1
|
Kaiser A. The Role of Spermidine and Its Key Metabolites in Important, Pathogenic Human Viruses and in Parasitic Infections Caused by Plasmodium falciparum and Trypanosoma brucei. Biomolecules 2023; 13:biom13050803. [PMID: 37238673 DOI: 10.3390/biom13050803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The triamine spermidine is a key metabolite of the polyamine pathway. It plays a crucial role in many infectious diseases caused by viral or parasitic infections. Spermidine and its metabolizing enzymes, i.e., spermidine/spermine-N1-acetyltransferase, spermine oxidase, acetyl polyamine oxidase, and deoxyhypusine synthase, fulfill common functions during infection in parasitic protozoa and viruses which are obligate, intracellular parasites. The competition for this important polyamine between the infected host cell and the pathogen determines the severity of infection in disabling human parasites and pathogenic viruses. Here, we review the impact of spermidine and its metabolites in disease development of the most important, pathogenic human viruses such as SARS-CoV-2, HIV, Ebola, and in the human parasites Plasmodium and Trypanosomes. Moreover, state-of-the-art translational approaches to manipulate spermidine metabolism in the host and the pathogen are discussed to accelerate drug development against these threatful, infectious human diseases.
Collapse
Affiliation(s)
- Annette Kaiser
- Medical Research Centre, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
2
|
Yamasaki K, Yamasaki T, Takahashi M, Suematsu H. A mixing microfluidic chip for real-time NMR monitoring of macromolecular reaction. J Biochem 2021; 170:363-368. [PMID: 33831188 DOI: 10.1093/jb/mvab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/02/2021] [Indexed: 11/12/2022] Open
Abstract
NMR spectroscopy permits real-time monitoring of reactions that involve changes in the spectra of reactants. MICCS (MIcro Channeled Cell for Synthesis monitoring) is a microfluidic chip for such purposes, which is used to rapidly activate reactions by mixing the reactant solutions in the chip inserted into the typical NMR tube. Although it allows monitoring of chemical reactions of small compounds, its simple mixing system dependent on diffusion in the microchannel was not suitable for macromolecules such as proteins with low diffusion rates. Here we developed a new microfluidic chip based on MICCS by incorporating a mixer of split-and-recombination type within the microchannel. We applied it to monitoring of the protein-folding reaction in a stopped-flow mode. A solution of denaturant-unfolded RNase A was injected from a syringe pump into the microchip set inside the NMR magnet and mixed with a buffer for dilution to reach the folding condition. Immediately after dilution, the reaction was initiated and detected by a series of NMR measurements that were synchronized with activation and inactivation of the pump. The process was repeated for accumulation of the data. By analyzing the change of the spectra by factor analysis, a kinetic constant of 0.57 min-1 was obtained.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 3058566, Japan
| | - Tomoko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 3058566, Japan
| | - Masaharu Takahashi
- Planning Headquarters, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 3058560, Japan
| | - Hiroto Suematsu
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo, 1968558, Japan
| |
Collapse
|
3
|
Talevi A, Carrillo C, Comini M. The Thiol-polyamine Metabolism of Trypanosoma cruzi: Molecular Targets and Drug Repurposing Strategies. Curr Med Chem 2019; 26:6614-6635. [PMID: 30259812 DOI: 10.2174/0929867325666180926151059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/23/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
Chagas´ disease continues to be a challenging and neglected public health problem in many American countries. The etiologic agent, Trypanosoma cruzi, develops intracellularly in the mammalian host, which hinders treatment efficacy. Progress in the knowledge of parasite biology and host-pathogen interaction has not been paralleled by the development of novel, safe and effective therapeutic options. It is then urgent to seek for novel therapeutic candidates and to implement drug discovery strategies that may accelerate the discovery process. The most appealing targets for pharmacological intervention are those essential for the pathogen and, whenever possible, absent or significantly different from the host homolog. The thiol-polyamine metabolism of T. cruzi offers interesting candidates for a rational design of selective drugs. In this respect, here we critically review the state of the art of the thiolpolyamine metabolism of T. cruzi and the pharmacological potential of its components. On the other hand, drug repurposing emerged as a valid strategy to identify new biological activities for drugs in clinical use, while significantly shortening the long time and high cost associated with de novo drug discovery approaches. Thus, we also discuss the different drug repurposing strategies available with a special emphasis in their applications to the identification of drug candidates targeting essential components of the thiol-polyamine metabolism of T. cruzi.
Collapse
Affiliation(s)
- Alan Talevi
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata, La Plata, Argentina
| | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. César Milstein (ICT Milstein) - CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Comini
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| |
Collapse
|
4
|
Liu M, Quinn RJ. Fragment-based screening with natural products for novel anti-parasitic disease drug discovery. Expert Opin Drug Discov 2019; 14:1283-1295. [PMID: 31512943 PMCID: PMC6816479 DOI: 10.1080/17460441.2019.1653849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022]
Abstract
Introduction: Fragment-based drug discovery can identify relatively simple compounds with low binding affinity due to fewer binding interactions with protein targets. FBDD reduces the library size and provides simpler starting points for subsequent chemical optimization of initial hits. A much greater proportion of chemical space can be sampled in fragment-based screening compared to larger molecules with typical molecular weights (MWs) of 250-500 g mol-1 used in high-throughput screening (HTS) libraries. Areas covered: The authors cover the role of natural products in fragment-based drug discovery against parasitic disease targets. They review the approaches to develop fragment-based libraries either using natural products or natural product-like compounds. The authors present approaches to fragment-based drug discovery against parasitic diseases and compare these libraries with the 3D attributes of natural products. Expert opinion: To effectively use the three-dimensional properties and the chemical diversity of natural products in fragment-based drug discovery against parasitic diseases, there needs to be a mind-shift. Library design, in the medicinal chemistry area, has acknowledged that escaping flat-land is very important to increase the chances of clinical success. Attempts to increase sp3 richness in fragment libraries are acknowledged. Sufficient low molecular weight natural products are known to create true natural product fragment libraries.
Collapse
Affiliation(s)
- Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Ronald J. Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| |
Collapse
|
5
|
Abstract
Polyamines are polycationic organic amines that are required for all eukaryotic life, exemplified by the polyamine spermidine, which plays an essential role in translation. They also play more specialized roles that differ across species, and their chemical versatility has been fully exploited during the evolution of protozoan pathogens. These eukaryotic pathogens, which cause some of the most globally widespread infectious diseases, have acquired species-specific polyamine-derived metabolites with essential cellular functions and have evolved unique mechanisms that regulate their core polyamine biosynthetic pathways. Many of these parasitic species have lost enzymes and or transporters from the polyamine metabolic pathway that are found in the human host. These pathway differences have prompted drug discovery efforts to target the parasite polyamine pathways, and indeed, the only clinically approved drug targeting the polyamine biosynthetic pathway is used to manage human African trypanosomiasis. This Minireview will primarily focus on polyamine metabolism and function in Trypanosoma, Leishmania, and Plasmodium species, which are the causative agents of human African trypanosomiasis (HAT) and Chagas disease, Leishmaniasis, and malaria, respectively. Aspects of polyamine metabolism across a diverse group of protozoan pathogens will also be explored.
Collapse
Affiliation(s)
- Margaret A Phillips
- From the Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9038
| |
Collapse
|
6
|
Tani O, Akutsu Y, Ito S, Suzuki T, Tateishi Y, Yamaguchi T, Niimi T, Namatame I, Chiba Y, Sakashita H, Kubota T, Yanagi T, Mizukami S, Hirayama K, Furukawa K, Yamasaki K. NMR Biochemical Assay for Oxidosqualene Cyclase: Evaluation of Inhibitor Activities on Trypanosoma cruzi and Human Enzymes. J Med Chem 2018; 61:5047-5053. [PMID: 29771525 DOI: 10.1021/acs.jmedchem.8b00484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidosqualene cyclase (OSC), a membrane-associated protein, is a key enzyme of sterol biosynthesis. Here we report a novel assay for OSC, involving reaction in aqueous solution, NMR quantification in organic solvent, and factor analysis of spectra. We evaluated one known and three novel inhibitors on OSC of Trypanosoma cruzi, a parasite causative of Chagas disease, and compared their effects on human OSC for selectivity. Among them, one novel inhibitor showed a significant parasiticidal activity.
Collapse
Affiliation(s)
- Osamu Tani
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Yukie Akutsu
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Shinji Ito
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Takayuki Suzuki
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Yukihiro Tateishi
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Tomohiko Yamaguchi
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Tatsuya Niimi
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Ichiji Namatame
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Yasunori Chiba
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Umezono , Tsukuba 305-8568 , Japan
| | - Hitoshi Sakashita
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Tomomi Kubota
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Tetsuo Yanagi
- Department of Immunogenetics, Institute of Tropical Medicine , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| | - Shusaku Mizukami
- Department of Immunogenetics, Institute of Tropical Medicine , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| | - Koji Furukawa
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Kazuhiko Yamasaki
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| |
Collapse
|
7
|
Mello JDFRE, Gomes RA, Vital-Fujii DG, Ferreira GM, Trossini GHG. Fragment-based drug discovery as alternative strategy to the drug development for neglected diseases. Chem Biol Drug Des 2017; 90:1067-1078. [PMID: 28547936 DOI: 10.1111/cbdd.13030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/12/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022]
Abstract
Neglected diseases (NDs) affect large populations and almost whole continents, representing 12% of the global health burden. In contrast, the treatment available today is limited and sometimes ineffective. Under this scenery, the Fragment-Based Drug Discovery emerged as one of the most promising alternatives to the traditional methods of drug development. This method allows achieving new lead compounds with smaller size of fragment libraries. Even with the wide Fragment-Based Drug Discovery success resulting in new effective therapeutic agents against different diseases, until this moment few studies have been applied this approach for NDs area. In this article, we discuss the basic Fragment-Based Drug Discovery process, brief successful ideas of general applications and show a landscape of its use in NDs, encouraging the implementation of this strategy as an interesting way to optimize the development of new drugs to NDs.
Collapse
Affiliation(s)
- Juliana da Fonseca Rezende E Mello
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Renan Augusto Gomes
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Drielli Gomes Vital-Fujii
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Glaucio Monteiro Ferreira
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Henrique Goulart Trossini
- Litec, Laboratório de Integração Entre Técnicas Computacionais e Experimentais no Planejamento de Fármacos, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|