1
|
Takarada JE, Cunha MR, Almeida VM, Vasconcelos SNS, Santiago AS, Godoi PH, Salmazo A, Ramos PZ, Fala AM, de Souza LR, Da Silva IEP, Bengtson MH, Massirer KB, Couñago RM. Discovery of pyrazolo[3,4-d]pyrimidines as novel mitogen-activated protein kinase kinase 3 (MKK3) inhibitors. Bioorg Med Chem 2024; 98:117561. [PMID: 38157838 DOI: 10.1016/j.bmc.2023.117561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
The dual-specificity protein kinase MKK3 has been implicated in tumor cell proliferation and survival, yet its precise role in cancer remains inconclusive. A critical step in elucidating the kinase's involvement in disease biology is the identification of potent, cell-permeable kinase inhibitors. Presently, MKK3 lacks a dedicated tool compound for these purposes, along with validated methods for the facile screening, identification, and optimization of inhibitors. In this study, we have developed a TR-FRET-based enzymatic assay for the detection of MKK3 activity in vitro and a BRET-based assay to assess ligand binding to this enzyme within intact human cells. These assays were instrumental in identifying hit compounds against MKK3 that share a common chemical scaffold, sourced from a library of bioactive kinase inhibitors. Initial hits were subsequently expanded through the synthesis of novel analogs. The resulting structure-activity relationship (SAR) was rationalized using molecular dynamics simulations against a homology model of MKK3. We expect our findings to expedite the development of novel, potent, selective, and bioactive inhibitors, thus facilitating investigations into MKK3's role in various cancers.
Collapse
Affiliation(s)
- Jéssica E Takarada
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Micael R Cunha
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Vitor M Almeida
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Stanley N S Vasconcelos
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - André S Santiago
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Paulo H Godoi
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Anita Salmazo
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Priscila Z Ramos
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Angela M Fala
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Lucas R de Souza
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Italo E P Da Silva
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Mario H Bengtson
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Katlin B Massirer
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Rafael M Couñago
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
2
|
Wang R. Anticancer activities, structure-activity relationship, and mechanism of action of 12-, 14-, and 16-membered macrolactones. Arch Pharm (Weinheim) 2021; 354:e2100025. [PMID: 34138486 DOI: 10.1002/ardp.202100025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer remains one of the major causes of death worldwide despite the encouraging breakthroughs in the discovery of novel chemotherapeutic agents in recent years. The development of new effective anticancer candidates still represents a challenging endeavor due to the severe anticancer demands and the emergence of drug-resistant, especially multidrug-resistant, cancers. Macrolactones could regulate multiple signaling pathways in cancer cells and demonstrated potential anticancer effects, including inhibition of proliferation, metastasis, and angiogenic activity. Accordingly, macrolactones possess excellent efficacy against both drug-sensitive and drug-resistant cancer cells, and the rational design of macrolactones may provide valuable therapeutic interventions for cancers. The purpose of this review is as follows: (1) outline the recent advances made in the development of 12-, 14-, and 16-membered macrolactones with anticancer potential; (2) summarize the structure-activity relationship; and (3) discuss their anticancer mechanisms.
Collapse
Affiliation(s)
- Ruo Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Kim Y, Sengupta S, Sim T. Natural and Synthetic Lactones Possessing Antitumor Activities. Int J Mol Sci 2021; 22:ijms22031052. [PMID: 33494352 PMCID: PMC7865919 DOI: 10.3390/ijms22031052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer is one of the leading causes of death globally, accounting for an estimated 8 million deaths each year. As a result, there have been urgent unmet medical needs to discover novel oncology drugs. Natural and synthetic lactones have a broad spectrum of biological uses including anti-tumor, anti-helminthic, anti-microbial, and anti-inflammatory activities. Particularly, several natural and synthetic lactones have emerged as anti-cancer agents over the past decades. In this review, we address natural and synthetic lactones focusing on their anti-tumor activities and synthetic routes. Moreover, we aim to highlight our journey towards chemical modification and biological evaluation of a resorcylic acid lactone, L-783277 (4). We anticipate that utilization of the natural and synthetic lactones as novel scaffolds would benefit the process of oncology drug discovery campaigns based on natural products.
Collapse
Affiliation(s)
- Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Sandip Sengupta
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2228-0797
| |
Collapse
|
4
|
Han Y, Sengupta S, Lee BJ, Cho H, Kim J, Choi HG, Dash U, Kim JH, Kim ND, Kim JH, Sim T. Identification of a Unique Resorcylic Acid Lactone Derivative That Targets Both Lymphangiogenesis and Angiogenesis. J Med Chem 2019; 62:9141-9160. [PMID: 31513411 DOI: 10.1021/acs.jmedchem.9b01025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We synthesized 11 novel L-783277 derivatives, in which a structure rigidifying phenyl ring is incorporated into the 14-membered chiral resorcylic acid lactone system. The SAR study with these substances demonstrated that 17 possesses excellent kinase selectivity against a panel of 335 kinases in contrast to L-783277 and inhibits VEGFR3, VEGFR2, and FLT3 with single-digit nanomolar IC50 values. Also, we found that 21, a stereoisomer of 17, has excellent potency (IC50 = 9 nM) against VEGFR3 and selectivity over VEGFR2 and FLT3. 17, a potent dual VEGFR3 and VEGFR2 inhibitor, effectively suppresses both lymphangiogenesis and angiogenesis in a 3D-microfluidic tumor lymphangiogenesis assay and in vivo corneal assay while SAR131675 blocks only lymphangiogenesis. In addition, 17 blocks the endothelial tube formation and suppresses proliferation of PHE tumor vascular model. 17 will be a valuable templatefor developing therapeutically active and selective substances that target both lymphangiogenesis and angiogenesis.
Collapse
Affiliation(s)
- Youngsun Han
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Sandip Sengupta
- Chemical Kinomics Research Center , Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Byung Joo Lee
- Fight Against Angiogenesis-Related Blindness Laboratory, Clinical Research Institute , Seoul National University Hospital , 101 Daehak-ro, Jongno-gu , Seoul 110-744 , Republic of Korea.,Department of Biomedical Sciences, College of Medicine , Seoul National University , 103 Daehakro, Jongro-gu , Seoul 110-744 , Republic of Korea
| | - Hanna Cho
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Jiknyeo Kim
- Chemical Kinomics Research Center , Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Hwan Geun Choi
- Chemical Kinomics Research Center , Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Uttam Dash
- Chemical Kinomics Research Center , Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Jin Hyoung Kim
- Fight Against Angiogenesis-Related Blindness Laboratory, Clinical Research Institute , Seoul National University Hospital , 101 Daehak-ro, Jongno-gu , Seoul 110-744 , Republic of Korea
| | - Nam Doo Kim
- NDBio Therapeutics Inc. , 32 Songdogwahak-ro, Yeonsu-gu , Incheon 21984 , Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness Laboratory, Clinical Research Institute , Seoul National University Hospital , 101 Daehak-ro, Jongno-gu , Seoul 110-744 , Republic of Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea.,Chemical Kinomics Research Center , Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| |
Collapse
|