Liping Zhou
- Chemical Pharmaceutical Research Institute, Taizhou Vocational & Technical College, Taizhou, 318000, P.R. China.
| | - Yunhua Chen
- Chemical Pharmaceutical Research Institute, Taizhou Vocational & Technical College, Taizhou, 318000, P.R. China.
| | - Huaguang Tong
- Taizhou Daozhi Tech Co., Ltd, Taizhou, 318000, P.R. China
| |
Collapse
|
8
|
Tang K, Wang S, Gao W, Song Y, Yu B. Harnessing the cyclization strategy for new drug discovery. Acta Pharm Sin B 2022; 12:4309-4326. [PMID: 36562004 PMCID: PMC9764076 DOI: 10.1016/j.apsb.2022.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 12/25/2022] Open
Abstract
The design of new ligands with high affinity and specificity against the targets of interest has been a central focus in drug discovery. As one of the most commonly used methods in drug discovery, the cyclization represents a feasible strategy to identify new lead compounds by increasing structural novelty, scaffold diversity and complexity. Such strategy could also be potentially used for the follow-on drug discovery without patent infringement. In recent years, the cyclization strategy has witnessed great success in the discovery of new lead compounds against different targets for treating various diseases. Herein, we first briefly summarize the use of the cyclization strategy in the discovery of new small-molecule lead compounds, including the proteolysis targeting chimeras (PROTAC) molecules. Particularly, we focus on four main strategies including fused ring cyclization, chain cyclization, spirocyclization and macrocyclization and highlight the use of the cyclization strategy in lead generation. Finally, the challenges including the synthetic intractability, relatively poor pharmacokinetics (PK) profiles and the absence of the structural information for rational structure-based cyclization are also briefly discussed. We hope this review, not exhaustive, could provide a timely overview on the cyclization strategy for the discovery of new lead compounds.
Collapse
|
9
|
Qian BC, Zhu CZ, Shen GB. The Application of Sulfonyl Hydrazides in Electrosynthesis: A Review of Recent Studies. ACS OMEGA 2022; 7:39531-39561. [PMID: 36385900 PMCID: PMC9648049 DOI: 10.1021/acsomega.2c04205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 05/25/2023]
Abstract
Sulfonyl hydrazides are viewed as alternatives to sulfinic acids and their salts or sulfonyl halides, which are broadly used in organic synthesis or work as active pharmaceutical substances. Generally, sulfonyl hydrazides are considered good building blocks and show powerful value in a diverse range of reactions to construct C-S bonds or C-C bonds, and even C-N bonds as sulfur, carbon, or nitrogen sources, respectively. As a profound synthetic tool, the electrosynthesis method was recently used to achieve efficient and green applications of sulfonyl hydrazides. Interestingly, many unique and novel electrochemical syntheses using sulfonyl hydrazides as radical precursors have been developed, including cascade reactions, functionalization of heterocycles, as well as a continuous flow method combining with electrochemical synthesis since 2017. Accordingly, it is necessary to specifically summarize the recent developments of electrosynthesis with only sulfonyl hydrazides as radical precursors to more deeply understand and better design novel electrochemical synthesis reactions. Herein, electrosynthesis research using sulfonyl hydrazides as radical precursors since 2017 is reviewed in detail based on the chemical structures of products and reaction mechanisms.
Collapse
Affiliation(s)
- Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Chao-Zhe Zhu
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| |
Collapse
|
10
|
Liu C, Shangguan X, Li Y, Zhang Q. Copper-catalyzed radical cascade reaction of simple cyclobutanes: synthesis of highly functionalized cyclobutene derivatives. Chem Sci 2022; 13:7886-7891. [PMID: 35865909 PMCID: PMC9258397 DOI: 10.1039/d2sc00765g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Cyclobutenes as versatile and highly valuable synthons have been widely applied in synthesis. Although various methods for their synthesis have been well established, new strategies for the construction of the cyclobutene skeleton from simple substrates are still highly desirable. Starting from simple cyclobutanes, the construction of the cyclobutene skeleton especially introducing multiple functional groups simultaneously had never been achieved. Here, we developed a novel radical cascade strategy for the synthesis of highly functionalized cyclobutenes directly from cyclobutanes involving rare cleavage of four or five C–H bonds and formation of two C–N/C–S or three C–Br bonds. With copper as catalyst and N-fluorobenzenesulfonimide (NFSI) as oxidant, a wide range of diaminated, disulfonylated and tribrominated cyclobutene derivatives were efficiently synthesized. A novel radical cascade strategy for the synthesis of highly functionalized cyclobutenes directly from cyclobutanes involving rare four or five C–H bonds cleavage and two C–N/C–S or three C–Br bonds formation has been successfully developed.![]()
Collapse
Affiliation(s)
- Chunyang Liu
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xiaoyan Shangguan
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Yan Li
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
11
|
Granados A, Cabrera-Afonso MJ, Escolano M, Badir SO, Molander GA. Thianthrenium-Enabled Sulfonylation via Electron Donor-Acceptor Complex Photoactivation. CHEM CATALYSIS 2022; 2:898-907. [PMID: 35846835 PMCID: PMC9282721 DOI: 10.1016/j.checat.2022.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sulfone-containing compounds are prevalent building blocks in pharmaceuticals and other biomolecules, and they serve as key intermediates in the synthesis of complex scaffolds. During the past decade, several methods have been developed to access sulfones. These strategies, however, require the use of strong reaction conditions, limiting their substrate scope. Recently, visible light-mediated transformations have emerged as novel platforms to access unprecedented structural motifs. This report demonstrates a thianthrenium-enabled sulfonylation via intra-complex charge transfer to generate transient aryl- and persistent sulfonyl radicals that undergo selective coupling to generate alkyl- and (hetero)aryl sulfones under ambient conditions. Importantly, this strategy allows retention of halide handles, presenting a complementary approach to transition metal-mediated photoredox couplings. Furthermore, this sulfonylation allows high functional group tolerance and is amenable to late-stage functionalization of complex biomolecules. Mechanistic investigations support the intermediacy of electron donor-acceptor (EDA) complexes.
Collapse
Affiliation(s)
- Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
- These authors contributed equally
| | - María Jesús Cabrera-Afonso
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
- These authors contributed equally
| | - Marcos Escolano
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
| | - Shorouk O. Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
- Lead contact
| |
Collapse
|
12
|
Liu F, Huang J, Wu X, Du F, Zeng L, Wu J, Chen Z. Regioselective Radical-Relay Sulfonylation/Cyclization Protocol to Sulfonylated Pyrrolidones under Transition-Metal-Free Conditions. J Org Chem 2022; 87:6137-6145. [PMID: 35437015 DOI: 10.1021/acs.joc.2c00381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A simple and low-cost tandem sulfonylation/cyclization of 1,5-diene, aryldiazonium salt, and DABCO·(SO2)2 is disclosed. This base-promoted multicomponent reaction can provide a "green" and economic synthesis of sulfonylated pyrrolidones under transition-metal-free and moisture/oxygen-insensitive reaction conditions, thus delivering a wide range of sulfonylated pyrrolidones in moderate to high yields with excellent functional group compatibility. A plausible mechanism involving a radical process is proposed, which demonstrates highly chemoselective trapping of the aryl radical with "SO2" species, and a regioselective sulfonylation/cyclization protocol in this reaction.
Collapse
Affiliation(s)
- Fei Liu
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jiapian Huang
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.,Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang 318000, China
| | - Xinyu Wu
- Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang 318000, China
| | - Feihua Du
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jie Wu
- Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang 318000, China
| | - Zhiyuan Chen
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.,School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| |
Collapse
|
13
|
Zheng X, Shen Q, Yin C, Li L, Zhong T, Yu C. Photoinduced Three‐Component Difluoroamidosulfonylation/Bicyclization: Regioselectivity Synthesis of Seven‐Membered Dibenzosultams. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiangyun Zheng
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Qitao Shen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Lianghao Li
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
14
|
Shen Q, Zheng X, Li L, Zhong T, Yin C, Yu C. Photoinduced Three-Component Difluoroamidosulfonylation/Bicyclization: A Route to Dihydrobenzofuran Derivatives. Org Lett 2022; 24:2556-2561. [PMID: 35348346 DOI: 10.1021/acs.orglett.2c00761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A visible-light-induced photocatalyst-free three-component radical cascade bicyclization has been achieved to obtain diverse difluoroamidosulfonylated dihydrobenzofurans in moderate to good yields. This protocol avoids potential toxicity and the tedious removal procedure for photocatalysts and also features mild reaction conditions and a good functional group tolerance. Moreover, mechanistic investigations reveal the formation of a charge-transfer complex and the involvement of an intramolecular 1,5-hydrogen atom transfer process in this transformation.
Collapse
Affiliation(s)
- Qitao Shen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Lianghao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
15
|
Baishya G, Dutta NB. Recent Advances in Direct C−H Trifluoromethylation of N‐Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gakul Baishya
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Nibedita B. Dutta
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Rain Forest Research Institute Jorhat 785001 India
| |
Collapse
|
16
|
Discovery and development of a novel N-(3-bromophenyl)-{[(phenylcarbamoyl)amino]methyl}-N-hydroxythiophene-2-carboximidamide indoleamine 2,3-dioxygenase inhibitor using knowledge-based drug design. Eur J Med Chem 2021; 229:114043. [PMID: 34929581 DOI: 10.1016/j.ejmech.2021.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/07/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
Indoleamine 2,3-dioxygenase-1 (IDO1) is a potential target for the next generation of cancer immunotherapies. We describe the development of two series of IDO1 inhibitors incorporating a N-hydroxy-thiophene-carboximidamide core generated by knowledge-based drug design. Structural modifications to improve the cellular activity and pharmacokinetic (PK) properties of the compounds synthesized, including extension of the side chain of the N-hydroxythiophene-2-carboximidamide core, resulted in compound 27a, a potent IDO1 inhibitor which demonstrated significant (51%) in vivo target inhibition on IDO1 in a human SK-OV-3 ovarian xenograft tumor mouse model. This strategy is expected to be applicable to the discovery of additional IDO1 inhibitors for the treatment of other diseases susceptible to modulation of IDO1.
Collapse
|
17
|
Catanese S, Beuchel CF, Sawall T, Lordick F, Brauer R, Scholz M, Ceglarek U, Hacker UT. Biomarkers related to fatty acid oxidative capacity are predictive for continued weight loss in cachectic cancer patients. J Cachexia Sarcopenia Muscle 2021; 12:2101-2110. [PMID: 34636159 PMCID: PMC8718041 DOI: 10.1002/jcsm.12817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cachexia is characterized by a negative protein and energy balance leading to loss of adipose tissue and muscle mass. Cancer cachexia negatively impacts treatment tolerability and prognosis. Supportive interventions should be initiated as early as possible. Biomarkers for early prediction of continuing weight loss during the course of disease are currently lacking. METHODS In this pilot, observational, cross-sectional, case-control study, cachectic cancer patients undergoing systemic first-line cancer treatment were matched 2:1 with healthy controls according to age, gender and body mass index. Alterations in amino acid and energy metabolism, as indicated by acylcarnitine levels, were analysed using mass spectrometry in plasma samples (PS) and dried blood specimen (DBS). Welch's two-sample t-test was used for comparative analysis of metabolites between cancer patients and healthy matched controls and to identify the metabolomic profiles related to weight loss across different time points. A linear regression model was applied to correlate weight loss and single metabolites as predictor variables. Finally, metabolite pathway enrichment analyses were performed. RESULTS Eighteen cases (14 male and 4 female) and 36 paired controls were enrolled. There was a good correlation between baseline PS and DBS of healthy controls for the levels of most amino acids but not for acylcarnitine. Amino acid levels related to cancer metabolism were significantly altered in cancer patients compared with controls in both DBS and PS for arginine, citrulline, histidine and ornithine and in DBS only for asparagine, glutamine, methylhistidine, methionine, ornithine, serine, threonine and leucine/isoleucine. Metabolite enrichment analysis in PS of cancer patients revealed histidine metabolism activation (P = 0.0025). Baseline acylcarnitine analysis in DBS was indicative for alterations of the mitochondrial carnitine shuttle, related to β-oxidation: The ratio palmitoylcarnitine/acylcarnitine (Q2) and the ratio palmitoylcarnitine + octadecenoylcarnitine/acylcarnitine (Q3) were predictive for early weight loss (P < 0.0001) and weight loss during follow-up. Activation of tryptophan metabolism (P = 0.035) in DBS and PS and activation of serine/glycine metabolism (P = 0.017) in PS were also related to early weight loss and across successive time points. CONCLUSIONS We found alterations in amino acid levels most likely attributable to cancer metabolism itself in cancer patients compared with controls. Baseline DBS represent a valuable analyte to study energy metabolism related to cancer cachexia. Acylcarnitine patterns (Q2, Q3) predicted further weight loss in cachectic cancer patients undergoing systemic therapy, and pathway analyses indicated involvement of the serine/glycine and the tryptophan pathway in this condition. Validation in larger cohorts is warranted.
Collapse
Affiliation(s)
- Silvia Catanese
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany.,Department of Oncology, University Hospital of Pisa, Pisa, Italy
| | - Carl Friedrich Beuchel
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Medical Faculty of the University Leipzig, Leipzig, Germany
| | | | - Florian Lordick
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
| | - Rommy Brauer
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Medical Center, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Medical Faculty of the University Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Medical Center, Leipzig, Germany
| | - Ulrich T Hacker
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
18
|
Zhang M, Chen M, Ding X, Kang J, Gao Y, He X, Wang Z, Lu A, Wang Q. The photoredox-catalyzed hydrosulfamoylation of styrenes and its application in the novel synthesis of naratriptan. Chem Commun (Camb) 2021; 57:9140-9143. [PMID: 34498639 DOI: 10.1039/d1cc04225d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The hydrosulfamoylation of diverse aryl olefins provides facile access to alkylsulfonamides. Here we report a novel protocol utilizing radical-mediated addition and a thiol-assisted strategy to achieve the hydrosulfamoylation of diverse styrenes in modest to excellent yields under mild and economic reaction conditions. The methodology was found to provide an efficient and convenient approach for the synthesis of the anti-migraine drug naratriptan and it also can be used for the late-stage functionalization of natural products or medicines.
Collapse
Affiliation(s)
- Mingjun Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Miaomiao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Xin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Jin Kang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Yongyue Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Xingxing He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China.
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
19
|
Song F, Bian Y, Liu J, Li Z, Zhao L, Fang J, Lai Y, Zhou M. Indole Alkaloids, Synthetic Dimers and Hybrids with Potential In Vivo Anticancer Activity. Curr Top Med Chem 2021; 21:377-403. [PMID: 32901583 DOI: 10.2174/1568026620666200908162311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Indole, a heterocyclic organic compound, is one of the most promising heterocycles found in natural and synthetic sources since its derivatives possess fascinating structural diversity and various therapeutic properties. Indole alkaloids, synthetic dimers and hybrids could act on diverse targets in cancer cells, and consequently, possess potential antiproliferative effects on various cancers both in vitro and in vivo. Vinblastine, midostaurin, and anlotinib as the representative of indole alkaloids, synthetic dimers and hybrids respectively, have already been clinically applied to treat many types of cancers, demonstrating indole alkaloids, synthetic dimers and hybrids are useful scaffolds for the development of novel anticancer agents. Covering articles published between 2010 and 2020, this review emphasizes the recent development of indole alkaloids, synthetic dimers and hybrids with potential in vivo therapeutic application for cancers.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Jing Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Li Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Yonghong Lai
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| |
Collapse
|
20
|
Chen T, Shen J, Wang M, Xu X, Cheng D. I
2
‐Catalyzed Tandem Annulation of Ketene Dithioacetals with Sulfonyl Hydrazides for the Synthesis of
N
‐Aminosulfonamides. ChemistrySelect 2021. [DOI: 10.1002/slct.202101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tianpeng Chen
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Jing Shen
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Mingliang Wang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xiaoliang Xu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Dongping Cheng
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
21
|
Zheng Y, Stafford PM, Stover KR, Mohan DC, Gupta M, Keske EC, Schiavini P, Villar L, Wu F, Kreft A, Thomas K, Raaphorst E, Pasangulapati JP, Alla SR, Sharma S, Mittapalli RR, Sagamanova I, Johnson SL, Reed MA, Weaver DF. A Series of 2-((1-Phenyl-1H-imidazol-5-yl)methyl)-1H-indoles as Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. ChemMedChem 2021; 16:2195-2205. [PMID: 33759400 DOI: 10.1002/cmdc.202100107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Indexed: 12/17/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a promising therapeutic target in cancer immunotherapy and neurological disease. Thus, searching for highly active inhibitors for use in human cancers is now a focus of widespread research and development efforts. In this study, we report the structure-based design of 2-(5-imidazolyl)indole derivatives, a series of novel IDO1 inhibitors which have been designed and synthesized based on our previous study using N1-substituted 5-indoleimidazoles. Among these, we have identified one with a strong IDO1 inhibitory activity (IC50 =0.16 μM, EC50 =0.3 μM). Structural-activity relationship (SAR) and computational docking simulations suggest that a hydroxyl group favorably interacts with a proximal Ser167 residue in Pocket A, improving IDO1 inhibitory potency. The brain penetrance of potent compounds was estimated by calculation of the Blood Brain Barrier (BBB) Score and Brain Exposure Efficiency (BEE) Score. Many compounds had favorable scores and the two most promising compounds were advanced to a pharmacokinetic study which demonstrated that both compounds were brain penetrant. We have thus discovered a flexible scaffold for brain penetrant IDO1 inhibitors, exemplified by several potent, brain penetrant, agents. With this promising scaffold, we provide herein a basis for further development of brain penetrant IDO1 inhibitors.
Collapse
Affiliation(s)
- Yong Zheng
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Paul M Stafford
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Kurt R Stover
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Darapaneni Chandra Mohan
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Mayuri Gupta
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Eric C Keske
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Paolo Schiavini
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Laura Villar
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Fan Wu
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Alexander Kreft
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Kiersten Thomas
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Elana Raaphorst
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Jagadeesh P Pasangulapati
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Siva R Alla
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Simmi Sharma
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Ramana R Mittapalli
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Irina Sagamanova
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Shea L Johnson
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M55 3H6, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M55 3H6, Canada.,Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
22
|
Ge S, Zhong H, Ma X, Zheng Y, Zou Y, Wang F, Wang Y, Hu Y, Li Y, Liu W, Guo W, Xu Q, Lai Y. Discovery of secondary sulphonamides as IDO1 inhibitors with potent antitumour effects in vivo. J Enzyme Inhib Med Chem 2021; 35:1240-1257. [PMID: 32466694 PMCID: PMC7336998 DOI: 10.1080/14756366.2020.1765165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) as a key rate-limiting enzyme in the kynurenine pathway of tryptophan metabolism plays an important role in tumour immune escape. Herein, a variety of secondary sulphonamides were synthesised and evaluated in the HeLa cell-based IDO1/kynurenine assay, leading to the identification of new IDO1 inhibitors. Among them, compounds 5d, 5l and 8g exhibited the strongest inhibitory effect with significantly improved activity over the hit compound BS-1. The in vitro results showed that these compounds could restore the T cell proliferation and inhibit the differentiation of naïve CD4+ T cell into highly immunosuppressive FoxP3+ regulatory T (Treg) cell without affecting the viability of HeLa cells and the expression of IDO1 protein. Importantly, the pharmacodynamic assay showed that compound 5d possessed potent antitumour effect in both CT26 and B16F1 tumours bearing immunocompetent mice but not in immunodeficient mice. Functionally, subsequent experiments demonstrated that compound 5d could effectively inhibit tumour cell proliferation, induce apoptosis, up-regulate the expression of IFN-γ and granzyme B, and suppress FoxP3+ Treg cell differentiation, thereby activate the immune system. Thus, compound 5d could be a potential and efficacious agent for further evaluation.
Collapse
Affiliation(s)
- Shushan Ge
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Haiqing Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xuewei Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yingbo Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Fang Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yue Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yuezhen Li
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
23
|
Saha D, Taily IM, Naik S, Banerjee P. Electrochemical access to benzimidazolone and quinazolinone derivatives via in situ generation of isocyanates. Chem Commun (Camb) 2021; 57:631-634. [PMID: 33346276 DOI: 10.1039/d0cc07125k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Isocyanates are the key intermediates for several organic transformations towards the synthesis of diverse pharmaceutical targets. Herein, we report the development of an oxidant-free protocol for electrochemical in situ generation of isocyanates. This strategy highlights expedient access to benzimidazolones and quinazolinones and eliminates the need for exogenous oxidants. Furthermore, detailed mechanistic studies provide strong support towards our hypothesis of in situ isocyanate generation.
Collapse
Affiliation(s)
- Debarshi Saha
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Sumitra Naik
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
24
|
Gagné-Boulet M, Bouzriba C, Chavez Alvarez AC, Fortin S. Phenyl 4-(2-oxopyrrolidin-1-yl)benzenesulfonates and phenyl 4-(2-oxopyrrolidin-1-yl)benzenesulfonamides as new antimicrotubule agents targeting the colchicine-binding site. Eur J Med Chem 2021; 213:113136. [PMID: 33472119 DOI: 10.1016/j.ejmech.2020.113136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/22/2023]
Abstract
We recently designed and prepared new families of potent antimicrotubule agents designated as N-phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PIB-SOs) and phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonamides (PIB-SAs). Our previous structure-activity relationship studies (SAR) focused on the aromatic ring B of PIB-SOs and PIB-SAs leaving the impact of the phenylimidazolidin-2-one moiety (ring A) on the binding to the colchicine-binding site (C-BS) poorly studied. Therefore, the aim of the present study was to evaluate the effect of replacing the imidazolidin-2-one (IMZ) group by a pyrrolidin-2-one moiety. To that end, 15 new phenyl 4-(2-oxopyrrolidin-1-yl)benzenesulfonate (PYB-SO) and 15 phenyl 4-(2-oxopyrrolidin-1-yl)benzenesulfonamide (PYB-SA) derivatives were designed, prepared, chemically characterised and biologically evaluated. PYB-SOs and PYB-SAs exhibit antiproliferative activity in the low nanomolar to low micromolar range (0.0087-8.6 μM and 0.056-21 μM, respectively) on human HT-1080, HT-29, M21 and MCF7 cancer cell lines. Moreover, they block cell cycle progression in G2/M phase. Immunofluorescence, tubulin affinity and tubulin polymerisation assays show that they cause microtubule depolymerisation by docking the C-BS. In addition, docking assays with the most potent derivatives show binding affinity toward the C-BS and they also exhibit weak or no toxicity toward chick embryos. Finally, physicochemical properties calculated using the SwissADME algorithm show that PYB-SOs and PYB-SAs are promising new families of antimicrotubule agents.
Collapse
Affiliation(s)
- Mathieu Gagné-Boulet
- Centre de recherche du CHU de Québec - Université Laval, Axe oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Chahrazed Bouzriba
- Centre de recherche du CHU de Québec - Université Laval, Axe oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Atziri Corin Chavez Alvarez
- Centre de recherche du CHU de Québec - Université Laval, Axe oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Sébastien Fortin
- Centre de recherche du CHU de Québec - Université Laval, Axe oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
25
|
Wang X, Bai X, Wu C, Dong Y, Zhang M, Fan L, Tang L, Yang Y, Zhang J. Direct C(sp
3
)−H Sulfonylation and Sulfuration Reactions of Isoquinoline‐1,3(2
H
,4
H
)‐diones under Metal‐free Conditions. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xing‐Lan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University Guiyang 550025 P. R. China
| | - Xue Bai
- Pharmacy Department of Guizhou Provincial People's Hospital Guiyang 55000 P. R. China
| | - Chun‐Feng Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University Guiyang 550025 P. R. China
| | - Yong‐Xi Dong
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University Guiyang 550025 P. R. China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University Guiyang 550025 P. R. China
| | - Ling‐Ling Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University Guiyang 550025 P. R. China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University Guiyang 550025 P. R. China
| | - Yuan‐Yong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University Guiyang 550025 P. R. China
| | - Ji‐Quan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University Guiyang 550025 P. R. China
| |
Collapse
|
26
|
Singh R, Salunke DB. Diverse chemical space of indoleamine-2,3-dioxygenase 1 (Ido1) inhibitors. Eur J Med Chem 2020; 211:113071. [PMID: 33341650 DOI: 10.1016/j.ejmech.2020.113071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) catalyses the first and rate limiting step of kynurenine pathway accounting for the major contributor of L-Tryptophan degradation. The Kynurenine metabolites are identified as essential cofactors, antagonists, neurotoxins, immunomodulators, antioxidants as well as carcinogens. The catalytic active site of IDO1 enzyme consists of hydrophobic Pocket-A positioned in the distal heme site and remains connected to a second hydrophobic Pocket-B towards the entrance of the active site. IDO1 enzyme also relates directly to the modulation of the innate and adaptive immune system. Various studies proved that the over expression of IDO1 enzyme play a predominant role in the escape of immunity during cancer progression. Recently, there has been considerable interest in evaluating the potential of IDO1 inhibitors to mobilize the body's immune system against solid tumours. In the last two decades, enormous attempts to advance new IDO1 inhibitors are on-going both in pharmaceutical industries and in academia which resulted in the discovery of a diverse range of selective and potent IDO1 inhibitors. The IDO1 inhibitors have therapeutic utility in various diseases and in the near future, it may have utility in the treatment of COVID-19. Despite various reviews on IDO1 inhibitors in last five years, none of the reviews provide a complete overview of diverse chemical space including naturally occurring and synthetic IDO1 inhibitors with detailed structure activity relationship studies. The present work provides a complete overview on the IDO1 inhibitors known in the literature so far along with the Structure-Activity Relationship (SAR) in each class of compounds.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
27
|
Pan S, Zhou Y, Wang Q, Wang Y, Tian C, Wang T, Huang L, Nan J, Li L, Yang S. Discovery and structure-activity relationship studies of 1-aryl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione derivatives as potent dual inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) and trytophan 2,3-dioxygenase (TDO). Eur J Med Chem 2020; 207:112703. [DOI: 10.1016/j.ejmech.2020.112703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
|
28
|
Feng X, Liao D, Liu D, Ping A, Li Z, Bian J. Development of Indoleamine 2,3-Dioxygenase 1 Inhibitors for Cancer Therapy and Beyond: A Recent Perspective. J Med Chem 2020; 63:15115-15139. [PMID: 33215494 DOI: 10.1021/acs.jmedchem.0c00925] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) has received increasing attention due to its immunosuppressive function in connection with various diseases, including cancer. A recent increase in the understanding of IDO1 has significantly contributed to the discovery of numerous novel inhibitors, but the latest clinical outcomes raised questions and have indicated a future direction of IDO1 inhibition for therapeutic approaches. Herein, we present a comprehensive review of IDO1, discussing the latest advances in understanding the IDO1 structure and mechanism, an overview of recent IDO1 inhibitor discoveries and potential therapeutic applications to provide helpful information for medicinal chemists investigating IDO1 inhibitors.
Collapse
Affiliation(s)
- Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongdong Liao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongyu Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - An Ping
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| |
Collapse
|
29
|
Dong D, Han Q, Yang S, Song J, Li N, Wang Z, Xu X. Recent Progress in Sulfonylation via Radical Reaction with Sodium Sulfinates, Sulfinic Acids, Sulfonyl Chlorides or Sulfonyl Hydrazides. ChemistrySelect 2020. [DOI: 10.1002/slct.202003650] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dao‐Qing Dong
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Qing‐Qing Han
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Shao‐Hui Yang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Jing‐Cheng Song
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Zu‐Li Wang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Xin‐Ming Xu
- College ofChemistry and Chemical Engineering Yantai University Yantai 264005 P.R. China
| |
Collapse
|
30
|
Zhang S, Guo L, Yang D, Xing Z, Li W, Kuang C, Yang Q. Evaluation and comparison of the commonly used bioassays of human indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). Bioorg Chem 2020; 104:104348. [PMID: 33142415 DOI: 10.1016/j.bioorg.2020.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 09/19/2020] [Accepted: 10/04/2020] [Indexed: 11/15/2022]
Abstract
Inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are potential drugs for the treatment of tumor and neurological diseases. A variety of bioassays have been developed to evaluate IDO1/TDO (IDO1 and/or TDO) inhibitors, with uncertainty regarding how the differences in the assay methods or protocols may influence the assay outcomes. The enzymatic assays of IDO1/TDO are usually performed with NFK assay and Kyn adduct assay while the cellular assays of IDO1 are carried out with Hela assay and HEK293 assay. The present study focused on the comparison of the most common bioassays of IDO1/TDO. In addition, the effects of major factors of bioassays such as reaction time and culture medium on the assay outcomes were evaluated. The study will provide reference for the researchers to select IDO1/TDO inhibitors with bioassays, and promote the development of IDO1/TDO inhibitors.
Collapse
Affiliation(s)
- Shengnan Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Leilei Guo
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Dan Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Zikang Xing
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Weirui Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092 Shanghai, China.
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| |
Collapse
|
31
|
Mao LF, Wang YW, Zhao J, Xu GQ, Yao XJ, Li YM. Discovery of Icotinib-1,2,3-Triazole Derivatives as IDO1 Inhibitors. Front Pharmacol 2020; 11:579024. [PMID: 33101032 PMCID: PMC7555427 DOI: 10.3389/fphar.2020.579024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 11/15/2022] Open
Abstract
Tumor immunotherapy is considered to be a highlight in cancer treatment in recent years. Indoleamine 2,3-dioxygenase 1 (IDO1) is closely related to the over expression of many cancers, and is therefore a promising target for tumor immunotherapy. To search for novel IDO1-targeting therapeutic agents, 22 icotinib-linked 1,2,3-triazole derivatives were prepared and evaluated for their inhibitory activity against IDO1. The structures of the prepared compounds were confirmed with1H NMR, 13C NMR and HR MS. IDO1 inhibitory activity assay results indicated that 10 of those compounds showed remarkable inhibitory activity against IDO1, among which compound a17 was the most potent with IC50value of 0.37 μM. The binding model between the prepared compounds and IDO1 was studied with molecular modeling study. The current study suggested that icotinib-1,2,3-triazole derivatives could be used as potential inhibitors that preferentially bind to the ferrous form of IDO1 through the formation of coordinate bond with the haem iron.
Collapse
Affiliation(s)
- Long-Fei Mao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,School of Chemistry and Chemical Engineering, Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Henan Normal University, Xinxiang, China
| | - Yu-Wei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Economic Zone, Xianyang, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Henan Normal University, Xinxiang, China
| | - Gui-Qing Xu
- School of Chemistry and Chemical Engineering, Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Henan Normal University, Xinxiang, China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
32
|
Sun B, Wang J, Liu L, Mao L, Peng L, Wang Y. Synthesis and activity of novel indirubin derivatives. Chem Biol Drug Des 2020; 97:565-571. [PMID: 32914538 DOI: 10.1111/cbdd.13792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Bin Sun
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan China
| | - Jiahao Wang
- Jinan Asia Pharma Tech Company LTD. Jinan China
| | - Luohua Liu
- State Key Laboratory of Applied Organic Chemistry Department of Chemistry Lanzhou University Lanzhou China
| | - Longfei Mao
- Jinan Asia Pharma Tech Company LTD. Jinan China
| | - Lizeng Peng
- Jinan Asia Pharma Tech Company LTD. Jinan China
| | - Yuwei Wang
- College of Pharmacy Shaanxi University of Chinese Medicine Xi'an/Xianyang China
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| |
Collapse
|
33
|
Identification of potential indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors by an FBG-based 3D QSAR pharmacophore model. J Mol Graph Model 2020; 99:107628. [DOI: 10.1016/j.jmgm.2020.107628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023]
|
34
|
Ebokaiwe AP, Njoya EM, Sheng Y, Zhang Z, Li S, Zhou Z, Qiang Z, Peng T, Hussein AA, Zhang G, Lu X, Li L, Wang F. Salinomycin promotes T-cell proliferation by inhibiting the expression and enzymatic activity of immunosuppressive indoleamine-2,3-dioxygenase in human breast cancer cells. Toxicol Appl Pharmacol 2020; 404:115203. [PMID: 32822738 DOI: 10.1016/j.taap.2020.115203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/25/2023]
Abstract
Indoleamine 2,3 dioxygenase (IDO) is upregulated in many tumor types, including breast cancer, and plays a reputable role in promoting tumor immune tolerance. The importance of the immunosuppressive mechanism of IDO by suppressing T-cell function has garnered profound interest in the development of clinical IDO inhibitors. Herein, we established a screening method with cervical HeLa cells to induce IDO expression using interferon-γ (IFN-γ). After screening our chemical library, we found that salinomycin potently inhibited IFN-γ-stimulated kynurenine synthesis with IC50 values of 3.36-4.66 μM in both human cervical and breast cancer cells. Salinomycin lowered the IDO1 and IDO2 expression with no impact on the expression of tryptophan-2,3-dioxygenase. Interestingly, salinomycin potently repressed the IDO1 enzymatic activity by directly targeting the proteins in cells. Molecular docking revealed an alignment that favors nucleophilic attack of salinomycin in the catalytic domain of IDO1. Activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway by IFN-γ was significantly suppressed by salinomycin, via inhibiting the Jak1, Jak2, and STAT1/3 phosphorylation. Moreover, it inhibited IFN-γ-induced activation of the nuclear factor (NF)-κB pathway by inhibiting IκB degradation and NF-κB phosphorylation without affecting BIN1 expression. Furthermore, salinomycin significantly restored the proliferation of T cells co-cultured with IFN-γ-treated breast cancer cells and potentiated antitumor activity of cisplatin in vivo. These findings suggest that salinomycin suppresses kynurenine synthesis by inhibiting the catalytic activity of IDO1 and its expression by inhibiting the JAK/STAT and NF-κB pathways. Salinomycin warrants further investigation as a novel dual-functional IDO inhibitor for cancer immunotherapy.
Collapse
Affiliation(s)
- Azubuike Peter Ebokaiwe
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University Ndufu Alike-, Ikwo, Nigeria
| | - Emmanuel Mfotie Njoya
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O Box 812, Yaoundé, Cameroon
| | - Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhonghui Zhang
- College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Sheng Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zongyuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhe Qiang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Bellville 7537, Western Cape, South Africa
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoxia Lu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
35
|
Watanabe LK, Wrixon JD, Ahmed ZS, Hayward JJ, Abbasi P, Pilkington M, Macdonald CLB, Rawson JM. Oxidative addition of tetrathiocins to palladium(0) and platinum(0): a route to dithiolate coordination complexes. Dalton Trans 2020; 49:9086-9093. [PMID: 32572417 DOI: 10.1039/d0dt01678k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The preparation of a series of 4,4',5,5'-substituted benzo-fused 1,2,5,6-tetrathiocins X2C6H2S4C6H2X2 (1a-1g) were prepared from the reaction of S2Cl2 with 1,2-C6H4X2 (X = OMe, OEt; X2 = OCH2O, OCH2CH2O, OCH2CH2CH2O, MeNC([double bond, length as m-dash]O)NMe, O(CH2CH2O)4). The oxidative addition of 1a-1g to zero-valent Pd2dba3 or Pt2dba3 (dba = dibenzylideneacetone) in the presence of bis (diphenylphosphino)ethane (dppe) resulted in formation of the substituted mononuclear benzenedithiolate complexes M(L)(dppe) [L = dithiolate ligand; 2a-2g (M = Pd) and 3a-3g (M = Pt)] in 37-89% yield based on recrystallized material. Representative examples of M(L)(dppf) [dppf = bis-diphenylphosphinoferrocene; 4a, 4g (M = Pd) and 5g (M = Pt)] were prepared in a similar fashion. The structures of all derivatives were determined by X-ray diffraction, multinuclear NMR and elemental analysis. The reactivity of the two crown ether dithiolate complexes, 2g and 4g, with 1 equivalent of NaBPh4 led to isolation of the 1 : 1 complexes in which the Na+ cation is bound in the macrocyclic crown, [Na(2g)(MeOH)2][BPh4] and [Na(4g)][BPh4] whose structures were determined by X-ray diffraction. Electrochemical studies supported through DFT calculations on the crown ether derivatives revealed a series of ligand-based oxidation waves corresponding to the dithiolate ligand (and dppf for 4g and 5g) whose redox potentials were shifted by ca. +0.1 V on binding to Na+.
Collapse
Affiliation(s)
- Lara K Watanabe
- Department of Chemistry and Biochemistry, the University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada N9B 3P4.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chiarante N, Duhalde Vega M, Valli F, Zotta E, Daghero H, Basika T, Bollati-Fogolin M, García Vior MC, Marino J, Roguin LP. In Vivo Photodynamic Therapy With a Lipophilic Zinc(II) Phthalocyanine Inhibits Colorectal Cancer and Induces a Th1/CD8 Antitumor Immune Response. Lasers Surg Med 2020; 53:344-358. [PMID: 32525252 DOI: 10.1002/lsm.23284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Photodynamic therapy (PDT) is an antitumor procedure clinically approved for the treatment of different cancer types. Despite strong efforts and promising results in this field, PDT has not yet been approved by any regulatory authority for the treatment of colorectal cancer, one of the most prevalent gastrointestinal tumors. In the search of novel therapeutic strategies, we examined the in vivo effect of PDT with a lipophilic phthalocyanine (Pc9) encapsulated into polymeric poloxamine micelles (T1107) in a murine colon carcinoma model. STUDY DESIGN/MATERIALS AND METHODS In vivo assays were performed with BALB/c mice challenged with CT26 cells. Pc9 tumor uptake was evaluated with an in vivo imaging system. Immunofluorescence, western blot, and flow cytometry assays were carried out to characterize the activation of apoptosis and an antitumor immune response. RESULTS Pc9-T1107 effectively delayed tumor growth and prolonged mice survival, without generating systemic or tissue-specific toxicity. The induction of an apoptotic response was characterized by a decrease in the expression levels of Bcl-XL , Bcl-2, procaspase 3, full length Bid, a significant increment in the amount of active caspase-3 and the detection of PARP-1 cleavage. Infiltration of CD8+ CD107a+ T cells and higher levels of interferon-γ and tumor necrosis factor-α were also found in PDT-treated tumors. CONCLUSIONS Pc9-T1107 PDT treatment reduced tumor growth, inducing an apoptotic cell death and activating an immune response. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Nicolás Chiarante
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
| | - Maite Duhalde Vega
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
| | - Federico Valli
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
| | - Elsa Zotta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, C1113AAD, Argentina
| | - Hellen Daghero
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Tatiana Basika
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | | | - María C García Vior
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
| | - Julieta Marino
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
| | - Leonor P Roguin
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
| |
Collapse
|
37
|
Huang R, Jing X, Huang X, Pan Y, Fang Y, Liang G, Liao Z, Wang H, Chen Z, Zhang Y. Bifunctional Naphthoquinone Aromatic Amide-Oxime Derivatives Exert Combined Immunotherapeutic and Antitumor Effects through Simultaneous Targeting of Indoleamine-2,3-dioxygenase and Signal Transducer and Activator of Transcription 3. J Med Chem 2020; 63:1544-1563. [PMID: 31999451 DOI: 10.1021/acs.jmedchem.9b01386] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) and signal transducer and activator of transcription 3 (STAT3) are important targets in the tumor microenvironment for cancer therapy. In the present study, a set of naphthoquinone aromatic amide-oxime derivatives were designed, which stimulated the immune response via IDO1 inhibition and simultaneously displayed powerful antitumor activity against three selected cancer cell lines through suppressing STAT3 signaling. The representative compound 8u bound effectively to IDO1, with greater inhibitory activity relative to the commercial IDO1 inhibitor 4-amino-N-(3-chloro-4-fluorophenyl)-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (IDO5L) in addition to the efficient suppression of nuclear translocation of STAT3. Consistently, in vivo assays demonstrated a higher antiproliferative activity of compound 8u in both wild-type B16-F10 isograft tumors and an athymic HepG2 xenograft model relative to 1-methyl-l-tryptophan (1-MT) and doxorubicin (DOX). This bifunctional compound with dual immunotherapeutic and anticancer efficacy may represent a new generation of highly efficacious drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Rizhen Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China.,School of Pharmacy , Guilin Medical University , Guilin 541004 , China.,Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Xiaoteng Jing
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Xiaochao Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Yingming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Yilin Fang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Guibin Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Zhixin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Zhenfeng Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China
| | - Ye Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , China.,School of Pharmacy , Guilin Medical University , Guilin 541004 , China
| |
Collapse
|
38
|
Mo J, Chen T, Yang H, Guo Y, Li Q, Qiao Y, Lin H, Feng F, Liu W, Chen Y, Liu Z, Sun H. Design, synthesis, in vitro and in vivo evaluation of benzylpiperidine-linked 1,3-dimethylbenzimidazolinones as cholinesterase inhibitors against Alzheimer's disease. J Enzyme Inhib Med Chem 2020; 35:330-343. [PMID: 31856607 PMCID: PMC6968383 DOI: 10.1080/14756366.2019.1699553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cholinesterase inhibitor plays an important role in the treatment of patients with Alzheimer's disease (AD). Herein, we report the medicinal chemistry efforts leading to a new series of 1,3-dimethylbenzimidazolinone derivatives. Among the synthesised compounds, 15b and 15j showed submicromolar IC50 values (15b, eeAChE IC50 = 0.39 ± 0.11 µM; 15j, eqBChE IC50 = 0.16 ± 0.04 µM) towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Kinetic and molecular modelling studies revealed that 15b and 15j act in a competitive manner. 15b and 15j showed neuroprotective effect against H2O2-induced oxidative damage on PC12 cells. This effect was further supported by their antioxidant activity determined in a DPPH assay in vitro. Morris water maze test confirmed the memory amelioration effect of the two compounds in a scopolamine-induced mouse model. Moreover, the hepatotoxicity of 15b and 15j was lower than tacrine. In summary, these data suggest 15b and 15j are promising multifunctional agents against AD.
Collapse
Affiliation(s)
- Jun Mo
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tingkai Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hongyu Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yan Guo
- School of pharmacy, Yantai University, Yantai, People's Republic of China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuting Qiao
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hongzhi Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Food and Pharmaceutical Science College, Huaian, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zongliang Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Food and Pharmaceutical Science College, Huaian, People's Republic of China
| |
Collapse
|
39
|
Song X, Sun P, Wang J, Guo W, Wang Y, Meng LH, Liu H. Design, synthesis, and biological evaluation of 1,2,5-oxadiazole-3-carboximidamide derivatives as novel indoleamine-2,3-dioxygenase 1 inhibitors. Eur J Med Chem 2020; 189:112059. [PMID: 31981851 DOI: 10.1016/j.ejmech.2020.112059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 01/09/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is the enzyme catalyzing the oxidative metabolism of tryptophan, which accounts for cancer immunosuppression in tumor microenvironment. Several compounds targeting IDO1 have been reported and epacadostat shows strong inhibitory activity against IDO1, which is further studied in clinic trails. However, its pharmacokinetic profiles are not satisfactory. The half-life of epacadostat is 2.4 h in human and dosage is 50 mg BID in the phase III clinic trial. To overcome the shortcomings of epacadostat, structure-based drug design was performed to improve the pharmacokinetic profiles via changing the metabolic pathway of epacadostat and to enhance anti-tumor potency. A novel series of 1,2,5-oxadiazole-3-carboximidamide derivatives bearing cycle in the side chain were designed, synthesized, and biologically evaluated for their anti-tumor activity. Most of them exhibited potent activity against hIDO1 in enzymatic assays and in HEK293T cells over-expressing hIDO1. Among them, compound 23, 25 and 26 showed significant inhibitory activity against hIDO1 (IC50 = 108.7, 178.1 and 139.1 nM respectively) and in HEK293T cells expressing hIDO1 (cellular IC50 = 19.88, 68.59 and 57.76 nM respectively). Moreover, compound 25 displayed improved PK property with longer half-life (t1/2 = 3.81 h in CD-1 mice) and better oral bioavailability (F = 33.6%) compared with epacadostat. In addition, compound 25 showed similar potency to inhibit the growth of CT-26 syngeneic xenograft compared to epacadostat, making it justifiable for further investigation.
Collapse
Affiliation(s)
- Xiaohan Song
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Pu Sun
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wei Guo
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yi Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Ling-Hua Meng
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
40
|
Ding W, Yu A, Zhang L, Meng X. Construction of Eight-Membered Cyclic Diaryl Sulfides via Domino Reaction of Arynes with Thioaurone Analogues and DFT Study on the Reaction Mechanism. Org Lett 2019; 21:9014-9018. [DOI: 10.1021/acs.orglett.9b03417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wenhuan Ding
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
41
|
Chen S, Guo W, Liu X, Sun P, Wang Y, Ding C, Meng L, Zhang A. Design, synthesis and antitumor study of a series of N-Cyclic sulfamoylaminoethyl substituted 1,2,5-oxadiazol-3-amines as new indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors. Eur J Med Chem 2019; 179:38-55. [DOI: 10.1016/j.ejmech.2019.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 11/16/2022]
|
42
|
Wang XX, Sun SY, Dong QQ, Wu XX, Tang W, Xing YQ. Recent advances in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. MEDCHEMCOMM 2019; 10:1740-1754. [PMID: 32055299 DOI: 10.1039/c9md00208a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), an important immunoregulatory enzyme ubiquitously expressed in various tissues and cells, plays a key role in tryptophan metabolism via the kynurenine pathway and has emerged as an attractive therapeutic target for the treatment of cancer and other diseases, such as Alzheimer's disease and arthritis. IDO1 has diverse biological roles in immune suppression and tumor progression by tryptophan catabolism. In addition, IDO1-mediated immune tolerance assists tumor cells in escaping the immune surveillance. Recently, extensive and enormous investigations have been made in the discovery of IDO1 inhibitors in both academia and pharmaceutical companies. In this review, IDO1 inhibitors are grouped as tryptophan derivatives, inhibitors with an imidazole, 1,2,3-triazole or tetrazole scaffold, inhibitors with quinone or iminoquinone, N-hydroxyamidines and other derivatives, and their enzymatic inhibitory activity, selectivity and other biological activities are also introduced and summarized.
Collapse
Affiliation(s)
- Xiu-Xiu Wang
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Si-Yu Sun
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Qing-Qing Dong
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Xiao-Xiang Wu
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Wei Tang
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| | - Ya-Qun Xing
- Department of Pharmacy , The Second Affliated Hospital of Bengbu Medical College , Bengbu , Anhuir 233040 , P.R. China .
| |
Collapse
|
43
|
Kumar S, Waldo JP, Jaipuri FA, Marcinowicz A, Van Allen C, Adams J, Kesharwani T, Zhang X, Metz R, Oh AJ, Harris SF, Mautino MR. Discovery of Clinical Candidate (1 R,4 r)-4-(( R)-2-(( S)-6-Fluoro-5 H-imidazo[5,1- a]isoindol-5-yl)-1-hydroxyethyl)cyclohexan-1-ol (Navoximod), a Potent and Selective Inhibitor of Indoleamine 2,3-Dioxygenase 1. J Med Chem 2019; 62:6705-6733. [PMID: 31264862 DOI: 10.1021/acs.jmedchem.9b00662] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel class of 5-substituted 5H-imidazo[5,1-a]isoindoles are described as potent inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1). A structure-based drug design approach was used to elaborate the 5H-imidazo[5,1-a]isoindole core and to improve potency and pharmacological properties. Suitably placed hydrophobic and polar functional groups in the lead molecule allowed improvement of IDO1 inhibitory activity while minimizing off-target liabilities. Structure-activity relationship studies focused on optimizing IDO1 inhibition potency and a pharmacokinetic profile amenable to oral dosing while controlling CYP450 and hERG inhibitory properties.
Collapse
Affiliation(s)
- Sanjeev Kumar
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Jesse P Waldo
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Firoz A Jaipuri
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | | | | | - James Adams
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Tanay Kesharwani
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Xiaoxia Zhang
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Richard Metz
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| | - Angela J Oh
- Structural Biology , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Seth F Harris
- Structural Biology , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Mario R Mautino
- NewLink Genetics Corporation , Ames , Iowa 50010 , United States
| |
Collapse
|
44
|
Chen Y, Cantillo D, Kappe CO. Visible Light-Promoted Beckmann Rearrangements: Separating Sequential Photochemical and Thermal Phenomena in a Continuous Flow Reactor. European J Org Chem 2019; 2019:2163-2171. [PMID: 31423105 PMCID: PMC6686973 DOI: 10.1002/ejoc.201900231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Indexed: 12/04/2022]
Abstract
The Beckmann rearrangement of oximes to amides typically requires strong acids or highly reactive, hazardous electrophiles and/or elevated temperatures to proceed. A very attractive alternative is the in situ generation of Vilsmeier-Haack reagents, by means of photoredox catalysis, as promoters for the thermal Beckmann rearrangement. Investigation of the reaction parameters for this light-induced method using a one-pot strategy has shown that the reaction is limited by the different temperatures required for each of the two sequential steps. Using a continuous flow reactor, the photochemical and thermal processes have been separated by integrating a flow photoreactor unit at low temperature for the electrophile generation with a second reactor unit, at high temperature, where the rearrangement takes place. This strategy has enabled excellent conversions and yields for a diverse set of oximes, minimizing the formation of side products obtained with the original one-pot method.
Collapse
Affiliation(s)
- Yuesu Chen
- Research Center Pharmaceutical Engineering GmbH (RCPE)Center for Continuous Flow Synthesis and Processing (CC FLOW)Inffeldgasse 138010, GrazAustria
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010, GrazAustria
| | - David Cantillo
- Research Center Pharmaceutical Engineering GmbH (RCPE)Center for Continuous Flow Synthesis and Processing (CC FLOW)Inffeldgasse 138010, GrazAustria
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010, GrazAustria
| | - C. Oliver Kappe
- Research Center Pharmaceutical Engineering GmbH (RCPE)Center for Continuous Flow Synthesis and Processing (CC FLOW)Inffeldgasse 138010, GrazAustria
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010, GrazAustria
| |
Collapse
|
45
|
Sun H, Jiang Y, Yang YS, Li YY, Li L, Wang WX, Feng T, Li ZH, Liu JK. Synthesis of difluoromethylated 2-oxindoles and quinoline-2,4-diones via visible light-induced tandem radical cyclization of N-arylacrylamides. Org Biomol Chem 2019; 17:6629-6638. [DOI: 10.1039/c9ob01213c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Visible light-induced difluoromethylation of N-arylacrylamides to afford difluoromethylated 2-oxindoles and quinoline-2,4-diones with difluoromethyl 2-pyridyl sulfones as radical precursors has been disclosed.
Collapse
Affiliation(s)
- Huan Sun
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
- National Demonstration Center for Experimental Ethnopharmacology Education
| | - Yue Jiang
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Ying-Sha Yang
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Yun-Yun Li
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Lin Li
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P. R. China
| | - Wen-Xuan Wang
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Tao Feng
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
- National Demonstration Center for Experimental Ethnopharmacology Education
| |
Collapse
|
46
|
Zuo KL, He YH, Guan Z. Metal-Free Visible-Light Photocatalytic Tandem Radical Addition-Cyclization Strategy for the Synthesis of Sulfonyl-Containing Isoquinolinediones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai-Li Zuo
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University; 400715 Chongqing China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University; 400715 Chongqing China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality; School of Chemistry and Chemical Engineering; Southwest University; 400715 Chongqing China
| |
Collapse
|
47
|
Zhou Y, Peng J, Li P, Du H, Li Y, Li Y, Zhang L, Sun W, Liu X, Zuo Z. Discovery of novel indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors by virtual screening. Comput Biol Chem 2018; 78:306-316. [PMID: 30616156 DOI: 10.1016/j.compbiolchem.2018.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/17/2018] [Accepted: 11/25/2018] [Indexed: 02/04/2023]
Abstract
In this study, a combination of virtual screening methods were utilized to identify novel potential indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. A series of IDO1 potential inhibitors were identified by a combination of following steps: Lipinski's Rule of Five, Veber rules filter, molecular docking, HipHop pharmacophores, 3D-Quantitative structure activity relationship (3D-QSAR) studies and Pan-assay Interference Compounds (PAINS) filter. Three known categories of IDO1 inhibitors were used to constructed pharmacophores and 3D-QSAR models. Four point pharmacophores (RHDA) of IDO1 inhibitors were generated from the training set. The 3D-QSAR models were obtained using partial least squares (PLS) analyze based on the docking conformation alignment from the training set. The leave-one-out correlation (q2) and non-cross-validated correlation coefficient (r2pred) of the best CoMFA model were 0.601 and 0.546, and the ones from the best CoMSIA model were 0.506 and 0.541, respectively. Six hits from Specs database were identified and analyzed to confirm their binding modes and key interactions to the amino acid residues in the protein. This work may provide novel backbones for new generation of inhibitors of IDO1.
Collapse
Affiliation(s)
- Yeheng Zhou
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jiale Peng
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Penghua Li
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Haibo Du
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Yaping Li
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Yingying Li
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Li Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Wei Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Xingyong Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China.
| | - Zhili Zuo
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
48
|
Kim YJ, Choo MH, Kim DY. Potassium iodide-mediated radical arylsulfonylation/1,2-carbon migration sequences for the synthesis of β-sulfonated cyclic ketones. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Patel P, Parmar B, Kureshy RI, Khan NUH, Suresh E. Amine-functionalized Zn(ii) MOF as an efficient multifunctional catalyst for CO 2 utilization and sulfoxidation reaction. Dalton Trans 2018; 47:8041-8051. [PMID: 29872804 DOI: 10.1039/c8dt01297k] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, a zinc(ii)-based 3D mixed ligand metal organic framework (MOF) was synthesized via versatile routes including green mechanochemical synthesis. The MOF {[Zn(ATA)(L)·H2O]}n (ZnMOF-1-NH2) has been characterized by various physico-chemical techniques, including SCXRD, and composed of the bipyridyl-based Schiff base (E)-N'-(pyridin-4-ylmethylene)isonicotinohydrazide (L) and 2-aminoterephthalic acid (H2ATA) ligands as linkers. The MOF material has been explored as a multifunctional heterogeneous catalyst for the cycloaddition of alkyl and aryl epoxides with CO2 and sulfoxidation reactions of aryl sulfides. The influence of various reaction parameters is examined to optimize the performance of the catalytic reactions. It is found that solvent-free catalytic reaction conditions offer good catalytic conversion in the case of cyclic carbonates, and for sulfoxide, good conversion and selectivity are achieved in the presence of DCM as a solvent medium under ambient reaction conditions. The chemical and thermal stability of the catalyst are excellent and it is active for up to four catalytic cycles without significant loss in activity. Furthermore, based on the catalytic activity and structural evidence, a plausible mechanism for both catalytic reactions is proposed.
Collapse
Affiliation(s)
- Parth Patel
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364 002, Gujarat, India.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Iron-containing enzymes such as heme enzymes play crucial roles in biological systems. Three distinct heme-containing dioxygenase enzymes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1) and indoleamine 2,3-dioxygenase 2 (IDO2) catalyze the initial and rate-limiting step of l-tryptophan catabolism through the kynurenine pathway in mammals. Overexpression of these enzymes causes depletion of tryptophan and the accumulation of metabolic products, which contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. In the past few decades, IDO1 has garnered the most attention as a therapeutic target with great potential in cancer immunotherapy. Many potential inhibitors of IDO1 have been designed, synthesized and evaluated, among which indoximod (d-1-MT), INCB024360, GDC-0919 (formerly NLG-919), and an IDO1 peptide-based vaccine have advanced to the clinical trial stage. However, recently, the roles of TDO and IDO2 have been elucidated in immune suppression. In this review, the current drug discovery landscape for targeting TDO, IDO1 and IDO2 is highlighted, with particular attention to the recent use of drugs in clinical trials. Moreover, the crystal structures of these enzymes, in complex with inhibitors, and the mechanisms of Trp catabolism in the first step, are summarized to provide information for facilitating the discovery of new enzyme inhibitors.
Collapse
Affiliation(s)
- Daojing Yan
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | | | | |
Collapse
|