1
|
Liu Y, Liu A, Li X, Liao Q, Zhang W, Zhu L, Ye RD. Cryo-EM structure of monomeric CXCL12-bound CXCR4 in the active state. Cell Rep 2024; 43:114578. [PMID: 39093700 DOI: 10.1016/j.celrep.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CXCR4 binding of its endogenous agonist CXCL12 leads to diverse functions, including bone marrow retention of hematopoietic progenitors and cancer metastasis. However, the structure of the CXCL12-bound CXCR4 remains unresolved despite available structures of CXCR4 in complex with antagonists. Here, we present the cryoelectron microscopy (cryo-EM) structure of the CXCL12-CXCR4-Gi complex at an overall resolution of 2.65 Å. CXCL12 forms a 1:1 stoichiometry complex with CXCR4, following the two-site model. The first 8 amino acids of mature CXCL12 are crucial for CXCR4 activation by forming polar interactions with minor sub-pocket residues in the transmembrane binding pocket. The 3.2-Å distance between V3 of CXCL12 and the "toggle switch" W6.48 marks the deepest insertion among all chemokine-receptor pairs, leading to conformational changes of CXCR4 for G protein activation. These results, combined with functional assays and computational analysis, provide the structural basis for CXCR4 activation by CXCL12.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, China
| | - Xinyu Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518048, China.
| |
Collapse
|
2
|
Grudzien P, Neufeld H, Ebe Eyenga M, Gaponenko V. Development of tolerance to chemokine receptor antagonists: current paradigms and the need for further investigation. Front Immunol 2023; 14:1184014. [PMID: 37575219 PMCID: PMC10420067 DOI: 10.3389/fimmu.2023.1184014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Chemokine G-protein coupled receptors are validated drug targets for many diseases, including cancer, neurological, and inflammatory disorders. Despite much time and effort spent on therapeutic development, very few chemokine receptor antagonists are approved for clinical use. Among potential reasons for the slow progress in developing chemokine receptor inhibitors, antagonist tolerance, a progressive reduction in drug efficacy after repeated administration, is likely to play a key role. The mechanisms leading to antagonist tolerance remain poorly understood. In many cases, antagonist tolerance is accompanied by increased receptor concentration on the cell surface after prolonged exposure to chemokine receptor antagonists. This points to a possible role of altered receptor internalization and presentation on the cell surface, as has been shown for agonist (primarily opioid) tolerance. In addition, examples of antagonist tolerance in the context of other G-protein coupled receptors suggest the involvement of noncanonical signal transduction in opposing the effects of the antagonists. In this review, we summarize the available progress and challenges in therapeutic development of chemokine receptor antagonists, describe the available knowledge about antagonist tolerance, and propose new avenues for future investigation of this important phenomenon. Furthermore, we highlight the modern methodologies that have the potential to reveal novel mechanisms leading to antagonist tolerance and to propel the field forward by advancing the development of potent "tolerance-free" antagonists of chemokine receptors.
Collapse
Affiliation(s)
| | | | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Sokkar P, Harms M, Stürzel C, Gilg A, Kizilsavas G, Raasholm M, Preising N, Wagner M, Kirchhoff F, Ständker L, Weidinger G, Mayer B, Münch J, Sanchez-Garcia E. Computational modeling and experimental validation of the EPI-X4/CXCR4 complex allows rational design of small peptide antagonists. Commun Biol 2021; 4:1113. [PMID: 34552197 PMCID: PMC8458281 DOI: 10.1038/s42003-021-02638-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
EPI-X4, a 16-mer fragment of albumin, is a specific endogenous antagonist and inverse agonist of the CXC-motif-chemokine receptor 4 (CXCR4) and thus a key regulator of CXCR4 function. Accordingly, activity-optimized synthetic derivatives of EPI-X4 are promising leads for the therapy of CXCR4-linked disorders such as cancer or inflammatory diseases. We investigated the binding of EPI-X4 to CXCR4, which so far remained unclear, by means of biomolecular simulations combined with experimental mutagenesis and activity studies. We found that EPI-X4 interacts through its N-terminal residues with CXCR4 and identified its key interaction motifs, explaining receptor antagonization. Using this model, we developed shortened EPI-X4 derivatives (7-mers) with optimized receptor antagonizing properties as new leads for the development of CXCR4 inhibitors. Our work reveals the molecular details and mechanism by which the first endogenous peptide antagonist of CXCR4 interacts with its receptor and provides a foundation for the rational design of improved EPI-X4 derivatives.
Collapse
Affiliation(s)
- Pandian Sokkar
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Christina Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Andrea Gilg
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Martina Raasholm
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, 89081, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, 89081, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, 89081, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, 89081, Germany
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, 89075, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, 89081, Germany.
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Tomassi S, Trotta AM, Ieranò C, Merlino F, Messere A, Rea G, Santoro F, Brancaccio D, Carotenuto A, D'Amore VM, Di Leva FS, Novellino E, Cosconati S, Marinelli L, Scala S, Di Maro S. Disulfide Bond Replacement with 1,4‐ and 1,5‐Disubstituted [1,2,3]‐Triazole on C‐X‐C Chemokine Receptor Type 4 (CXCR4) Peptide Ligands: Small Changes that Make Big Differences. Chemistry 2020; 26:10113-10125. [DOI: 10.1002/chem.202002468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Stefano Tomassi
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Anna Maria Trotta
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Caterina Ieranò
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Francesco Merlino
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Anna Messere
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| | - Giuseppina Rea
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Federica Santoro
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Diego Brancaccio
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Alfonso Carotenuto
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Vincenzo Maria D'Amore
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Ettore Novellino
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Sandro Cosconati
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| | - Luciana Marinelli
- Department of Pharmacy University of Naples “Federico II” Via Domenico Montesano 49 80131 Naples Italy
| | - Stefania Scala
- U.O.C. “Bersagli molecolari del microambiente” Istituto Nazionale Tumori—IRCCS—Fondazione “G. Pascale” Via M. Semmola 80131 Naples Italy
| | - Salvatore Di Maro
- DiSTABiF University of Campania “Luigi Vanvitelli” Via Vivaldi 43 81100 Caserta Italy
| |
Collapse
|
5
|
Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020; 13:eaay5024. [PMID: 32665413 PMCID: PMC7437921 DOI: 10.1126/scisignal.aay5024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of their prominent roles in development, cancer, and HIV, the chemokine receptor CXCR4 and its ligand CXCL12 have been the subject of numerous structural and functional studies, but the determinants of ligand binding, selectivity, and signaling are still poorly understood. Here, building on our latest structural model, we used a systematic mutagenesis strategy to dissect the functional anatomy of the CXCR4-CXCL12 complex. Key charge swap mutagenesis experiments provided evidence for pairwise interactions between oppositely charged residues in the receptor and chemokine, confirming the accuracy of the predicted orientation of the chemokine relative to the receptor and providing insight into ligand selectivity. Progressive deletion of N-terminal residues revealed an unexpected contribution of the receptor N terminus to chemokine signaling. This finding challenges a longstanding "two-site" hypothesis about the essential features of the receptor-chemokine interaction in which the N terminus contributes only to binding affinity. Our results suggest that although the interaction of the chemokine N terminus with the receptor-binding pocket is the key driver of signaling, the signaling amplitude depends on the extent to which the receptor N terminus binds the chemokine. Together with systematic characterization of other epitopes, these data enable us to propose an experimentally consistent structural model for how CXCL12 binds CXCR4 and initiates signal transmission through the receptor transmembrane domain.
Collapse
Affiliation(s)
- Bryan S Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Mona CE, Besserer-Offroy É, Cabana J, Leduc R, Lavigne P, Heveker N, Marsault É, Escher E. Design, synthesis, and biological evaluation of CXCR4 ligands. Org Biomol Chem 2016; 14:10298-10311. [DOI: 10.1039/c6ob01484d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An amino functionalized analog of the CXCR4 ligand IT1t is of higher affinity and inverse agonistic potency on the CXCR4-CAM receptor N119S than IT1t.
Collapse
Affiliation(s)
- Christine E. Mona
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Jérôme Cabana
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Richard Leduc
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Pierre Lavigne
- Department of Biochemistry
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Nikolaus Heveker
- Department of Biochemistry and Molecular Medicine
- Centre de Recherche Hôpital Sainte-Justine
- Université de Montréal
- Montreal
- Canada
| | - Éric Marsault
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| | - Emanuel Escher
- Department of Pharmacology-Physiology
- Université de Sherbrooke
- Sherbrooke
- Canada
- Institut de Pharmacologie de Sherbrooke
| |
Collapse
|