1
|
Yamada W, Tomoshige S, Nakamura S, Sato S, Ishikawa M. Targeted protein degradation in the mitochondrial matrix and its application to chemical control of mitochondrial morphology. Chem Sci 2024:d4sc03145h. [PMID: 39246353 PMCID: PMC11376192 DOI: 10.1039/d4sc03145h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Dysfunction of mitochondria is implicated in various diseases, including cancer and neurodegenerative disorders, but drug discovery targeting mitochondria and mitochondrial proteins has so far made limited progress. Targeted protein degradation (TPD) technologies represented by proteolysis targeting chimeras (PROTACs) are potentially applicable for this purpose, but most existing TPD approaches leverage the ubiquitin-proteasome system or lysosomes, which are absent in mitochondria, and TPD in mitochondria (mitoTPD) remains little explored. Herein, we describe the design and synthesis of a bifunctional molecule comprising TR79, an activator of the mitochondrial protease complex caseinolytic protease P (ClpP), linked to desthiobiotin. This compound successfully induced the degradation of monomeric streptavidin (mSA) and its fusion proteins localized to the mitochondrial matrix. Furthermore, in cells overexpressing mSA fused to short transmembrane protein 1 (mSA-STMP1), which enhances mitochondrial fission, our mitochondrial mSA degrader restored the mitochondrial morphology by reducing the level of mSA-STMP1. A preliminary structure-activity relationship study indicated that a longer linker length enhances the degradation activity towards mSA. These findings highlight the potential of mitoTPD as a tool for drug discovery targeting mitochondria and for research in mitochondrial biology, as well as the utility of mSA as a degradation tag for mitochondrial protein.
Collapse
Affiliation(s)
- Wakana Yamada
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Shusuke Tomoshige
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Sho Nakamura
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Shinichi Sato
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki Aza-Aoba, Aoba-ku Sendai-shi Miyagi 980-8578 Japan
| | - Minoru Ishikawa
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| |
Collapse
|
2
|
Lawer A, Schulz L, Sawyer R, Liu X. Harmony of Protein Tags and Chimeric Molecules Empowers Targeted Protein Ubiquitination and Beyond. Cells 2024; 13:426. [PMID: 38474390 PMCID: PMC10930881 DOI: 10.3390/cells13050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Post-translational modifications (PTMs) are crucial mechanisms that underlie the intricacies of biological systems and disease mechanisms. This review focuses on the latest advancements in the design of heterobifunctional small molecules that hijack PTM machineries for target-specific modifications in living systems. A key innovation in this field is the development of proteolysis-targeting chimeras (PROTACs), which promote the ubiquitination of target proteins for proteasomal degradation. The past decade has seen several adaptations of the PROTAC concept to facilitate targeted (de)phosphorylation and acetylation. Protein fusion tags have been particularly vital in these proof-of-concept studies, aiding in the investigation of the functional roles of post-translationally modified proteins linked to diseases. This overview delves into protein-tagging strategies that enable the targeted modulation of ubiquitination, phosphorylation, and acetylation, emphasizing the synergies and challenges of integrating heterobifunctional molecules with protein tags in PTM research. Despite significant progress, many PTMs remain to be explored, and protein tag-assisted PTM-inducing chimeras will continue to play an important role in understanding the fundamental roles of protein PTMs and in exploring the therapeutic potential of manipulating protein modifications, particularly for targets not yet addressed by existing drugs.
Collapse
Affiliation(s)
- Aggie Lawer
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - Luke Schulz
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Renata Sawyer
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - Xuyu Liu
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| |
Collapse
|
3
|
Sincere NI, Anand K, Ashique S, Yang J, You C. PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies. Molecules 2023; 28:molecules28104014. [PMID: 37241755 DOI: 10.3390/molecules28104014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A potential therapeutic strategy to treat conditions brought on by the aberrant production of a disease-causing protein is emerging for targeted protein breakdown using the PROTACs technology. Few medications now in use are tiny, component-based and utilize occupancy-driven pharmacology (MOA), which inhibits protein function for a short period of time to temporarily alter it. By utilizing an event-driven MOA, the proteolysis-targeting chimeras (PROTACs) technology introduces a revolutionary tactic. Small-molecule-based heterobifunctional PROTACs hijack the ubiquitin-proteasome system to trigger the degradation of the target protein. The main challenge PROTAC's development facing now is to find potent, tissue- and cell-specific PROTAC compounds with favorable drug-likeness and standard safety measures. The ways to increase the efficacy and selectivity of PROTACs are the main focus of this review. In this review, we have highlighted the most important discoveries related to the degradation of proteins by PROTACs, new targeted approaches to boost proteolysis' effectiveness and development, and promising future directions in medicine.
Collapse
Affiliation(s)
- Nuwayo Ishimwe Sincere
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, India
| | - Jing Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Naito M. Targeted Protein Degradation and Drug Discovery. J Biochem 2022; 172:61-69. [PMID: 35468190 DOI: 10.1093/jb/mvac041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022] Open
Abstract
Targeted protein degradation attracts attention as a novel modality for drug discovery as well as for basic research. Various types of degrader molecules have been developed so far, which include PROTACs and SNIPERs, E3 modulators, hydrophobic tagging molecules, IAP antagonists, and deubiquitylase inhibitors. PROTACs and SNIPERs are chimeric degrader molecules consisting of a target ligand linked to another ligand that binds to an E3 ubiquitin ligase. In the cells, they recruit an E3 ligase to the target protein, thereby inducing ubiquitylation and proteasomal degradation of the target protein. Because of their modular structure, novel PROTACs and SNIPERs targeting proteins of your interest can be rationally developed by substituting target ligands. In this article, various compounds capable of inducing protein degradation were overviewed, including SNIPER compounds developed in our laboratory.
Collapse
Affiliation(s)
- Mikihiko Naito
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
5
|
Grohmann C, Magtoto CM, Walker JR, Chua NK, Gabrielyan A, Hall M, Cobbold SA, Mieruszynski S, Brzozowski M, Simpson DS, Dong H, Dorizzi B, Jacobsen AV, Morrish E, Silke N, Murphy JM, Heath JK, Testa A, Maniaci C, Ciulli A, Lessene G, Silke J, Feltham R. Development of NanoLuc-targeting protein degraders and a universal reporter system to benchmark tag-targeted degradation platforms. Nat Commun 2022; 13:2073. [PMID: 35440107 PMCID: PMC9019100 DOI: 10.1038/s41467-022-29670-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/25/2022] [Indexed: 11/22/2022] Open
Abstract
Modulation of protein abundance using tag-Targeted Protein Degrader (tTPD) systems targeting FKBP12F36V (dTAGs) or HaloTag7 (HaloPROTACs) are powerful approaches for preclinical target validation. Interchanging tags and tag-targeting degraders is important to achieve efficient substrate degradation, yet limited degrader/tag pairs are available and side-by-side comparisons have not been performed. To expand the tTPD repertoire we developed catalytic NanoLuc-targeting PROTACs (NanoTACs) to hijack the CRL4CRBN complex and degrade NanoLuc tagged substrates, enabling rapid luminescence-based degradation screening. To benchmark NanoTACs against existing tTPD systems we use an interchangeable reporter system to comparatively test optimal degrader/tag pairs. Overall, we find the dTAG system exhibits superior degradation. To align tag-induced degradation with physiology we demonstrate that NanoTACs limit MLKL-driven necroptosis. In this work we extend the tTPD platform to include NanoTACs adding flexibility to tTPD studies, and benchmark each tTPD system to highlight the importance of comparing each system against each substrate. tag-Targeted Protein Degrader (tTPD) systems are powerful tools for preclinical target validation. Here the authors extend the tTPD platform by developing NanoTACs that degrade NanoLuc tagged substrates and benchmark each tTPD system using an interchangeable tag reporter system.
Collapse
Affiliation(s)
- Christoph Grohmann
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Charlene M Magtoto
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joel R Walker
- Promega Biosciences LLC, 277 Granada Drive, San Luis Obispo, CA, 93401, USA
| | - Ngee Kiat Chua
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Anna Gabrielyan
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mary Hall
- Promega Biosciences LLC, 277 Granada Drive, San Luis Obispo, CA, 93401, USA
| | - Simon A Cobbold
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Stephen Mieruszynski
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Martin Brzozowski
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Hao Dong
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Bridget Dorizzi
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Annette V Jacobsen
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Emma Morrish
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Natasha Silke
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joan K Heath
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrea Testa
- Amphista Therapeutics Ltd, Bo'Ness Road Newhouse, Glasgow, ML1 5UH, UK
| | - Chiara Maniaci
- Chemistry School of Natural and Environmental Sciences, Bedson Building, Newcastle University Edwards Walk, Newcastle, NE1 8QB, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - John Silke
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
6
|
Tomoshige S, Ishikawa M. In vivo synthetic chemistry of proteolysis targeting chimeras (PROTACs). Bioorg Med Chem 2021; 41:116221. [PMID: 34034148 DOI: 10.1016/j.bmc.2021.116221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
Chemical knockdown of therapeutic targets using proteolysis targeting chimeras (PROTACs) is a rapidly developing field in drug discovery, but PROTACs are bifunctional molecules that generally show poor bioavailability due to their relatively high molecular weight. Recent developments aimed at the development of next-generation PROTACs include the in vivo synthesis of PROTAC molecules, and the exploitation of PROTACs as chemical tools for in vivo synthesis of ubiquitinated proteins. This short review covers recent advances in these areas and discusses the prospects for in vivo synthetic PROTAC technology.
Collapse
Affiliation(s)
- Shusuke Tomoshige
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Minoru Ishikawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
7
|
Liang Y, Nandakumar KS, Cheng K. Design and pharmaceutical applications of proteolysis-targeting chimeric molecules. Biochem Pharmacol 2020; 182:114211. [DOI: 10.1016/j.bcp.2020.114211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
|
8
|
Selective Degradation of Target Proteins by Chimeric Small-Molecular Drugs, PROTACs and SNIPERs. Pharmaceuticals (Basel) 2020; 13:ph13040074. [PMID: 32326273 PMCID: PMC7243126 DOI: 10.3390/ph13040074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/16/2022] Open
Abstract
New therapeutic modalities are needed to address the problem of pathological but undruggable proteins. One possible approach is the induction of protein degradation by chimeric drugs composed of a ubiquitin ligase (E3) ligand coupled to a ligand for the target protein. This article reviews chimeric drugs that decrease the level of specific proteins such as proteolysis targeting chimeric molecules (PROTACs) and specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs), which target proteins for proteasome-mediated degradation. We cover strategies for increasing the degradation activity induced by small molecules, and their scope for application to undruggable proteins.
Collapse
|
9
|
Itoh Y. Drug Discovery Researches on Modulators of Lysine-Modifying Enzymes Based on Strategic Chemistry Approaches. Chem Pharm Bull (Tokyo) 2020; 68:34-45. [DOI: 10.1248/cpb.c19-00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
10
|
Dai Y, Yue N, Gong J, Liu C, Li Q, Zhou J, Huang W, Qian H. Development of cell-permeable peptide-based PROTACs targeting estrogen receptor α. Eur J Med Chem 2019; 187:111967. [PMID: 31865016 DOI: 10.1016/j.ejmech.2019.111967] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/27/2023]
Abstract
Proteolysis-targeting chimera (PROTAC) could selectively degrade target protein and may become a promising strategy for treating estrogen receptor α (ERα) positive breast cancers. Here, we designed penetrated peptide-based PROTACs by constructing an N-terminal lactam cyclic to improve proteolytic stability and cell penetration. We used a lactam cyclic peptide as ERα binding ligand, 6-aminocaproic acid as a linker, and a hydroxylated pentapeptide structure for recruiting E3 ligase to obtain heterobifunctional compounds. The resulting optimized compound I-6 selectively recruited ERα to the E3 ligase complex for promoting the degradation of ERα. Compound I-6 possessed strong effect on MCF-7 cell toxicity (IC50 ∼9.7 μM) and significantly enhanced activities in inducing ERα degradation. Meanwhile, I-6 performed much stronger potency in inhibition of tumors growth than tamoxifen. This work is a successful template to construct PROTACs based on cell-permeable peptides, which could extend the chemical space of PROTACs.
Collapse
Affiliation(s)
- Yuxuan Dai
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, PR China
| | - Na Yue
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Junni Gong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Chunxia Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Qifei Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jiaqi Zhou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
11
|
Naito M, Ohoka N, Shibata N, Tsukumo Y. Targeted Protein Degradation by Chimeric Small Molecules, PROTACs and SNIPERs. Front Chem 2019; 7:849. [PMID: 31921772 PMCID: PMC6914816 DOI: 10.3389/fchem.2019.00849] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
Technologies that induce targeted protein degradation by small molecules have been developed recently. Chimeric small molecules such as Proteolysis Targeting Chimeras (PROTACs) and Specific and Non-genetic IAP-dependent Protein Erasers (SNIPERs), and E3 modulators such as thalidomides, hijack the cellular machinery for ubiquitylation, and the ubiquitylated proteins are subjected to proteasomal degradation. This has motivated drug development in industry and academia because "undruggable targets" can now be degraded by targeted protein degradation.
Collapse
Affiliation(s)
- Mikihiko Naito
- Laboratory Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Nobumichi Ohoka
- Laboratory Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Norihito Shibata
- Laboratory Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshinori Tsukumo
- Laboratory Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
12
|
Yamashita H, Tomoshige S, Nomura S, Ohgane K, Hashimoto Y, Ishikawa M. Application of protein knockdown strategy targeting β-sheet structure to multiple disease-associated polyglutamine proteins. Bioorg Med Chem 2019; 28:115175. [PMID: 31767406 DOI: 10.1016/j.bmc.2019.115175] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
Polyglutamine diseases are a class of neurodegenerative diseases associated with the accumulation of aggregated mutant proteins. We previously developed a class of degradation-inducing agents targeting the β-sheet-rich structure typical of such aggregates, and we showed that these agents dose-, time-, and proteasome-dependently decrease the intracellular level of mutant huntingtin with an extended polyglutamine tract, which correlates well with the severity of Huntington's disease. Here, we demonstrate that the same agents also deplete other polyglutamine disease-related proteins: mutant ataxin-3 and ataxin-7 in cells from spino-cerebellar ataxia patients, and mutant atrophin-1 in cells from dentatorubral-pallidoluysian atrophy patients. Targeting cross-β-sheet structure could be an effective design strategy to develop therapeutic agents for multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Hiroko Yamashita
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-032, Japan
| | - Shusuke Tomoshige
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-032, Japan
| | - Sayaka Nomura
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-032, Japan
| | - Kenji Ohgane
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-032, Japan
| | - Yuichi Hashimoto
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-032, Japan
| | - Minoru Ishikawa
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-032, Japan; Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
13
|
Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol 2019; 50:111-119. [PMID: 31004963 DOI: 10.1016/j.cbpa.2019.02.022] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/26/2022]
Abstract
Targeted protein degradation using Proteolysis Targeting Chimeras (PROTACs) has emerged as a novel therapeutic modality in drug discovery. PROTACs mediate the degradation of select proteins of interest (POIs) by hijacking the activity of E3 ubiquitin ligases for POI ubiquitination and subsequent degradation by the 26S proteasome. This hijacking mechanism has been used to degrade various types of disease-relevant POIs. In this review, we aim to highlight the recent advances in targeted protein degradation and describe the challenges that need to be addressed in order to efficiently develop potent PROTACs.
Collapse
|
14
|
Pettersson M, Crews CM. PROteolysis TArgeting Chimeras (PROTACs) - Past, present and future. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 31:15-27. [PMID: 31200855 DOI: 10.1016/j.ddtec.2019.01.002] [Citation(s) in RCA: 451] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 01/03/2023]
Abstract
The majority of currently used therapeutics are small molecule-based and utilize occupancy-driven pharmacology as the mode of action (MOA), in which the protein function is modulated via temporary inhibition. New modalities that operate using alternative MOAs are essential for tapping into the "undruggable" proteome. The PROteolysis Targeting Chimera (PROTAC) technology provides an attractive new approach that utilizes an event-driven MOA. Small molecule-based heterobifunctional PROTACs modulate protein target levels by hijacking the ubiquitin-proteasome system to induce degradation of the target. Here, we address important milestones in the development of the PROTAC technology, as well as emphasize key findings from this previous year and highlight future directions of this promising drug discovery modality.
Collapse
Affiliation(s)
- Mariell Pettersson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
15
|
Naito M, Ohoka N, Shibata N. SNIPERs-Hijacking IAP activity to induce protein degradation. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 31:35-42. [PMID: 31200857 DOI: 10.1016/j.ddtec.2018.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
The induction of protein degradation by chimeric small molecules represented by proteolysis-targeting chimeras (PROTACs) is an emerging approach for novel drug development. We have developed a series of chimeric molecules termed specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to effect targeted degradation. Unlike the chimeric molecules that recruit von Hippel-Lindau and cereblon ubiquitin ligases, SNIPERs induce simultaneous degradation of IAPs such as cIAP1 and XIAP along with the target proteins. Because cancer cells often overexpress IAPs-a mechanism involved in the resistance to cancer therapy-SNIPERs could be used to kill cancer cells efficiently.
Collapse
Affiliation(s)
- Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan.
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norihito Shibata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| |
Collapse
|
16
|
Yesbolatova A, Tominari Y, Kanemaki MT. Ligand-induced genetic degradation as a tool for target validation. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 31:91-98. [PMID: 31200864 DOI: 10.1016/j.ddtec.2018.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/02/2023]
Abstract
Targeted protein degraders, known as proteolysis targeting chimeras (PROTACs), are drawing more attention as next-generation drugs to target currently undruggable proteins. As drug discovery of functional degraders involves time- and cost-consuming laborious processes, we propose employing a ligand-induced genetic degradation system to validate candidate proteins before degrader development. Genetic degradation mimics degrader treatment by depleting a degron-fused protein in the presence of a defined ligand. All genetic systems use a combination of a degron and defined ligand that enables a protein of interest fused with the degron to be recruited to an E3 ubiquitin ligase for ubiquitylation and subsequent degradation by the proteasome. However, these events are based on different principles and have different features. We review the dTAG, HaloTag-based, auxin-inducible degron (AID), and destabilizing domain (DD) systems and discuss a strategy for degrader discovery against novel target proteins.
Collapse
Affiliation(s)
- Aisha Yesbolatova
- National Institute of Genetics, Research Organization of Information and Systems (ROIS), and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yusuke Tominari
- FIMECS, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Masato T Kanemaki
- National Institute of Genetics, Research Organization of Information and Systems (ROIS), and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
17
|
Burslem GM, Song J, Chen X, Hines J, Crews CM. Enhancing Antiproliferative Activity and Selectivity of a FLT-3 Inhibitor by Proteolysis Targeting Chimera Conversion. J Am Chem Soc 2018; 140:16428-16432. [DOI: 10.1021/jacs.8b10320] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- George M. Burslem
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Jayoung Song
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Xin Chen
- Arvinas Inc., New Haven, Connecticut 06511, United States
| | - John Hines
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
- Departments of Chemistry and Pharmacology, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
18
|
An S, Fu L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine 2018; 36:553-562. [PMID: 30224312 PMCID: PMC6197674 DOI: 10.1016/j.ebiom.2018.09.005] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022] Open
Abstract
There are several challenges towards the development and clinical use of small molecule inhibitors, which are currently the main type of targeted therapies towards intracellular proteins. PROteolysis-TArgeting Chimeras (PROTACs) exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins. Recently, small-molecule PROTACs with high potency have been frequently reported. In this review, we summarize the emerging characteristics of small-molecule PROTACs, such as inducing a rapid, profound and sustained degradation, inducing a robust inhibition of downstream signals, displaying enhanced target selectivity, and overcoming resistance to small molecule inhibitors. In tumor xenografts, small-molecule PROTACs can significantly attenuate tumor progression. In addition, we also introduce recent developments of the PROTAC technology such as homo-PROTACs. The outstanding advantages over traditional small-molecule drugs and the promising preclinical data suggest that small-molecule PROTAC technology has the potential to greatly promote the development of targeted therapy drugs.
Collapse
Affiliation(s)
- Sainan An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| |
Collapse
|
19
|
Degradation of huntingtin mediated by a hybrid molecule composed of IAP antagonist linked to phenyldiazenyl benzothiazole derivative. Bioorg Med Chem Lett 2018; 28:707-710. [PMID: 29366651 DOI: 10.1016/j.bmcl.2018.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/06/2018] [Accepted: 01/11/2018] [Indexed: 01/28/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by aggregation of mutant huntingtin (mHtt), and removal of mHtt is expected as a potential therapeutic option. We previously reported protein knockdown of Htt by using hybrid small molecules (Htt degraders) consisting of BE04, a ligand of ubiquitin ligase (E3), linked to probes for protein aggregates. Here, in order to examine the effect of changing the ligand, we synthesized a similar Htt degrader utilizing MV1, an antagonist of the inhibitor of apoptosis protein (IAP) family (a subgroup of ubiquitin E3 ligases), which is expected to have a higher affinity and specificity for IAP, as compared with BE04. The MV1-based hybrid successfully induced interaction between Htt aggregates and IAP, and reduced mHtt levels in living cells. Its mode of action was confirmed to be the same as that of the BE04-based hybrid. However, although the affinity of MV1 for IAP is greater than that of BE04, the efficacy of Htt degradation by the MV1-based molecule was lower, suggesting that linker length between the ligand and probe might be an important determinant of efficacy.
Collapse
|
20
|
|
21
|
Affiliation(s)
- George M. Burslem
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
22
|
Simple and efficient knockdown of His-tagged proteins by ternary molecules consisting of a His-tag ligand, a ubiquitin ligase ligand, and a cell-penetrating peptide. Bioorg Med Chem Lett 2017; 27:4478-4481. [PMID: 28807436 DOI: 10.1016/j.bmcl.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 11/22/2022]
Abstract
We designed and synthesized hybrid molecules for a protein knockdown method based on the recognition of a His-tag fused to a protein of interest (POI). The synthesized target protein degradation inducers contained three functional moieties: a His-tag ligand (nickel nitrilotriacetic acid [Ni-NTA]), an E3 ligand (bestatin [BS] or MV1), and a carrier peptide (Tat or nonaarginine [R9]). The designed hybrid molecules, BS-Tat-Ni-NTA, MV1-Tat-Ni-NTA, BS-R9-Ni-NTA, and MV1-R9-Ni-NTA, efficiently degraded His-tagged cellular retinoic acid binding protein 2 via the ubiquitin-proteasome system (UPS). This system will become a useful tool for research into selective protein degradation inducers that act via the UPS.
Collapse
|
23
|
Development of an ON/OFF switchable fluorescent probe targeting His tag fused proteins in living cells. Bioorg Med Chem Lett 2017. [DOI: 10.1016/j.bmcl.2017.05.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|