1
|
Ren X, Duan XY, Feng Y, Li Y, Li J, Qi J. Highly Enantioselective Synthesis of Polycyclic Dihydroisoquinolinones via NHC-Catalyzed [4 + 2] Annulations. J Org Chem 2024; 89:14135-14140. [PMID: 39267456 DOI: 10.1021/acs.joc.4c01529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The NHC-catalyzed enantioselective [4 + 2] annulation of 9H-fluorene-1-carbaldenydes with cyclic imines was successfully developed. A series of optically enriched polycyclic dihydroisoquinolinones were synthesized in moderate to excellent yields with good to excellent enantioselectivities. In addition, this efficient method could also be amenable to the synthesis of spirocyclic compounds by using isatin-derived ketimines as the electrophiles.
Collapse
Affiliation(s)
- Xiaojie Ren
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, China
| | - Xiao-Yong Duan
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yuxuan Feng
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, China
| | - Yanting Li
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, China
| | - Jiahan Li
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, China
| | - Jing Qi
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Gonzalez-de-Castro A, Robertson CM, Xiao J. Correction to "Dehydrogenative α-Oxygenation of Ethers with an Iron Catalyst". J Am Chem Soc 2024; 146:25888. [PMID: 39236217 DOI: 10.1021/jacs.4c11792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
|
3
|
Liu D, Sun J, Han Y, Yan CG. Regioselective and Diastereoselective Construction of Diverse Dispiro-Indanone-Fluorenone-Oxindole Motifs. J Org Chem 2023. [PMID: 38015457 DOI: 10.1021/acs.joc.3c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A convenient synthetic protocol for regioselective and diastereoselective construction of complex dispiro-indanone-fluorenone-oxindole motifs was developed by the base-promoted annulation reaction of bindone and MBH carbonates of isatins by adjusting reaction conditions. DABCO promoted the annulation reaction of bindone and MBH carbonates of isatins in DCM at room temperature, affording dispiro[indene-2,4'-fluorene-1',3″-indoline] derivatives in good yields and with high diastereoselectivity. Triethylamine promoted the annulation reaction of two molecular 1,3-indanediones and MBH esters of isatins in ethanol at elevated temperature and selectively gave dispiro[indene-2,4'-fluorene-3',3″-indolines] in moderate yields. However, triethylamine promoted the annulation reaction of excess 1,3-indanediones and MBH esters of isatins in refluxing ethanol, affording dispiro[indene-2,4'-fluorene-3',3″-indolines] with the Z-isomer as the major product and the E-isomer as the minor product.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
4
|
Sun J, Liu X, Sun Q, Han Y, Yan CG. Convenient Synthetic Protocols for Diverse Functionalized Dihydrobenzofuran-Fused Spiro-indanedione-oxindole Scaffolds. J Org Chem 2023; 88:11562-11580. [PMID: 37498181 DOI: 10.1021/acs.joc.3c00887] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Diverse functionalized dihydrobenzofuran spiro-indanedione-oxindole scaffolds were conveniently synthesized by base-promoted cyclization reaction of Morita-Baylis-Hillman (MBH) carbonates of isatins and 2-(o-hydroxybenzylidene)-1,3-indanediones. The two diastereomeric dispiro[indene-2,1'-cyclopenta[b]benzofuran-2',3″'-indolines] could be selectively synthesized by using DABCO or DMAP as a base promoter. More importantly, DABCO or DMAP facilitated the annulation reaction of MBH formates of isatins and 2-(o-hydroxybenzylidene)-1,3-indanediones selectively, resulting in spiro[cyclopropa[c]chromene-1,2'-indene]-1',3'-diones or dispiro[indene-2,1'-cyclopenta[b]benzofuran-2',3″'-indolines]. Additionally, a similar reaction with MBH maleimides of isatins afforded dispiro[indene-2,5'-benzofuro[2',3':1,5]cyclopenta[1,2-c]pyrrole-4',3″'-indolines] in high yields and with high diastereoselectivity.
Collapse
Affiliation(s)
- Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xueyan Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qiu Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
5
|
Yue X, Gao Y, Huang J, Feng Y, Cui X. Rhodium-Catalyzed [4 + 2] Cascade Annulation to Easy Access N-Substituted Indenoisoquinolinones. Org Lett 2023; 25:2923-2927. [PMID: 37114383 DOI: 10.1021/acs.orglett.3c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
An efficient approach for the synthesis of N-substituted indenoisoquinolinones via rhodium(III)-catalyzed C-H bond activation/subsequent [4 + 2] cyclization starting from easily available 2-phenyloxazolines and 2-diazo-1,3-indandiones has been developed. A series of indeno[1,2-c]isoquinolinones were obtained in up to 93% yield through C-H functionalization, followed by intramolecular annulation, elimination, and ring-opening in a "one pot manner" under mild reaction conditions. This protocol features excellent atom- and step-economy and provides a novel strategy for the synthesis of N-substituted indenoisoquinolinones and a chance to study their biological activities.
Collapse
Affiliation(s)
- Xuelin Yue
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Yijie Gao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Junwei Huang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Yadong Feng
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province and Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian 361023, P. R. China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
6
|
Chen Y, Dahse H, Paetz C, Schneider B. Precursor-Directed Synthesis of Apoptosis-Initiating N-Hydroxyalkyl Phenylbenzoisoquinolindione Alkaloids. ChemistryOpen 2022; 11:e202200157. [PMID: 36478420 PMCID: PMC9728486 DOI: 10.1002/open.202200157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
A precursor-directed approach to access N-hydroxyalkyl phenylbenzoisoquinolindiones (PBIQs) has been developed. Incubation of plant material of Xiphidium caeruleum with hydroxylamines of various chain lengths (C2 , C4 , C6 , C8 , C10 and C12 ) resulted in 11 new 5-hydroxy- and 5-methoxy PBIQs with different N-hydroxyalkyl side chain lengths. The antiproliferative effect and the cytotoxicity against HUVEC, K-562, and HeLa cell lines of 26 previously reported PBIQs and the 11 newly synthesized N-hydroxyalkyl PBIQs was determined for the first time. The results revealed that introducing long-chain N-aliphatic amine moieties improved the antiproliferative effect and cytotoxicity of PBIQs when compared to derivatives with N-amino acids as side chains.
Collapse
Affiliation(s)
- Yu Chen
- Max-Planck-Institute for Chemical EcologyNMR/Biosynthesis GroupHans-Knöll-Straße 807745JenaGermany
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNo.1 Qianhu Houcun Xuanwu District210014NanjingP. R. China
| | - Hans‐Martin Dahse
- Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (Leibniz-HKI)Beutenbergstraße 11a07745JenaGermany
| | - Christian Paetz
- Max-Planck-Institute for Chemical EcologyNMR/Biosynthesis GroupHans-Knöll-Straße 807745JenaGermany
| | - Bernd Schneider
- Max-Planck-Institute for Chemical EcologyNMR/Biosynthesis GroupHans-Knöll-Straße 807745JenaGermany
| |
Collapse
|
7
|
Synthesis of diverse spiro-imidazo pyridine-indene derivatives via acid-promoted annulation reaction of bindone and heterocyclic ketene aminals. Sci Rep 2022; 12:12550. [PMID: 35869174 PMCID: PMC9307797 DOI: 10.1038/s41598-022-16959-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractA new multi-component reaction for the synthesis of novel and diverse spiro-imidazo pyridine-indene derivatives named spiro[imidazo[1,2-a]indeno[2,1-e]pyridine-5,1′-indene and indenylidene-1H-spiro[imidazo[1,2-a]pyridine-7,1′-indene was successfully developed by the reaction between heterocyclic ketene aminals (generated from 1,1-bis(methylthio)-2-nitro ethylene and diamine) and [1,2′-biindenylidene]-1′,3,3′-trione (bindone) (in situ generated from self-condensation of 1,3-indandion) by using malononitrile as a promoter or as one of the precursors respectively in the presence of p-TSA as the acid catalyst in EtOH as reaction medium under reflux conditions. Depending on whether the reaction is single-step or two-step, malononitrile can act as a promoter or reactant. The convenient one-pot operation, straightforward isolation without using additional purification methods, and the use of a variety of diamines and cysteamine hydrochloride causing a variety of structural products are attractive aspects of the present approach. The synthesized bindone and final product contains active methylene and this active site can be involved in further reactions to synthesize more complex heterocycles.
Collapse
|
8
|
Yan C. 1,3-Indanedione: An versatile building block. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
9
|
Kurpik G, Walczak A, Gołdyn M, Harrowfield J, Stefankiewicz AR. Pd(II) Complexes with Pyridine Ligands: Substituent Effects on the NMR Data, Crystal Structures, and Catalytic Activity. Inorg Chem 2022; 61:14019-14029. [PMID: 35985051 PMCID: PMC9455277 DOI: 10.1021/acs.inorgchem.2c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A wide range of functionalized pyridine ligands have
been employed
to synthesize a variety of Pd(II) complexes of the general formulas
[PdL4](NO3)2 and [PdL2Y2], where L = 4-X-py
and Y = Cl– or NO3–. Their structures have been unambiguously established via analytical
and spectroscopic methods in solution (NMR spectroscopy and mass spectrometry)
as well as in the solid state (X-ray diffraction). This in-depth characterization
has shown that the functionalization of ligand molecules with groups
of either electron-withdrawing or -donating nature (EWG and EDG) results
in significant changes in the physicochemical properties of the desired
coordination compounds. Downfield shifts of signals in the 1H NMR spectra were observed upon coordination within and across the
complex families, clearly indicating the relationship between NMR
chemical shifts and the ligand basicity as estimated from pKa values. A detailed crystallographic study
has revealed the operation of a variety of weak interactions, which
may be factors explaining aspects of the solution chemistry of the
complexes. The Pd(II) complexes have been found to be efficient and
versatile precatalysts in Suzuki–Miyaura and Heck cross-coupling
reactions within a scope of structurally distinct substrates, and
factors have been identified that have contributed to efficiency improvement
in both processes. A wide range
of pyridine derivatives have been employed
to synthesize a variety of di- and tetrasubstituted Pd(II) complexes
of square-planar geometry. This in-depth characterization has shown
that the functionalization of ligand molecules with groups of either
electron-withdrawing or -donating nature results in significant changes
in the physicochemical properties of the coordination compounds. Moreover,
the complexes have been found to be of practical utility as efficient
precatalysts for both Suzuki−Miyaura and Heck cross-coupling
reactions.
Collapse
Affiliation(s)
- Gracjan Kurpik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.,Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| | - Anna Walczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.,Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| | - Mateusz Gołdyn
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Jack Harrowfield
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67083, France
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.,Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| |
Collapse
|
10
|
Liu D, Liu X, Sun J, Han Y, Yan CG. Domino reaction of bindone and 1,3-dipolarophiles for the synthesis of diverse spiro and fused indeno[1,2- a]fluorene-7,12-diones. Org Biomol Chem 2022; 20:4964-4969. [PMID: 35660847 DOI: 10.1039/d2ob00815g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The base promoted domino reaction of bindone ([1,2'-biindenylidene]-1',3,3'-trione) with common 1,3-dipolarophiles showed interesting molecular diversities, from which the unique spiro and fused indeno[1,2-a]fluorine derivatives were conveniently synthesized in satisfactory yields. In the presence of a base, bindone underwent formal [3 + 3] cycloaddition with satylidene malononitriles to give dispiro[indene-2,4'-fluorene-1',3''-indoline]. It also underwent formal [4 + 2] cycloaddition with 4-arylidene-pyrazol-3-ones to give diastereoisomeric spiro[indeno[1,2-a]fluorene-5,4'-pyrazole]. On the other hand, a triethylamine promoted reaction of three molecules of 1,3-indanediones and isatins in toluene afforded spiro[diindeno[2,1-b:2',1'-d]anthracene-11,3'-indoline] derivatives through the domino [4 + 2] cycloaddition and ring-expansion process.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xueyan Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
11
|
Topoisomerase I inhibitors: Challenges, progress and the road ahead. Eur J Med Chem 2022; 236:114304. [DOI: 10.1016/j.ejmech.2022.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
|
12
|
Li Q, Wei M. DFT studies on rhodium( iii)-catalyzed synthesis of indanones from N-methoxybenzamides via C–H activation reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj02599j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh(iii)-catalyzed reaction of N-methoxybenzamides with β-trifluoromethyl-α,β-unsaturated ketones to produce different products under different conditions.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing 100083, P. R. China
| | - Meiju Wei
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing 100083, P. R. China
| |
Collapse
|
13
|
Cushman M. Design and Synthesis of Indenoisoquinolines Targeting Topoisomerase I and Other Biological Macromolecules for Cancer Chemotherapy. J Med Chem 2021; 64:17572-17600. [PMID: 34879200 DOI: 10.1021/acs.jmedchem.1c01491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery that certain indenoisoquinolines inhibit the religation reaction of DNA in the topoisomerase I-DNA-indenoisoquinoline ternary complex led to a structure-based drug design research program which resulted in three representatives that entered Phase I clinical trials in cancer patients at the National Cancer Institute. This has stimulated a great deal of interest in the design and execution of new synthetic pathways for indenoisoquinoline production. More recently, modulation of the substitution pattern and chemical nature of substituents on the indenoisoquinoline scaffold has resulted in a widening scope of additional biological targets, including RXR, PARP-1, MYC promoter G-quadruplex, topoisomerase II, estrogen receptor, VEGFR-2, HIF-1α, and tyrosyl DNA phosphodiesterases 1 and 2. Furthermore, convincing evidence has been advanced supporting the potential use of indenoisoquinolines for the treatment of diseases other than cancer. The rapidly expanding indenoisoquinoline knowledge base has provided a firm foundation for further advancements in indenoisoquinoline chemistry, pharmacology, and therapeutics.
Collapse
Affiliation(s)
- Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Liu D, Liu X, Sun J, Yan CG. Selective Synthesis of Diverse Spiro-oxindole-fluorene Derivatives via a DABCO-Promoted Annulation Reaction of Bindone and 3-Methyleneoxindoles. J Org Chem 2021; 86:14705-14719. [PMID: 34661401 DOI: 10.1021/acs.joc.1c01513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A DABCO-promoted annulation reaction of bindone ([1,2'-biindenylidene]-1',3,3'-trione) and 3-methyleneoxindoles showed very interesting molecular diversity under different reaction conditions. The base-promoted annulation reaction of bindone and 3-phenacylideneoxindoles in DCM at room temperature afforded spiro[indeno[1,2-a]fluorene-5,3'-indoline] derivatives in good yields and with high diastereoselectivity. However, the similar reaction of 2-(2-oxoindolin-3-ylidene) acetates resulted in Z/E-isomeric spiro[indeno[1,2-a]fluorene-5,3'-indolines] with diastereomeric ratios of 2:1 to 10:1. On the other hand, the DABCO-promoted annulation reaction of bindone and 3-methyleneoxindoles in acetonitrile at different temperatures selectively gave spiro[benzo[5,6]pentaleno[1,6a-b]naphthalene-7,3'-indoline] derivatives and complex dispiro[indoline-3,6'-[4b,6a]ethanoindeno[1,2-a]fluorene-14',3″-indolines] in satisfactory yields.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xueyan Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
15
|
He L, Xiong K, Wang L, Guan R, Chen Y, Ji L, Chao H. Iridium(iii) complexes as mitochondrial topoisomerase inhibitors against cisplatin-resistant cancer cells. Chem Commun (Camb) 2021; 57:8308-8311. [PMID: 34319315 DOI: 10.1039/d1cc02178h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein, we developed the first metal-based mitochondrial topoisomerase inhibitors to achieve an effective therapeutic outcome for the therapy of cisplatin-resistant tumour cells.
Collapse
Affiliation(s)
- Liting He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen NY, Lu K, Yuan JM, Li XJ, Gu ZY, Pan CX, Mo DL, Su GF. 3-Arylamino-quinoxaline-2-carboxamides inhibit the PI3K/Akt/mTOR signaling pathways to activate P53 and induce apoptosis. Bioorg Chem 2021; 114:105101. [PMID: 34175723 DOI: 10.1016/j.bioorg.2021.105101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/10/2021] [Accepted: 06/15/2021] [Indexed: 01/10/2023]
Abstract
Thirty-eight new 3-arylaminoquinoxaline-2-carboxamide derivatives were in silico designed, synthesized and their cytotoxicity against five human cancer cell lines and one normal cells WI-38 were evaluated. Molecular mechanism studies indicated that N-(3-Aminopropyl)-3-(4-chlorophenyl) amino-quinoxaline-2-carboxamide (6be), the compound with the most potent anti-proliferation can inhibit the PI3K-Akt-mTOR pathway via down regulating the levels of PI3K, Akt, p-Akt, p-mTOR and simultaneously inhibit the phosphorylation of Thr308 and Ser473 residues in Akt kinase to servers as a dual inhibitor. Further investigation revealed that 6be activate the P53 signal pathway, modulated the downstream target gene of Akt kinase such p21, p27, Bax and Bcl-2, caused the fluctuation of intracellular ROS, Ca2+ and mitochondrial membrane potential to induce cell cycle arrest and apoptosis in MGC-803 cells. 6be also display moderate anti-tumor activity in vivo while displaying no obvious adverse signs during the drug administration. The results suggest that 3-arylaminoquinoxaline-2-carboxamide derivatives might server as new scaffold for development of PI3K-Akt-mTOR inhibitor.
Collapse
Affiliation(s)
- Nan-Ying Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Ke Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Jing-Mei Yuan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Xiao-Juan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Zi-Yu Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
17
|
Design, synthesis, and anticancer activities of 8,9-substituted Luotonin A analogs as novel topoisomerase I inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02749-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Design, Synthesis, and Molecular Docking Study of New Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors Combining Resin Acids and Adamantane Moieties. Pharmaceuticals (Basel) 2021; 14:ph14050422. [PMID: 34062881 PMCID: PMC8147275 DOI: 10.3390/ph14050422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/26/2023] Open
Abstract
In this paper, a series of novel abietyl and dehydroabietyl ureas, thioureas, amides, and thioamides bearing adamantane moieties were designed, synthesized, and evaluated for their inhibitory activities against tyrosil-DNA-phosphodiesterase 1 (TDP1). The synthesized compounds were able to inhibit TDP1 at micromolar concentrations (0.19–2.3 µM) and demonstrated low cytotoxicity in the T98G glioma cell line. The effect of the terpene fragment, the linker structure, and the adamantane residue on the biological properties of the new compounds was investigated. Based on molecular docking results, we suppose that adamantane derivatives of resin acids bind to the TDP1 covalent intermediate, forming a hydrogen bond with Ser463 and hydrophobic contacts with the Phe259 and Trp590 residues and the oligonucleotide fragment of the substrate.
Collapse
|
19
|
Selas A, Martin-Encinas E, Fuertes M, Masdeu C, Rubiales G, Palacios F, Alonso C. A patent review of topoisomerase I inhibitors (2016-present). Expert Opin Ther Pat 2021; 31:473-508. [PMID: 33475439 DOI: 10.1080/13543776.2021.1879051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Topoisomerases are important targets for therapeutic improvement in the treatment of some diseases, including cancer. Inhibitors and poisons of topoisomerase I can limit the activity of this enzyme in its enzymatic cycle. This fact implies an anticancer effect of these drugs, since most cancer cells are characterized by both a higher activity of topoisomerase I and a higher replication rate compared to non-cancerous cells. Clinically approved inhibitors include camptothecin (CPT) and its derivatives. However, their limitations have encouraged different research groups to prepare new compounds, proof of which are the numerous research works and patents, some of them in the last five years. AREAS COVERED This review covers patent literature on topoisomerase I inhibitors and their application published between 2016-present. EXPERT OPINION The highest contribution toward patent development has been obtained from academics or small biotechnology companies. The most important fields of innovation include the preparation of prodrugs or inhibitors combined with other agents, as biocompatible polymers or antibodies. A promising development of topoisomerase I inhibitors is expected in the next years, directed to the treatment of diverse diseases, specifically toward different types of cancer and infectious diseases, among others.
Collapse
Affiliation(s)
- Asier Selas
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Endika Martin-Encinas
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Fuertes
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Carme Masdeu
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Gloria Rubiales
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
20
|
Ahmed EM, Khalil NA, Zaher AF, Alhamaky SM, El-Zoghbi MS. Synthesis, molecular modeling and biological evaluation of new benzo[4,5]thieno[3,2-b]pyran derivatives as topoisomerase I-DNA binary complex poisons. Bioorg Chem 2021; 112:104915. [PMID: 33905973 DOI: 10.1016/j.bioorg.2021.104915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
A series of new benzo[b]thiophenes 2a-f and benzo[4,5]thieno[3,2-b]pyran derivatives 3a-f and 4a-f were synthesized and their structures were confirmed by elemental analyses and spectral data. All synthesized compounds were evaluated by the National Cancer Institute (NCI, USA) against 60 human tumor cell lines. Compounds 3a-f and 4a-f showed potent cytotoxic effects in one dose assay with mean growth inhibition ranging from 62% to 80%. Six compounds 3a, 3d, 3e, 3f, 4d and 4e were selected by NCI, USA for five dose evaluation against 60 human tumor cell lines. Compounds 3a, 3d, 3e and 3f exhibited very potent and broad spectrum cytotoxicity against almost all cancer cell lines with mean concentration that yield 50% growth inhibition (MG-MID GI50) of 0.1-0.58 µM and mean concentration that produce 100% growth inhibition (MG-MID TGI) of 6.03-10.00 µM. Compounds 4d and 4e exhibited very potent and selective cytotoxic activity against MDA-MB-435 subpanel (melanoma cancer) with GI50 of 0.45 µM and 0.59 µM, respectively. The mechanism of antiproliferative activity was determined for the most active compounds 3a, 3d, 3e, 3f, 4d, and 4evia measuring their half maximal inhibitory concentration (IC50) against topoisomerase I enzyme at different concentrations. Compounds 3a and 3e exhibited excellent activity compared with reference drugs with IC50 of 0.295 µM and 0.219 µM, respectively. Plasmid DNA nicking assay verified that these compounds are topoisomerase I poisons not suppressors. The active compound 3e induced a significant disruption in the cell cycle profile parallel to its effect on apoptosis induction.
Collapse
Affiliation(s)
- Eman M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Kasr El-Aini Street, 11562, Egypt
| | - Nadia A Khalil
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Kasr El-Aini Street, 11562, Egypt.
| | - Ashraf F Zaher
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Kasr El-Aini Street, 11562, Egypt
| | - Shimaa M Alhamaky
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shibin El kom, Gamal Abd El-Nasir Street, Menoufia, Egypt
| | - Mona S El-Zoghbi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shibin El kom, Gamal Abd El-Nasir Street, Menoufia, Egypt.
| |
Collapse
|
21
|
Hsueh WY, Lee YSE, Huang MS, Lai CH, Gao YS, Lin JC, Chen YF, Chang CL, Chou SY, Chen SF, Lu YY, Chang LH, Lin SF, Lin YH, Hsu PC, Wei WY, Huang YC, Kao YF, Teng LW, Liu HH, Chen YC, Yuan TT, Chan YW, Huang PH, Chao YT, Huang SY, Jian BH, Huang HY, Yang SC, Lo TH, Huang GR, Wang SY, Lin HS, Chuang SH, Huang JJ. Copper(I)-Catalyzed Nitrile-Addition/ N-Arylation Ring-Closure Cascade: Synthesis of 5,11-Dihydro-6 H-indolo[3,2- c]quinolin-6-ones as Potent Topoisomerase-I Inhibitors. J Med Chem 2021; 64:1435-1453. [PMID: 33492141 DOI: 10.1021/acs.jmedchem.0c00727] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this paper, we present a copper(I)-catalyzed nitrile-addition/N-arylation ring-closure cascade for the synthesis of 5,11-dihydro-6H-indolo[3,2-c]quinolin-6-ones from 2-(2-bromophenyl)-N-(2-cyanophenyl)acetamides. Using CuBr and t-BuONa in dimethylformamide (DMF) as the optimal reaction conditions, the cascade reaction gave the target products, in high yields, with a good substrate scope. Application of the cascade reaction was demonstrated on the concise total syntheses of alkaloid isocryptolepine. Further optimization of the products from the cascade reaction led to 3-chloro-5,12-bis[2-(dimethylamino)ethyl]-5,12-dihydro-6H-[1,3]dioxolo[4',5':5,6]indolo[3,2-c]quinolin-6-one (2k), which exhibited the characteristic DNA topoisomerase-I inhibitory mechanism of action with potent in vitro anticancer activity. Compound 2k actively inhibited ARC-111- and SN-38-resistant HCT-116 cells and showed in vivo activity in mice bearing human HCT-116 and SJCRH30 xenografts. The interaction of 2k with the Top-DNA cleavable complex was revealed by docking simulations to guide the future optimization of 5,11-dihydro-6H-indolo[3,2-c]quinolin-6-ones as topoisomerase-I inhibitors.
Collapse
Affiliation(s)
- Wen-Yun Hsueh
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Ying-Shuan E Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Min-Sian Huang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Chin-Hung Lai
- Department of Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yu-Sheng Gao
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Jo-Chu Lin
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Yu-Fen Chen
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Chih-Lin Chang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Shan-Yen Chou
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Shyh-Fong Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Yann-Yu Lu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Lien-Hsiang Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Shu Fu Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Yu-Hsiang Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Pi-Chen Hsu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Win-Yin Wei
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Ya-Chi Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Yi-Feng Kao
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Li-Wei Teng
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Hung-Huang Liu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Ying-Chou Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Ta-Tung Yuan
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Ya-Wen Chan
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Po-Hsun Huang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Yu-Ting Chao
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Shin-Yi Huang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Bo-Han Jian
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Hsin-Yi Huang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Sheng-Chuan Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Tzu-Hao Lo
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Guan-Ru Huang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Shao-Yun Wang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan
| | - Her-Sheng Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Shih-Hsien Chuang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| | - Jiann-Jyh Huang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi City 60004, Taiwan.,Development Center for Biotechnology, National Biotechnology Research Park, Taipei City 11571, Taiwan
| |
Collapse
|
22
|
Fedoseev SV, Belikov MY, Ershov OV, Tafeenko VA. Synthesis of 4-Halofuro[3,4-c]pyridin-3(1H)-ones from 2-Halopyridine-3,4-dicarbonitriles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020090067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Huang WY, Zhang XR, Lyu L, Wang SQ, Zhang XT. Pyridazino[1,6-b]quinazolinones as new anticancer scaffold: Synthesis, DNA intercalation, topoisomerase I inhibition and antitumor evaluation in vitro and in vivo. Bioorg Chem 2020; 99:103814. [PMID: 32278208 DOI: 10.1016/j.bioorg.2020.103814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/26/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
A new anticancer N-containing heterocyclic scaffold was designed and 30 pyridazino[1,6-b]quinazolinone derivatives were synthesized and characterized. Antiproliferation evaluation in vitro against four human cancer cell lines including SK-OV-3(ovarian cell), CNE-2(nasopharyngeal cell), MGC-803(gastric cell) and NCI-H460(lung cell) indicated that most of them exhibited potent anticancer activity and the IC50 value of the most potent compound lowered to sub-μM. DNA interaction assay indicated that compounds 4e, 4g, 6o, 6p, 8o can intercalate into DNA. Compounds 6 and 8 also demonstrated potent topoisomerase I (topo I) activity. Annexin V- FITC/propidium iodide dual staining assay and cell cycle analysis indicated that 2-(4-bromophenyl)-4-((3-(diethylamino)propyl)amino) -10H-pyridazino [1,6-b]quinazolin- 10-one (8p) could induce arrest cell cycle at G2 phase and apoptosis in MGC-803 cells in a dose-dependent manner. The in vivo antitumor efficiency of compound 8p was also evaluated on MGC-803 xenograft nude mice, and the relative tumor growth inhibition was up to 55.9% at a dose of 20 mg/kg per two days. The results suggested that pyridazino[1,6-b]-quinazolinones might serve as a promising novel scaffold for the development of new antitumor agents.
Collapse
Affiliation(s)
- Wan-Yun Huang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| | - Xiao-Rong Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Liang Lyu
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| | - Shu-Qin Wang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Xiao-Ting Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
24
|
Silver-catalyzed radical cascade cyclization of 1,3-diarylpropynones with 1,3-dicarbonyl compounds to access 2-dicarbonyl indenones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Xie Q, Long HJ, Zhang QY, Tang P, Deng J. Enantioselective Syntheses of 4 H-3,1-Benzoxazines via Catalytic Asymmetric Chlorocyclization of o-Vinylanilides. J Org Chem 2020; 85:1882-1893. [PMID: 31880445 DOI: 10.1021/acs.joc.9b02395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic asymmetric halocyclization of alkene is a powerful and straightforward strategy for the synthesis of chiral heterocyclic compounds. Herein, an effective approach to chiral benzoxazine derivatives through organocatalyzed chlorocyclization of o-vinylanilides was reported. This method provides facile access to a series of chiral benzoxazines in good to excellent yields (up to 99% yield) and with high-level enantiocontrol (up to 92% ee).
Collapse
Affiliation(s)
- Qinxia Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| | - Hai-Jiao Long
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| | - Qiong-Yin Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| | - Pei Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Jun Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| |
Collapse
|
26
|
Shu B, Yu Q, Hu DX, Che T, Zhang SS, Li D. Synthesis and biological evaluation of novel indole-pyrazoline hybrid derivatives as potential topoisomerase 1 inhibitors. Bioorg Med Chem Lett 2020; 30:126925. [DOI: 10.1016/j.bmcl.2019.126925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
|
27
|
The Development of Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. Combination of Monoterpene and Adamantine Moieties via Amide or Thioamide Bridges. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132767] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eleven amide and thioamide derivatives with monoterpene and adamantine substituents were synthesised. They were tested for their activity against the tyrosyl-DNA phosphodiesterase 1 DNA (Tdp1) repair enzyme with the most potent compound 47a, having an IC50 value of 0.64 M. When tested in the A-549 lung adenocarcinoma cell line, no or very limited cytotoxic effect was observed for the ligands. However, in conjunction with topotecan, a well-established Topoisomerase 1 (Top1) poison in clinical use against cancer, derivative 46a was very cytotoxic at 5 M concentration, displaying strong synergism. This effect was only seen for 46a (IC50—3.3 M) albeit some other ligands had better IC50 values. Molecular modelling into the catalytic site of Tdp1 predicted plausible binding mode of 46a, effectively blocking access to the catalytic site.
Collapse
|
28
|
Kundu B, Das SK, Paul Chowdhuri S, Pal S, Sarkar D, Ghosh A, Mukherjee A, Bhattacharya D, Das BB, Talukdar A. Discovery and Mechanistic Study of Tailor-Made Quinoline Derivatives as Topoisomerase 1 Poison with Potent Anticancer Activity. J Med Chem 2019; 62:3428-3446. [PMID: 30897325 DOI: 10.1021/acs.jmedchem.8b01938] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To overcome chemical limitations of camptothecin (CPT), we report design, synthesis, and validation of a quinoline-based novel class of topoisomerase 1 (Top1) inhibitors and establish that compound 28 ( N-(3-(1 H-imidazol-1-yl)propyl)-6-(4-methoxyphenyl)-3-(1,3,4-oxadiazol-2-yl)quinolin-4-amine) exhibits the highest potency in inhibiting human Top1 activity with an IC50 value of 29 ± 0.04 nM. Compound 28 traps Top1-DNA cleavage complexes (Top1ccs) both in the in vitro cleavage assays and in live cells. Point mutation of Top1-N722S fails to trap compound 28-induced Top1cc because of its inability to form a hydrogen bond with compound 28. Unlike CPT, compound 28 shows excellent plasma serum stability and is not a substrate of P-glycoprotein 1 (permeability glycoprotein) advancing its potential anticancer activity. Finally, we provide evidence that compound 28 overcomes the chemical instability of CPT in human breast adenocarcinoma cells through generation of persistent and less reversible Top1cc-induced DNA double-strand breaks as detected by γH2AX foci immunostaining after 5 h of drug removal.
Collapse
Affiliation(s)
- Biswajit Kundu
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India
| | - Subhendu K Das
- Laboratory of Molecular Biology, School of Biological Sciences ; Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road , Kolkata , 700032 West Bengal , India
| | - Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences ; Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road , Kolkata , 700032 West Bengal , India
| | - Sourav Pal
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India.,Academy of Scientific and Innovative Research , Kolkata 700032 , West Bengal , India
| | - Dipayan Sarkar
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India.,Academy of Scientific and Innovative Research , Kolkata 700032 , West Bengal , India
| | - Arijit Ghosh
- Laboratory of Molecular Biology, School of Biological Sciences ; Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road , Kolkata , 700032 West Bengal , India
| | - Ayan Mukherjee
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India.,Academy of Scientific and Innovative Research , Kolkata 700032 , West Bengal , India
| | - Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences ; Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road , Kolkata , 700032 West Bengal , India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India
| |
Collapse
|
29
|
Cinelli MA. Topoisomerase 1B poisons: Over a half-century of drug leads, clinical candidates, and serendipitous discoveries. Med Res Rev 2018; 39:1294-1337. [PMID: 30456874 DOI: 10.1002/med.21546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Topoisomerases are DNA processing enzymes that relieve supercoiling (torsional strain) in DNA, are necessary for normal cellular division, and act by nicking (and then religating) DNA strands. Type 1B topoisomerase (Top1) is overexpressed in certain tumors, and the enzyme has been extensively investigated as a target for cancer chemotherapy. Various chemical agents can act as "poisons" of the enzyme's religation step, leading to Top1-DNA lesions, DNA breakage, and eventual cellular death. In this review, agents that poison Top1 (and have thus been investigated for their anticancer properties) are surveyed, including natural products (such as camptothecins and indolocarbazoles), semisynthetic camptothecin and luotonin derivatives, and synthetic compounds (such as benzonaphthyridines, aromathecins, and indenoisoquinolines), as well as targeted therapies and conjugates. Top1 has also been investigated as a therapeutic target in certain viral and parasitic infections, as well as autoimmune, inflammatory, and neurological disorders, and a summary of literature describing alternative indications is also provided. This review should provide both a reference for the medicinal chemist and potentially offer clues to aid in the development of new Top1 poisons.
Collapse
Affiliation(s)
- Maris A Cinelli
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
30
|
Fedoseev SV, Belikov MY, Ershov OV, Tafeenko VA. Synthesis of 4-halo-3-(phenylamino)furo[3,4-c]pyridin-1(3H)-ones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Spontaneous formation of tricyclic lactones following the Castagnoli–Cushman reaction. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Aghekyan AA, Mkryan GG, Tsatinyan AS, Noravyan OS, Gasparyan GV. Synthesis and biological activity of 1-(aryloxy)-3-(6-chloro-4,4-dimethyl-1,2,3,4-tetrahydroisoquinolin-2-yl)propan-2-ols. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Huang CY, Kavala V, Kuo CW, Konala A, Yang TH, Yao CF. Synthesis of Biologically Active Indenoisoquinoline Derivatives via a One-Pot Copper(II)-Catalyzed Tandem Reaction. J Org Chem 2017; 82:1961-1968. [DOI: 10.1021/acs.joc.6b02814] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting-Chow Road, Taipei 116, Taiwan R.O.C
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting-Chow Road, Taipei 116, Taiwan R.O.C
| | - Chun-Wei Kuo
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting-Chow Road, Taipei 116, Taiwan R.O.C
| | - Ashok Konala
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting-Chow Road, Taipei 116, Taiwan R.O.C
| | - Tang-Hao Yang
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting-Chow Road, Taipei 116, Taiwan R.O.C
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Ting-Chow Road, Taipei 116, Taiwan R.O.C
| |
Collapse
|
34
|
Nagode SB, Chaturvedi AK, Rastogi N. Visible‐light‐catalyzed Tandem Difluoroacetylation–Intramolecular Cyclization of 1,3‐Diarylpropynones: Access to Difluoroacetylated Indenones. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201600549] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Savita B. Nagode
- Medicinal & Process Chemistry DivisionCSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| | - Atul Kumar Chaturvedi
- Medicinal & Process Chemistry DivisionCSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| | - Namrata Rastogi
- Medicinal & Process Chemistry DivisionCSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| |
Collapse
|
35
|
Synthesis of 2-(trifluoromethylthio)-indenones by silver-mediated cascade trifluoromethylthiolation/cyclization of arylpropynones. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Zhang XS, Jiao JY, Zhang XH, Hu BL, Zhang XG. Synthesis of 2-Sulfenylindenones via One-Pot Tandem Meyer–Schuster Rearrangement and Radical Cyclization of Arylpropynols with Disulfides. J Org Chem 2016; 81:5710-6. [DOI: 10.1021/acs.joc.6b00762] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xing-Song Zhang
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jun-Ying Jiao
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Hong Zhang
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bo-Lun Hu
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|