1
|
Nie MZ, Zhang SS, Gu SX, Long J, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors (2019-2023). Eur J Med Chem 2024; 280:116973. [PMID: 39432934 DOI: 10.1016/j.ejmech.2024.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a vital cornerstone of highly active antiretroviral therapy (HAART) regimens, owing to their unique antiviral activity, low toxicity and high specificity. Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine and rilpivirine, have attracted extensive attention due to their high anti-HIV potency. However, rapid emergence of resistant mutations, suboptimal pharmacokinetics (PK), and toxicity remain significant challenges. Recent structural modifications of DAPY analogues have focused on improving resistance profiles, optimizing PK properties (such as half-life and bioavailability), diversifying core structures through scaffold hopping, refining side-chain structures to enhance activity and selectivity, and reducing toxicity and side effects. Moreover, developing new DAPY analogues with broad-spectrum antiviral activity has become a key research priority. This review provides a comprehensive overview of the evolution of DAPYs from 2019 to 2023, including scaffold hopping and structural modifications of the right wing, left wing, central pyrimidine core, and linker, affording valuable insights for the future development of effective HIV-1 inhibitors.
Collapse
Affiliation(s)
- Mu-Zi Nie
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
2
|
Zhang K, Zhang YJ, Li M, Pannecouque C, De Clercq E, Wang S, Chen FE. Deciphering the enigmas of non-nucleoside reverse transcriptase inhibitors (NNRTIs): A medicinal chemistry expedition towards combating HIV drug resistance. Med Res Rev 2024. [PMID: 39188075 DOI: 10.1002/med.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu-Jie Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Li
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Shuai Wang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fen-Er Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Song H, Xia Y, Zhang T, Dun C, Meng B, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. 5-Cyano substituted diarylpyridines as potent HIV-1 NNRTIs: Rational design, synthesis, and activity evaluation. Eur J Med Chem 2023; 259:115686. [PMID: 37536208 DOI: 10.1016/j.ejmech.2023.115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
To develop more potent HIV-1 inhibitors against a variety of NNRTIs-resistant strains, a series of 5-cyano substituted diarylpyridines was designed based on the cocrystal structural analysis. Among them, I-5b showed the greatest potency (EC50 = 5.62-171 nM) against the wild-type (WT) and mutant HIV-1 strains. Especially for K103 N, I-5b exhibited outstanding activity with EC50 values of 9.37 nM, being much superior to that of NVP (EC50 = 5128 nM) and EFV (EC50 = 114 nM) and comparable to that of ETR (EC50 = 3.45 nM). In addition, the target of all compounds was turned out to be HIV-1 RT with moderate RT enzyme inhibitory activity (IC50 = 0.094-12.0 μM). Moreover, the binding mode of representative compounds with RT was elaborated via molecular docking.
Collapse
Affiliation(s)
- Hao Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Yu Xia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Caiyun Dun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Bairu Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
4
|
Zhou RL, Pannecouque C, De Clercq E, Wang S, Chen FE. Development of novel HEPT analogs featuring significantly improved anti-resistance potency against HIV-1 through chemical space exploration of the tolerant region I. Bioorg Chem 2023; 140:106783. [PMID: 37595396 DOI: 10.1016/j.bioorg.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Our recent great interest in developing 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) analogs for HIV therapy identified a potent non-nucleoside reverse transcriptase inhibitor (NNRTI) 3 (EC50 = 0.01681 μM), but its therapeutic efficacy was limited by its poor anti-resistance potency. This prompted us to search for potential HEPT analogs with broad-spectrum activities, leading to the generation of a series of novel HEPT analogs through exploring the chemical space of the solvent - protein interface. Encouraging improvements in anti-resistance efficacy were observed in some of these analogs, with the most promising compound 7 g being 3 to 26 - fold more potent than 3 against five mutant strains (E138K, Y181C, L100I, K103N, and Y188L). This analog surpassed the activity and selectivity of compound 3 by approximately 2-fold (EC50 = 0.007468 μM, SI = 4260). Furthermore, it was found to demonstrate feeble inhibition of CYP and hERG in vitro, and no in vivo acute toxicity. This study will further enrich the structure-activity relationships (SARs) of the HEPT scaffold, providing new guidance for the development of NNRTIs.
Collapse
Affiliation(s)
- Ruo-Lan Zhou
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of C∼hemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China; Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of C∼hemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of C∼hemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China; Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Sang YL, Pannecouque C, De Clercq E, Wang S, Chen FE. Fragment Hopping-Based Design of Novel Biphenyl-DAPY Derivatives as Potent Non-Nucleoside Reverse Transcriptase Inhibitors Featuring Significantly Improved Anti-Resistance Efficacy. J Med Chem 2023; 66:4755-4767. [PMID: 36996328 DOI: 10.1021/acs.jmedchem.2c01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
To enhance the anti-resistance efficacy of our previously reported non-nucleoside reverse transcriptase inhibitor (NNRTI) 4, a series of novel biphenyl-DAPY derivatives were developed using the fragment-hopping strategy. Most of the compounds 8a-v exhibited remarkably improved anti-HIV-1 potency. The most active compound 8r proved to be exceptionally potent against the wild-type HIV-1 (EC50 = 2.3 nM) and five mutant strains, such as K103N (EC50 = 8 nM) and E138K (EC50 = 6 nM), significantly better than 4. The new DAPY analogue was 8-fold less cytotoxic and had a 17-fold higher selectivity index (CC50 = 40.77 μM, SI > 17391) than etravirine and rilpivirine. Also, it displayed favorable pharmacokinetic properties with an oral bioavailability of 31.19% and weak sensitivity toward both CYP and hERG. No apparent acute toxicity (2 g/kg) and tissue damage occurred. These findings will further expand the possibility of successfully identifying biphenyl-DAPY analogues as highly potent, safe, and orally active NNRTIs for HIV treatment.
Collapse
Affiliation(s)
- Ya-Li Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Leuven B-3000, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
6
|
Sang YL, Pannecouque C, De Clercq E, Wang S, Chen FE. Picomolar inhibitor of reverse transcriptase featuring significantly improved metabolic stability. Acta Pharm Sin B 2023. [PMID: 37521857 PMCID: PMC10372819 DOI: 10.1016/j.apsb.2023.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Considering the undesirable metabolic stability of our recently identified NNRTI 5 (t1/2 = 96 min) in human liver microsomes, we directed our efforts to improve its metabolic stability by introducing a new favorable hydroxymethyl side chain to the C-5 position of pyrimidine. This strategy provided a series of novel methylol-biphenyl-diarylpyrimidines with excellent anti-HIV-1 activity. The best compound 9g was endowed with remarkably improved metabolic stability in human liver microsomes (t1/2 = 2754 min), which was about 29-fold longer than that of 5 (t1/2 = 96 min). This compound conferred picomolar inhibition of WT HIV-1 (EC50 = 0.9 nmol/L) and low nanomolar activity against five clinically drug-resistant mutant strains. It maintained particularly low cytotoxicity (CC50 = 264 μmol/L) and good selectivity (SI = 256,438). Molecular docking studies revealed that compound 9g exhibited a more stable conformation than 5 due to the newly constructed hydrogen bond of the hydroxymethyl group with E138. Also, compound 9g was characterized by good safety profiles. It displayed no apparent inhibition of CYP enzymes and hERG. The acute toxicity assay did not cause death and pathological damage in mice at a single dose of 2 g/kg. These findings paved the way for the discovery and development of new-generation anti-HIV-1 drugs.
Collapse
|
7
|
Prener L, Baszczyňski O, Kaiser MM, Dračínský M, Stepan G, Lee YJ, Brumshtein B, Yu H, Jansa P, Lansdon EB, Janeba Z. Design and Synthesis of Novel HIV-1 NNRTIs with Bicyclic Cores and with Improved Physicochemical Properties. J Med Chem 2023; 66:1761-1777. [PMID: 36652602 PMCID: PMC10017027 DOI: 10.1021/acs.jmedchem.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 01/19/2023]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) represent cornerstones of current regimens for treatment of human immunodeficiency virus type 1 (HIV-1) infections. However, NNRTIs usually suffer from low aqueous solubility and the emergence of resistant viral strains. In the present work, novel bicyclic NNRTIs derived from etravirine (ETV) and rilpivirine (RPV), bearing modified purine, tetrahydropteridine, and pyrimidodiazepine cores, were designed and prepared. Compounds 2, 4, and 6 carrying the acrylonitrile moiety displayed single-digit nanomolar activities against the wild-type (WT) virus (EC50 = 2.5, 2.7, and 3.0 nM, respectively), where the low nanomolar activity was retained against HXB2 (EC50 = 2.2-2.8 nM) and the K103N and Y181C mutated strains (fold change, 1.2-6.7×). Most importantly, compound 2 exhibited significantly improved phosphate-buffered saline solubility (10.4 μM) compared to ETV and RPV (≪1 μM). Additionally, the binding modes of compounds 2, 4, and 6 to the reverse transcriptase were studied by X-ray crystallography.
Collapse
Affiliation(s)
- Ladislav Prener
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Ondřej Baszczyňski
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128
43, Czech Republic
| | - Martin M. Kaiser
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Martin Dračínský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - George Stepan
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Yu-Jen Lee
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Boris Brumshtein
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Helen Yu
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Petr Jansa
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Eric B. Lansdon
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Zlatko Janeba
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| |
Collapse
|
8
|
Wang Z, Cherukupalli S, Xie M, Wang W, Jiang X, Jia R, Pannecouque C, De Clercq E, Kang D, Zhan P, Liu X. Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J Med Chem 2022; 65:3729-3757. [PMID: 35175760 DOI: 10.1021/acs.jmedchem.1c01758] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a major component of the highly active anti-retroviral therapy (HAART) regimen. However, the occurrence of drug-resistant strains and adverse reactions after long-term usage have inevitably compromised the clinical application of NNRTIs. Therefore, the development of novel inhibitors with distinct anti-resistance profiles and better pharmacological properties is still an enormous challenge. Herein, we summarize state-of-the-art medicinal chemistry strategies for the discovery of potent NNRTIs, such as structure-based design strategies, contemporary computer-aided drug design, covalent-binding strategies, and the application of multi-target-directed ligands. The strategies described here will facilitate the identification of promising HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Wenbo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| |
Collapse
|
9
|
Xie L, Goto M, Chen X, Morris-Natschke SL, Lee KH. Lead Optimization: Synthesis and Biological Evaluation of PBT-1 Derivatives as Novel Antitumor Agents. ACS Med Chem Lett 2021; 12:1948-1954. [PMID: 34917259 DOI: 10.1021/acsmedchemlett.1c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
Phenanthrene-based tylophorine-1 (PBT-1) was identified previously as a lead compound in an anticancer drug discovery effort based on natural Tylophora alkaloids. An expanded structural optimization using a new more efficient synthetic route provided 14 PBT-derivatives. Eleven compounds displayed obvious antiproliferative activities in cellular assays (GI50 0.55-9.32 μM). The most potent compounds 9c, 9g, and 9h (GI50 < 1 μM) contained a 7-hydroxy group on the phenanthrene B-ring in addition to a pendant piperidine E-ring with different 4-substituents. Compound 9h with NH2 as the piperidine substituent was at least 4-fold more potent against triple-negative breast cancer MDA-MB-231 than estrogen-responsible breast cancer MCF-7 cell growth. In further biological evaluations, the new active compounds induced cell cycle accumulation in the late S and G2/M phase without interfering with microtubule formation or cell morphology. These results on the optimization of the B- and E-rings of PBT-1 should benefit further development of novel antitumor agents.
Collapse
Affiliation(s)
- Lan Xie
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xiaoyan Chen
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Skoreński M, Sieńczyk M. The Fellowship of Privileged Scaffolds-One Structure to Inhibit Them All. Pharmaceuticals (Basel) 2021; 14:ph14111164. [PMID: 34832946 PMCID: PMC8622370 DOI: 10.3390/ph14111164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past few years, the application of privileged structure has emerged as a powerful approach to the discovery of new biologically active molecules. Privileged structures are molecular scaffolds with binding properties to the range of different biological targets. Moreover, privileged structures typically exhibit good drug-like properties, thus assuring more drug-like properties of modified compound. Our main objective is to discuss the privileged structures used for the development of antiviral agents.
Collapse
|
11
|
Design, synthesis, and antiviral activity of phenylalanine derivatives as HIV-1 capsid inhibitors. Bioorg Med Chem 2021; 48:116414. [PMID: 34562701 DOI: 10.1016/j.bmc.2021.116414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022]
Abstract
The HIV-1 Capsid (CA) is considered as a promising target for the development of potent antiviral drugs, due to its multiple roles during the viral life cycle. Herein, we report the design, synthesis, and antiviral activity evaluation of series of novel phenylalanine derivatives as HIV-1 CA protein inhibitors. Among them, 4-methoxy-N-methylaniline substituted phenylalanine (II-13c) and indolin-5-amine substituted phenylalanine (V-25i) displayed exceptional anti-HIV-1 activity with the EC50 value of 5.14 and 2.57 μM respectively, which is slightly weaker than that of lead compound PF-74 (EC50 = 0.42 μM). Besides, surface plasmon resonance (SPR) binding assay demonstrated II-13c and V-25i prefer to combine with CA hexamer rather than monomer, which is similar to PF-74. Subsequently, molecular dynamics simulation (MD) revealed potential interactions between representative compounds with HIV-1 CA hexamer. Overall, this work laid a solid foundation for further structural optimization to discover novel promising HIV-1 CA inhibitors.
Collapse
|
12
|
Huang B, Ginex T, Luque FJ, Jiang X, Gao P, Zhang J, Kang D, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Structure-Based Design and Discovery of Pyridyl-Bearing Fused Bicyclic HIV-1 Inhibitors: Synthesis, Biological Characterization, and Molecular Modeling Studies. J Med Chem 2021; 64:13604-13621. [PMID: 34496571 DOI: 10.1021/acs.jmedchem.1c00987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two series of new pyridyl-bearing fused bicyclic analogues designed to target the dual-tolerant regions of the non-nucleoside reverse transcriptase inhibitor (NNRTI)-binding pocket were synthesized and evaluated for their anti-HIV activities. Several compounds, such as 6, 14, 15, 21, 30, and 33, were found to be potent inhibitors against the wild-type (WT) HIV-1 strain or multiple NNRTI-resistant strains at low nanomolar levels. Detailed structure-activity relationships were obtained by utilizing the variation of moieties within the corresponding pharmacophores. In vitro metabolic stability profiles and some drug-like properties of selected compounds were assessed, furnishing the preliminary structure-metabolic stability relationships. Furthermore, molecular modeling studies elucidated the binding modes of compounds 6, 15, 21, and 30 in the binding pocket of WT, E138K, K103N, or Y181C HIV-1 RTs. These promising compounds can be used as lead compounds and warrant further structural optimization to yield more active HIV-1 inhibitors.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Santa Coloma de Gramenet, 08921 Barcelona, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Santa Coloma de Gramenet, 08921 Barcelona, Spain
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| |
Collapse
|
13
|
Feng D, Zuo X, Jing L, Chen CH, Olotu FA, Lin H, Soliman M, De Clercq E, Pannecouque C, Lee KH, Kang D, Liu X, Zhan P. Design, synthesis, and evaluation of "dual-site"-binding diarylpyrimidines targeting both NNIBP and the NNRTI adjacent site of the HIV-1 reverse transcriptase. Eur J Med Chem 2020; 211:113063. [PMID: 33340914 DOI: 10.1016/j.ejmech.2020.113063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
Inspired by our previous efforts to improve the drug-resistance profiles of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), a novel series of "dual-site" binding diarylpyrimidine (DAPY) derivatives targeting both the NNRTI adjacent site and NNRTIs binding pocket (NNIBP) were designed, synthesized, and evaluated for their anti-HIV potency in TZM-bl and MT-4 cells. Eight compounds exhibited moderate to excellent potencies in inhibiting wild-type (WT) HIV-1 replication with EC50 values ranging from 2.45 nM to 5.36 nM, and 14c (EC50 = 2.45 nM) proved to be the most promising inhibitor. Of note, 14c exhibited potent activity against the single mutant strain E138K (EC50 = 10.6 nM), being comparable with ETR (EC50 = 9.80 nM) and 3.5-fold more potent than that of compound 7 (EC50 = 37.3 nM). Moreover, 14c acted as a classical NNRTI with high affinity for WT HIV-1 RT (IC50 = 0.0589 μM). The detailed structure-activity relationships (SARs) of the representative compounds were also determined, and further supported by molecular dynamics simulation. Overall, we envision that the "dual-site"-binding NNRTIs have significant prospects and pave the way for the next round of rational design of potent anti-HIV-1 agents.
Collapse
Affiliation(s)
- Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xiaofang Zuo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Chin-Ho Chen
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Hao Lin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Mahmoud Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
14
|
Smith SJ, Pauly GT, Hewlett K, Schneider JP, Hughes SH. Structure-based non-nucleoside inhibitor design: Developing inhibitors that are effective against resistant mutants. Chem Biol Drug Des 2020; 97:4-17. [PMID: 32743937 PMCID: PMC7821153 DOI: 10.1111/cbdd.13766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 01/03/2023]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) inhibit reverse transcription and block the replication of HIV-1. Currently, NNRTIs are usually used as part of a three-drug combination given to patients as antiretroviral therapy. These combinations involve other classes of anti-HIV-1 drugs, commonly nucleoside reverse transcriptase inhibitors (NRTIs). However, attempts are being made to develop two-drug maintenance therapies, some of which involve an NNRTI and an integrase strand transfer inhibitor. This has led to a renewed interest in developing novel NNRTIs, with a major emphasis on designing compounds that can effectively inhibit the known NNRTI-resistant mutants. We have generated and tested novel rilpivirine (RPV) analogs. The new compounds were designed to exploit a small opening in the upper right periphery of the NNRTI-binding pocket. The best of the new compounds, 12, was a more potent inhibitor of the NNRTI-resistant mutants we tested than either doravirine or efavirenz but was inferior to RPV. We describe the limitations on the modifications that can be appended to the "upper right side" of the RPV core and the effects of substituting other cores for the central pyrimidine core of RPV and make suggestions about how this information can be used in NNRTI design.
Collapse
Affiliation(s)
- Steven J Smith
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Gary T Pauly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Katharine Hewlett
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Joel P Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
15
|
Huang B, Kang D, Tian Y, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Design, synthesis, and biological evaluation of piperidinyl-substituted [1,2,4]triazolo[1,5-a]pyrimidine derivatives as potential anti-HIV-1 agents with reduced cytotoxicity. Chem Biol Drug Des 2020; 97:67-76. [PMID: 32725669 DOI: 10.1111/cbdd.13760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022]
Abstract
Taking the previously reported compound BH-7d as the lead, we designed and synthesized a series of piperidinyl-substituted [1,2,4]triazolo[1,5-a]pyrimidines, and their anti-HIV activities as well as cytotoxicities were evaluated. Several compounds exhibited moderate anti-HIV (IIIB) potency, among which 2b was the most active one (EC50 = 4.29 μM). Structure-activity relationships derived from the antiretroviral results were analyzed. Additionally, most compounds demonstrated reduced cytotoxicity (CC50 > 200 μM) compared with those of BH-7d and etravirine. Molecular docking study further revealed the binding conformation of 2b in the binding pocket of HIV-1 reverse transcriptase.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Dirk Daelemans
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U.Leuven, Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| |
Collapse
|
16
|
Li YM, Luo RH, Yang LM, Huang SM, Li SY, Zheng YG, Ni DX, Cui YM, Zhang XJ, Li XL, Zhang RH, Tang E, Zhang HB, Zheng YT, He YP, Xiao WL. Design, synthesis and anti-HIV evaluation of 5-alkyl- 6-(benzo[d][1,3]dioxol-5-alkyl)-2-mercaptopyrimidin-4(3H)-ones as potent HIV-1 NNRTIs. Bioorg Chem 2020; 102:104041. [PMID: 32683184 DOI: 10.1016/j.bioorg.2020.104041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023]
Abstract
In order to discover and develop the new HIV-1 NNRTIs, a series of 5-alkyl-6-(benzo[d][1,3]dioxol-5-ylalkyl)-2-mercaptopyrimidin-4(3H)-ones was synthesized and screened for their in vitro cytotoxicity against HIV-1. Most of the compounds we synthetized showed high activity against wild-type HIV-1 strain (IIIB) while IC50 values are in the range of 0.06-12.95 μM. Among them, the most active HIV-1 inhibitor was compound 6-(benzo[d][1,3]dioxol-5-ylmethyl)-5-ethyl-2-((2-(4-hydroxyphenyl)-2-oxoethyl)thio)pyrimidin-4(3H)-one (5b), which exhibited similar HIV-1 inhibitory potency (IC50 = 0.06 μM, CC50 = 96.23 μM) compared with nevirapine (IC50 = 0.04 μM, CC50 >200 μM) and most of compounds exhibited submicromolar IC50 values indicating they were specific RT inhibitors. The compounds 5b, 6-(benzo[d] [1,3]dioxol-5-yl)-5-ethyl-2-((2-(4-hydroxyphenyl)-2-oxoethyl)thio)pyrimidin-4(3H)-one (5c) and 4-(2-((4-(benzo[d][1,3]dioxol-5-ylmethyl)-5-ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)thio)acetyl)phenylbenzo[d][1,3]dioxole-5-carboxylate (5r) were selected for further study. It was found that all of them had little toxicity to peripheral blood mononuclear cell (PBMC), and had a good inhibitory effect on the replication of HIV-1 protease inhibitor resistant strains, fusion inhibitor resistant strains and nucleosides reverse transcriptase inhibitor resistant strains, as well as on clinical isolates. Besides, compound 5b and 5c showed inhibition of HIV-1 RT RNA-dependent DNA polymerization activity and DNA-dependent DNA polymerization activity, while compound 5r only showed inhibition of HIV DNA-dependent DNA polymerization activity, which was different from classical reverse transcriptase inhibitors. Our study which offered the preliminary structure-activity relationships and modeling studies of these new compounds has provided the valuable avenues for future molecular optimization.
Collapse
Affiliation(s)
- Yi-Ming Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Rong-Hua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Liu-Meng Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Si-Ming Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Sui-Yuan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yu-Gui Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Dong-Xuan Ni
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yi-Man Cui
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Rui-Han Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - E Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Yan-Ping He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
17
|
Han S, Sang Y, Wu Y, Tao Y, Pannecouque C, De Clercq E, Zhuang C, Chen FE. Molecular Hybridization-Inspired Optimization of Diarylbenzopyrimidines as HIV-1 Nonnucleoside Reverse Transcriptase Inhibitors with Improved Activity against K103N and E138K Mutants and Pharmacokinetic Profiles. ACS Infect Dis 2020; 6:787-801. [PMID: 31599568 DOI: 10.1021/acsinfecdis.9b00229] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular hybridization is a powerful strategy in drug discovery. A series of novel diarylbenzopyrimidine (DABP) analogues were developed by the hybridization of FDA-approved drugs etravirine (ETR) and efavirenz (EFV) as potential HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). Substituent modifications resulted in the identification of new DABPs with the combination of the strengths of the two drugs, especially compound 12d, which showed promising activity toward the EFV-resistant K103N mutant. 12d also had a favorable pharmacokinetic (PK) profile with liver microsome clearances of 14.4 μL/min/mg (human) and 33.2 μL/min/mg (rat) and an oral bioavailability of 15.5% in rat. However, its activity against the E138K mutant was still unsatisfactory; E138K is the most prevalent NNRTI resistance-associated mutant in ETR treatment. Further optimizations resulted in a highly potent compound (12z) with no substituents on the phenyl ring and a 2-methyl-6-nitro substitution pattern on the 4-cyanovinyl-2,6-disubstitued phenyl motif. The antiviral activity of this compound was much higher than those of ETR and EFV against the WT, E138K, and K103N variants (EC50 = 3.4, 4.3, and 3.6 nM, respectively), and the cytotoxicity was decreased while the selectivity index (SI) was increased. In particular, this compound exhibited acceptable intrinsic liver microsome stability (human, 34.5 μL/min/mg; rat, 33.2 μL/min/mg) and maintained the good PK profile of its parent compound EFV and showed an oral bioavailability of 16.5% in rat. Molecular docking and structure-activity relationship (SAR) analysis provided further insights into the binding of the DABPs with HIV-1 reverse transcriptase and provided a deeper understanding of the key structural features responsible for their interactions.
Collapse
Affiliation(s)
- Sheng Han
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Yali Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Yan Wu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Yuan Tao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| |
Collapse
|
18
|
Sun L, Dick A, Meuser ME, Huang T, Zalloum WA, Chen CH, Cherukupalli S, Xu S, Ding X, Gao P, Kang D, De Clercq E, Pannecouque C, Cocklin S, Lee KH, Liu X, Zhan P. Design, Synthesis, and Mechanism Study of Benzenesulfonamide-Containing Phenylalanine Derivatives as Novel HIV-1 Capsid Inhibitors with Improved Antiviral Activities. J Med Chem 2020; 63:4790-4810. [PMID: 32298111 DOI: 10.1021/acs.jmedchem.0c00015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The HIV-1 CA protein has gained remarkable attention as a promising therapeutic target for the development of new antivirals, due to its pivotal roles in HIV-1 replication (structural and regulatory). Herein, we report the design and synthesis of three series of benzenesulfonamide-containing phenylalanine derivatives obtained by further structural modifications of PF-74 to aid in the discovery of more potent and drug-like HIV-1 CA inhibitors. Structure-activity relationship studies of these compounds led to the identification of new phenylalanine derivatives with a piperazinone moiety, represented by compound 11l, which exhibited anti-HIV-1NL4-3 activity 5.78-fold better than PF-74. Interestingly, 11l also showed anti-HIV-2ROD activity (EC50 = 31 nM), with almost 120 times increased potency over PF-74. However, due to the higher significance of HIV-1 as compared to HIV-2 for the human population, this manuscript focuses on the mechanism of action of our compounds in the context of HIV-1. SPR studies on representative compounds confirmed CA as the binding target. The action stage determination assay demonstrated that these inhibitors exhibited antiviral activities with a dual-stage inhibition profile. The early-stage inhibitory activity of compound 11l was 6.25 times more potent as compared to PF-74 but appeared to work via the accelerating capsid core assembly rather than stabilization. However, the mechanism by which they exert their antiviral activity in the late stage appears to be the same as PF-74 with less infectious HIV-1 virions produced in their presence, as judged p24 content studies. MD simulations provided the key rationale for the promising antiviral potency of 11l. Additionally, 11l exhibited a modest increase in HLM and human plasma metabolic stabilities as compared to PF-74, as well as a moderately improved pharmacokinetic profile, favorable oral bioavailability, and no acute toxicity. These studies provide insights and serve as a starting point for subsequent medicinal chemistry efforts in optimizing these promising HIV inhibitors.
Collapse
Affiliation(s)
- Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, Shandong 250012, People's Republic of China
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Megan E Meuser
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Tianguang Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, Shandong 250012, People's Republic of China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882, Amman 11821, Jordan
| | - Chin-Ho Chen
- Duke University Medical Center, Surgical Oncology Research Facility, Box 2926, Durham, North Carolina 27710, United States
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, Shandong 250012, People's Republic of China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, Shandong 250012, People's Republic of China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, Shandong 250012, People's Republic of China
| | - Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, Shandong 250012, People's Republic of China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, Shandong 250012, People's Republic of China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, Shandong 250012, People's Republic of China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, Shandong 250012, People's Republic of China
| |
Collapse
|
19
|
Liang X, Xu L, Li C, Jia X, Wei Y. One-pot propagation of (Hetero)Arylamines: Modular synthesis of diverse Amino-di(hetero)arylamines. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Kang D, Zhang H, Wang Z, Zhao T, Ginex T, Luque FJ, Yang Y, Wu G, Feng D, Wei F, Zhang J, De Clercq E, Pannecouque C, Chen CH, Lee KH, Murugan NA, Steitz TA, Zhan P, Liu X. Identification of Dihydrofuro[3,4- d]pyrimidine Derivatives as Novel HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with Promising Antiviral Activities and Desirable Physicochemical Properties. J Med Chem 2019; 62:1484-1501. [PMID: 30624934 DOI: 10.1021/acs.jmedchem.8b01656] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To address drug resistance to HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), a series of novel diarylpyrimidine (DAPY) derivatives targeting "tolerant region I" and "tolerant region II" of the NNRTIs binding pocket (NNIBP) were designed utilizing a structure-guided scaffold-hopping strategy. The dihydrofuro[3,4- d]pyrimidine derivatives 13c2 and 13c4 proved to be exceptionally potent against a wide range of HIV-1 strains carrying single NNRTI-resistant mutations (EC50 = 0.9-8.4 nM), which were remarkably superior to that of etravirine (ETV). Meanwhile, both compounds exhibited comparable activities with ETV toward the virus with double mutations F227L+V106A and K103N+Y181C. Furthermore, the most active compound 13c2 showed favorable pharmacokinetic properties with an oral bioavailability of 30.96% and a half-life of 11.1 h, which suggested that 13c2 is worth further investigation as a novel NNRTI to circumvent drug resistance.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB) , University of Barcelona , 08921 Santa Coloma de Gramenet , Spain
| | - Francisco Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB) , University of Barcelona , 08921 Santa Coloma de Gramenet , Spain
| | - Yang Yang
- Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06520-8114 , United States
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Fenju Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research , KU Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research , KU Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Chin Ho Chen
- Surgical Oncology Research Facility , Duke University Medical Center , Box 2926, Durham , North Carolina 27710 , United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , United States.,Chinese Medicine Research and Development Center , China Medical University and Hospital , Taichung 40402 , Taiwan
| | - N Arul Murugan
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH) , AlbaNova University Center , S-106 91 Stockholm , Sweden
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06520-8114 , United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| |
Collapse
|
21
|
Shirvani P, Fassihi A, Saghaie L. Recent Advances in the Design and Development of Non-nucleoside Reverse Transcriptase Inhibitor Scaffolds. ChemMedChem 2018; 14:52-77. [PMID: 30417561 DOI: 10.1002/cmdc.201800577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/04/2018] [Indexed: 12/31/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have always been an important part of the anti-HIV-1 combination therapy known as combination antiretroviral therapy (cART) since 1996. The use of NNRTIs for about 22 years has led to some mutations in the residues that compose the reverse transcriptase active site, resulting in the emergence of drug-resistant viruses. Thus, the search for new potent NNRTIs with an improved safety profile and activity against drug-resistant HIV strains is indispensable, and many hit and lead NNRTIs have been discovered in the last decade. This review provides an overview of the development in this field from 2013 to August 2018.
Collapse
Affiliation(s)
- Pouria Shirvani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| |
Collapse
|
22
|
Afanasyev OI, Zarochintsev A, Petrushina T, Cherkasova A, Denisov G, Cherkashchenko I, Chusova O, Jinho O, Man-Seog C, Usanov DL, Semenov SE, Chusov D. Synthesis of Nitriles from Aldehydes with Elongation of the Molecule with Two Carbon Atoms. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Oleg I. Afanasyev
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova St. 28 119991 Moscow Russian Federation
| | - Alexander Zarochintsev
- Moscow South-Eastern School named after V.I. Chuikov (Moscow Chemical Lyceum); Tamozhenniy proezd 4 111033 Moscow Russian Federation
| | - Tatiana Petrushina
- Moscow South-Eastern School named after V.I. Chuikov (Moscow Chemical Lyceum); Tamozhenniy proezd 4 111033 Moscow Russian Federation
| | - Anastasia Cherkasova
- Moscow South-Eastern School named after V.I. Chuikov (Moscow Chemical Lyceum); Tamozhenniy proezd 4 111033 Moscow Russian Federation
| | - Gleb Denisov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova St. 28 119991 Moscow Russian Federation
| | - Ilia Cherkashchenko
- Department of Chemistry; M. V. Lomonosov Moscow State University; Leninskie Gory 1 119991 Moscow Russian Federation
| | - Olga Chusova
- Faculty of Science; RUDN University; 6 Miklukho-Maklaya St. 117198 Moscow Russian Federation
| | - Oh Jinho
- Korea Science Academy of KAIST; 105-47, Baegyanggwanmun-ro, Busanjin-gu 614-822 Busan Republic of Korea
| | - Chun Man-Seog
- Korea Science Academy of KAIST; 105-47, Baegyanggwanmun-ro, Busanjin-gu 614-822 Busan Republic of Korea
| | - Dmitry L. Usanov
- Broad Institute of MIT and Harvard; 415 Main Street 02142 Cambridge MA United States
| | - Sergei E. Semenov
- Moscow South-Eastern School named after V.I. Chuikov (Moscow Chemical Lyceum); Tamozhenniy proezd 4 111033 Moscow Russian Federation
| | - Denis Chusov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova St. 28 119991 Moscow Russian Federation
| |
Collapse
|
23
|
Battini L, Bollini M. Challenges and approaches in the discovery of human immunodeficiency virus type‐1 non‐nucleoside reverse transcriptase inhibitors. Med Res Rev 2018; 39:1235-1273. [DOI: 10.1002/med.21544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| |
Collapse
|
24
|
Discovery of phenylalanine derivatives as potent HIV-1 capsid inhibitors from click chemistry-based compound library. Eur J Med Chem 2018; 158:478-492. [PMID: 30243152 DOI: 10.1016/j.ejmech.2018.09.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Abstract
The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of HIV-1 replication and is considered an important, clinically unexploited therapeutic target. As such, small drug-like molecules that inhibit this critical HIV-1 protein have become a priority for several groups. Therefore, in this study we explore small molecule targeting of the CA protein, and in particular a very attractive inter-protomer pocket. We report the design, parallel synthesis, and anti-HIV-1 activity evaluation of a series of novel phenylalanine derivatives as HIV-1 CA protein inhibitors synthesized via Cu(I)-catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) reaction. We demonstrate robust inhibitory activity over a range of potencies against the HIV-1 NL4-3 reference strain. In particular, compound 13m exhibited the greatest potency and lowest toxicity within this new series with an EC50 value of 4.33 μM and CC50 value of >57.74 μM (SI > 13.33). These values are very similar to the lead compound PF-74 (EC50 = 5.95 μM, CC50 > 70.50 μM, SI > 11.85) in our assay, despite significant structural difference. Furthermore, we demonstrate via surface plasmon resonance (SPR) binding assays that 13m interacts robustly with recombinant HIV-1 CA and exhibits antiviral activity in both the early and late stages of HIV-1 replication. Overall, the novel parallel synthesis and structure-activity relationships (SARs) identified within this study set the foundation for further rational optimization and discovery of CA-targeting compounds with improved potency.
Collapse
|
25
|
Gu SX, Lu HH, Liu GY, Ju XL, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors. Eur J Med Chem 2018; 158:371-392. [PMID: 30223123 DOI: 10.1016/j.ejmech.2018.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs) have been playing an important role in the fight against acquired immunodeficiency syndrome (AIDS). Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine (TMC125) and rilpivirine (TMC278), have attracted extensive attention due to their extraordinary potency, high specificity and low toxicity. However, the rapid emergence of drug-resistant virus strains and dissatisfactory pharmacokinetics of DAPYs present new challenges. In the past two decades, an increasing number of novel DAPY derivatives have emerged, which significantly enriched the structure-activity relationship of DAPYs. Studies of crystallography and molecular modeling have afforded a lot of useful information on structural requirements of NNRTIs, which contributes greatly to the improvement of their resistance profiles. In this review, we reviewed the discovery history and their evolution of DAPYs including their structural modification, derivatization and scaffold hopping in continuous pursuit of excellent anti-HIV drugs. And also, we discussed the prospect of DAPYs and the directions of future efforts.
Collapse
Affiliation(s)
- Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Huan-Huan Lu
- Yichang Humanwell Pharmaceutical Co., Ltd, Yichang, 443005, PR China
| | - Gen-Yan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Xiu-Lian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
26
|
Combining New Non-Nucleoside Reverse Transcriptase Inhibitors (RTIs) with AZT Results in Strong Synergism against Multi-RTI-Resistant HIV-1 Strains. Molecules 2018; 23:molecules23071599. [PMID: 30004408 PMCID: PMC6099689 DOI: 10.3390/molecules23071599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022] Open
Abstract
Reverse transcriptase inhibitors (RTIs), including nucleoside RTIs (NRTIs) and non-nucleoside RTIs (NNRTIs), are critical antiretroviral drugs for the treatment of human immunodeficiency virus (HIV) infection. Emergence of multi-RTI resistance calls for the development of more potent therapeutics or regimens against RTI-resistant strains. Here, we demonstrated that combining azidothymidine (AZT) with a new NNRTIs under development, diarylpyridine (DAPA)-2e, diarylanilin (DAAN)-14h, or DAAN-15h, resulted in strong synergism against infection by divergent HIV-1 strains, including those resistant to NRTIs and NNRTIs, suggesting the potential for developing these novel NNRTIs as salvage therapy for HIV/acquired immune deficiency syndrome (AIDS) patients.
Collapse
|
27
|
Tian Y, Liu Z, Liu J, Huang B, Kang D, Zhang H, De Clercq E, Daelemans D, Pannecouque C, Lee KH, Chen CH, Zhan P, Liu X. Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. Eur J Med Chem 2018; 151:339-350. [PMID: 29635166 DOI: 10.1016/j.ejmech.2018.03.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
Abstract
Inspired by our previous efforts on the modifications of diarylpyrimidines as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) and reported crystallography study, novel diarylnicotinamide derivatives were designed with a "triazole tail" occupying the entrance channel in the NNRTI binding pocket of the reverse transcriptase to afford additional interactions. The newly designed compounds were then synthesized and evaluated for their anti-HIV activities in MT-4 cells. All the compounds showed excellent to good activity against wild-type HIV-1 strain with EC50 of 0.02-1.77 μM. Evaluations of selected compounds against more drug-resistant strains showed these compounds had advantage of inhibiting E138K mutant virus which is a key drug-resistant mutant to the new generation of NNRTIs. Among this series, propionitrile (3b2, EC50(IIIB) = 0.020 μM, EC50(E138K) = 0.015 μM, CC50 = 40.15 μM), pyrrolidin-1-ylmethanone (3b8, EC50(IIIB) = 0.020 μM, EC50(E138K) = 0.014 μM, CC50 = 58.09 μM) and morpholinomethanone (3b9, EC50(IIIB) = 0.020 μM, EC50(E138K) = 0.027 μM, CC50 = 180.90 μM) derivatives are the three most promising compounds which are equally potent to the marketed drug Etravirine against E138K mutant strain but with much lower cytotoxicity. Furthermore, detailed SAR, inhibitory activity against RT and docking study of the representative compounds are also discussed.
Collapse
Affiliation(s)
- Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Zhaoqiang Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jinghan Liu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, 210009, Nanjing, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599-7568, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
28
|
Wei L, Wang HL, Huang L, Chen CH, Morris-Natschke SL, Lee KH, Xie L. Drug-like property-driven optimization of 4-substituted 1,5-diarylanilines as potent HIV-1 non-nucleoside reverse transcriptase inhibitors against rilpivirine-resistant mutant virus. Bioorg Med Chem Lett 2017; 27:2788-2792. [PMID: 28465101 PMCID: PMC5503476 DOI: 10.1016/j.bmcl.2017.04.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/02/2022]
Abstract
On the basis of our prior structure-activity relationship (SAR) results, our current lead optimization of 1,5-diarylanilines (DAANs) focused on the 4-substituent (R1) on the central phenyl ring as a modifiable position related simultaneously to improved drug resistance profiles and drug-like properties. Newly synthesized p-cyanovinyl-DAANs (8a-8g) with different R1 side chains plus prior active p-cyanoethyl-DAANs (4a-4c) were evaluated not only for anti-HIV potency against both wild-type HIV virus and rilpivirine-resistant (E138K, E138K+M184I) viral replication, but also for multiple drug-like properties, including aqueous solubility, lipophilicity, and metabolic stability in human liver microsomes and human plasma. This study revealed that both ester and amide R1 substituents led to low nanomolar anti-HIV potency against wild-type and rilpivirine-resistant viral strains (E138K-resistance fold changes<3). The N-substituted amide-R1 side chains were superior to ester-R1 likely due to improved aqueous solubility, lipophilicity, and higher metabolic stability in vitro. Thus, three amide-DAANs 8e, 4a, and 4b were identified with high potency against wild-type and rilpivirine-resistant viral strains and multiple desirable drug-like properties.
Collapse
Affiliation(s)
- Lei Wei
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Hui-Ling Wang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Li Huang
- Duke University Medical Center, Box 2926, Surgical Oncology Research Facility, Durham, NC 27710, USA
| | - Chin-Ho Chen
- Duke University Medical Center, Box 2926, Surgical Oncology Research Facility, Durham, NC 27710, USA
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan.
| | - Lan Xie
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Palladium-catalysed cross-coupling as a key step in the synthesis of pyridyl-benzamides, -benzylamines and -sulfonamides. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.11.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Huang B, Zhou Z, Kang D, Li W, Chen Z, Zhan P, Liu X. Novel diaryltriazines with a picolinonitrile moiety as potent HIV-1 RT inhibitors: a patent evaluation of WO2016059647(A2). Expert Opin Ther Pat 2016; 27:9-15. [PMID: 27855563 DOI: 10.1080/13543776.2017.1262349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diaryltriazine derivatives, which are structurally related to diarylpyrimidines, are a representative class of HIV-1 reverse transcriptase inhibitors with remarkable antiviral activities against wild-type and several mutant strains of HIV-1. A series of novel diaryltriazines with a picolinonitrile moiety was reported as potent HIV-1 RT inhibitors in the patent WO2016059647(A2). Two representative compounds 5e (hydrochloride) and 6e (hydrochloride) exhibited outstanding activities against various HIV-1 strains in cell-based assays, which were superior to those of AZT. Moreover, modeling simulation study is performed and discussed in details, providing deep insights and valuable information to explain the excellent antiviral potency of 6e. Finally, several cases to improve anti-drug-resistance profiles by targeting highly conserved residues in HIV-1 RT are herein preliminarily summarized.
Collapse
Affiliation(s)
- Boshi Huang
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Zhongxia Zhou
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Dongwei Kang
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Wanzhuo Li
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Zihui Chen
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| |
Collapse
|
31
|
Kang D, Fang Z, Li Z, Huang B, Zhang H, Lu X, Xu H, Zhou Z, Ding X, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Design, Synthesis, and Evaluation of Thiophene[3,2-d]pyrimidine Derivatives as HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Significantly Improved Drug Resistance Profiles. J Med Chem 2016; 59:7991-8007. [PMID: 27541578 DOI: 10.1021/acs.jmedchem.6b00738] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We designed and synthesized a series of human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a piperidine-substituted thiophene[3,2-d]pyrimidine scaffold, employing a strategy of structure-based molecular hybridization and substituent decorating. Most of the synthesized compounds exhibited broad-spectrum activity with low (single-digit) nanomolar EC50 values toward a panel of wild-type (WT), single-mutant, and double-mutant HIV-1 strains. Compound 27 was the most potent; compared with ETV, its antiviral efficacy was 3-fold greater against WT, 5-7-fold greater against Y181C, Y188L, E138K, and F227L+V106A, and nearly equipotent against L100I and K103N, though somewhat weaker against K103N+Y181C. Importantly, 27 has lower cytotoxicity (CC50 > 227 μM) and a huge selectivity index (SI) value (ratio of CC50/EC50) of >159101. 27 also showed favorable, drug-like pharmacokinetic and safety properties in rats in vivo. Molecular docking studies and the structure-activity relationships provide important clues for further molecular elaboration.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Zengjun Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China.,The Second Hospital, Shandong University , No. 247 Beiyuan Avenue, Jinan 250033, China
| | - Zhenyu Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xueyi Lu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Haoran Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| |
Collapse
|