1
|
Butler MS, Vollmer W, Goodall ECA, Capon RJ, Henderson IR, Blaskovich MAT. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect Dis 2024; 10:3440-3474. [PMID: 39018341 PMCID: PMC11474978 DOI: 10.1021/acsinfecdis.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
There is a lack of new antibiotics to combat drug-resistant bacterial infections that increasingly threaten global health. The current pipeline of clinical-stage antimicrobials is primarily populated by "new and improved" versions of existing antibiotic classes, supplemented by several novel chemical scaffolds that act on traditional targets. The lack of fresh chemotypes acting on previously unexploited targets (the "holy grail" for new antimicrobials due to their scarcity) is particularly unfortunate as these offer the greatest opportunity for innovative breakthroughs to overcome existing resistance. In recognition of their potential, this review focuses on this subset of high value antibiotics, providing chemical structures where available. This review focuses on candidates that have progressed to clinical trials, as well as selected examples of promising pioneering approaches in advanced stages of development, in order to stimulate additional research aimed at combating drug-resistant infections.
Collapse
Affiliation(s)
- Mark S. Butler
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Waldemar Vollmer
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Emily C. A. Goodall
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Ian R. Henderson
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
2
|
Chen X, Mu X, Ding L, Wang X, Mao F, Wei J, Liu Q, Xu Y, Ni S, Jia L, Li J. Trilogy of drug repurposing for developing cancer and chemotherapy-induced heart failure co-therapy agent. Acta Pharm Sin B 2024; 14:729-750. [PMID: 38322326 PMCID: PMC10840436 DOI: 10.1016/j.apsb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 02/08/2024] Open
Abstract
Chemotherapy-induced complications, particularly lethal cardiovascular diseases, pose significant challenges for cancer survivors. The intertwined adverse effects, brought by cancer and its complication, further complicate anticancer therapy and lead to diminished clinical outcomes. Simple supplementation of cardioprotective agents falls short in addressing these challenges. Developing bi-functional co-therapy agents provided another potential solution to consolidate the chemotherapy and reduce cardiac events simultaneously. Drug repurposing was naturally endowed with co-therapeutic potential of two indications, implying a unique chance in the development of bi-functional agents. Herein, we further proposed a novel "trilogy of drug repurposing" strategy that comprises function-based, target-focused, and scaffold-driven repurposing approaches, aiming to systematically elucidate the advantages of repurposed drugs in rationally developing bi-functional agent. Through function-based repurposing, a cardioprotective agent, carvedilol (CAR), was identified as a potential neddylation inhibitor to suppress lung cancer growth. Employing target-focused SAR studies and scaffold-driven drug design, we synthesized 44 CAR derivatives to achieve a balance between anticancer and cardioprotection. Remarkably, optimal derivative 43 displayed promising bi-functional effects, especially in various self-established heart failure mice models with and without tumor-bearing. Collectively, the present study validated the practicability of the "trilogy of drug repurposing" strategy in the development of bi-functional co-therapy agents.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xianggang Mu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lele Ding
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xi Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Liu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Li M, Jin Y, Chen Y, Wu W, Jiang H. Palladium-Catalyzed Oxidative Amination of Unactivated Olefins with Primary Aliphatic Amines. J Am Chem Soc 2023; 145:9448-9453. [PMID: 37053042 DOI: 10.1021/jacs.3c02114] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Direct coupling of unactivated olefins with primary alkylamines is considered to be an efficient but unknown method for the construction of complex amines. Herein we report a catalytic intermolecular oxidative amination of unactivated olefins with primary aliphatic amines based on the combination of a palladium catalyst, a bidentate phosphine ligand, and duroquinone. A range of secondary allylic amines were obtained in good yields with excellent regio- and stereoselectivity. Mechanistic control experiments revealed that the reaction proceeds by allylic C(sp3)-H activation and nucleophilic amination. The utility of the protocol is further demonstrated with the late-stage modification and streamlined synthesis of drug molecules.
Collapse
Affiliation(s)
- Mingda Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yangbin Jin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yupeng Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Zhang Y, Dong L, Sun L, Hu X, Wang X, Nie T, Li X, Wang P, Pang P, Pang J, Lu X, Yao K, You X. ML364 exerts the broad-spectrum antivirulence effect by interfering with the bacterial quorum sensing system. Front Microbiol 2022; 13:980217. [PMID: 36619997 PMCID: PMC9813848 DOI: 10.3389/fmicb.2022.980217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Antivirulence strategy has been developed as a nontraditional therapy which would engender a lower evolutionary pressure toward the development of antimicrobial resistance. However, the majority of the antivirulence agents currently in development could not meet clinical needs due to their narrow antibacterial spectrum and limited indications. Therefore, our main purpose is to develop broad-spectrum antivirulence agents that could target on both Gram-positive and Gram-negative pathogens. We discovered ML364, a novel scaffold compound, could inhibit the productions of both pyocyanin of Pseudomonas aeruginosa and staphyloxanthin of Staphylococcus aureus. Further transcriptome sequencing and enrichment analysis showed that the quorum sensing (QS) system of pathogens was mainly disrupted by ML364 treatment. To date, autoinducer-2 (AI-2) of the QS system is the only non-species-specific signaling molecule that responsible for the cross-talk between Gram-negative and Gram-positive species. And further investigation showed that ML364 treatment could significantly inhibit the sensing of AI-2 or its nonborated form DPD signaling in Vibrio campbellii MM32 and attenuate the biofilm formation across multi-species pathogens including Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The results of molecular docking and MM/GBSA free energy prediction showed that ML364 might have higher affinity with the receptors of DPD/AI-2, when compared with DPD molecule. Finally, the in vivo study showed that ML364 could significantly improve the survival rates of systemically infected mice and attenuate bacterial loads in the organs of mice. Overall, ML364 might interfere with AI-2 quorum sensing system to exert broad-spectrum antivirulence effect both in vitro and in vivo.
Collapse
Affiliation(s)
- Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Youwen Zhang, ✉
| | - Limin Dong
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Penghe Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengbo Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Xuefu You, ✉
| |
Collapse
|
5
|
Ali SZ, Budaitis BG, Fontaine DFA, Pace AL, Garwin JA, White MC. Allylic C-H amination cross-coupling furnishes tertiary amines by electrophilic metal catalysis. Science 2022; 376:276-283. [PMID: 35420962 DOI: 10.1126/science.abn8382] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intermolecular cross-coupling of terminal olefins with secondary amines to form complex tertiary amines-a common motif in pharmaceuticals-remains a major challenge in chemical synthesis. Basic amine nucleophiles in nondirected, electrophilic metal-catalyzed aminations tend to bind to and thereby inhibit metal catalysts. We reasoned that an autoregulatory mechanism coupling the release of amine nucleophiles with catalyst turnover could enable functionalization without inhibiting metal-mediated heterolytic carbon-hydrogen cleavage. Here, we report a palladium(II)-catalyzed allylic carbon-hydrogen amination cross-coupling using this strategy, featuring 48 cyclic and acyclic secondary amines (10 pharmaceutically relevant cores) and 34 terminal olefins (bearing electrophilic functionality) to furnish 81 tertiary allylic amines, including 12 drug compounds and 10 complex drug derivatives, with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z).
Collapse
Affiliation(s)
- Siraj Z Ali
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Brenna G Budaitis
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Devon F A Fontaine
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Andria L Pace
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Jacob A Garwin
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - M Christina White
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Li X, Li J, Huang Y, Gong Q, Fu Y, Xu Y, Huang J, You H, Zhang D, Zhang D, Mao F, Zhu J, Wang H, Zhang H, Li J. The novel therapeutic strategy of vilazodone-donepezil chimeras as potent triple-target ligands for the potential treatment of Alzheimer's disease with comorbid depression. Eur J Med Chem 2021; 229:114045. [PMID: 34922191 DOI: 10.1016/j.ejmech.2021.114045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022]
Abstract
Depression is one of the most frequent comorbid psychiatric symptoms of Alzheimer's disease (AD), and no efficacious drugs have been approved specifically for this purpose thus far. Herein, we proposed a novel therapeutic strategy that merged the key pharmacophores of the antidepressant vilazodone (5-HT1A receptor partial agonist and serotonin transporter inhibitor) and the anti-AD drug donepezil (acetylcholinesterase inhibitor) together to develop a series of multi-target-directed ligands for potential therapy of the comorbidity of AD and depression. Accordingly, 55 vilazodone-donepezil chimeric derivatives were designed and synthesized, and their triple-target activities against acetylcholinesterase, 5-HT1A receptor, and serotonin transporter were systematically evaluated. Among them, compound 5 displayed strong triple-target bioactivities in vitro, low hERG potassium channel inhibition and acceptable brain distribution. Importantly, oral intake of 5 mg/kg of the compound 5 dihydrochloride significantly alleviated the depressive symptoms and ameliorated cognitive dysfunction in mouse models. In brief, these results highlight vilazodone-donepezil chimeras as a prospective therapeutic approach for the treatment of the comorbidity of AD and depression.
Collapse
Affiliation(s)
- Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jinwen Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yunyuan Huang
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yan Fu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Junyang Huang
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Haolan You
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Dong Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Dan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Huan Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, 5 Xue Ren Road, Dali, Yunnan, 671000, China; Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
7
|
Li WH, Huang K, Cai Y, Wang QW, Zhu WJ, Hou YN, Wang S, Cao S, Zhao ZY, Xie XJ, Du Y, Lee CS, Lee HC, Zhang H, Zhao YJ. Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate. eLife 2021; 10:67381. [PMID: 33944777 PMCID: PMC8143800 DOI: 10.7554/elife.67381] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/02/2021] [Indexed: 12/18/2022] Open
Abstract
SARM1 regulates axonal degeneration through its NAD-metabolizing activity and is a drug target for neurodegenerative disorders. We designed and synthesized fluorescent conjugates of styryl derivative with pyridine to serve as substrates of SARM1, which exhibited large red shifts after conversion. With the conjugates, SARM1 activation was visualized in live cells following elevation of endogenous NMN or treatment with a cell-permeant NMN-analog. In neurons, imaging documented mouse SARM1 activation preceded vincristine-induced axonal degeneration by hours. Library screening identified a derivative of nisoldipine (NSDP) as a covalent inhibitor of SARM1 that reacted with the cysteines, especially Cys311 in its ARM domain and blocked its NMN-activation, protecting axons from degeneration. The Cryo-EM structure showed that SARM1 was locked into an inactive conformation by the inhibitor, uncovering a potential neuroprotective mechanism of dihydropyridines.
Collapse
Affiliation(s)
- Wan Hua Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China.,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Ke Huang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yang Cai
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Qian Wen Wang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Wen Jie Zhu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yun Nan Hou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sujing Wang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sheng Cao
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhi Ying Zhao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xu Jie Xie
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Chi-Sing Lee
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hon Cheung Lee
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hongmin Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yong Juan Zhao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China.,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
8
|
Fang X, Tan Y, Gu L, Ackermann L, Ma W. para
‐Selective Palladium‐Catalyzed C−H Difluoroalkylation by Weak Oxazolidinone Assistance. ChemCatChem 2021. [DOI: 10.1002/cctc.202002056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Yuqiang Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universitaet Goettingen Tammannstraße 2 37077 Goettingen Germany
- German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P.R. China
| |
Collapse
|
9
|
Li R, Ling D, Tang T, Huang Z, Wang M, Ding Y, Liu T, Wei H, Xu W, Mao F, Zhu J, Li X, Jiang L, Li J. Discovery of Novel Plasmodium falciparum HDAC1 Inhibitors with Dual-Stage Antimalarial Potency and Improved Safety Based on the Clinical Anticancer Drug Candidate Quisinostat. J Med Chem 2021; 64:2254-2271. [PMID: 33541085 DOI: 10.1021/acs.jmedchem.0c02104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previously, we identified the clinical anticancer drug candidate quisinostat as a novel and potent antimalarial lead compound. To further enhance the antimalarial effect and improve safety, 31 novel spirocyclic hydroxamic acid derivatives were synthesized based on the structure of quisinostat, and their antimalarial activities and cytotoxicity were evaluated. Among them, compound 11 displayed broad potency in vitro against several multiresistant malarial parasites, especially two artemisinin-resistant clinical isolates. Moreover, 11 could eliminate both liver and erythrocytic parasites in vivo, kill all morphological erythrocytic parasites with specific potency against schizonts, and show acceptable metabolic stability and pharmacokinetic properties. Western blot analysis, PfHDAC gene knockdown, and enzymatic inhibition experiments collectively confirmed that PfHDAC1 was the target of 11. In summary, 11 is a structurally novel PfHDAC1 inhibitor with the potential to prevent and cure malaria, overcome multidrug resistance, and provide a prospective prototype for antimalarial drug research.
Collapse
Affiliation(s)
- Ruoxi Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dazheng Ling
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tongke Tang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Hanwen Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.,College of Pharmacy and Chemistry, Dali University, 5 Xue Ren Road, Dali 671000, China.,Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
10
|
Wu SC, Liu F, Zhu K, Shen JZ. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13195-13211. [PMID: 31702908 DOI: 10.1021/acs.jafc.9b05595] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increase in the incidence of antibiotic-resistant Staphylococcus aureus (S. aureus) associated infections necessitates the urgent development of novel therapeutic strategies and antibacterial drugs. Antivirulence strategy is an especially compelling alternative strategy due to its low selective pressure for the development of drug resistance in bacteria. Plants and microorganisms are not only important food and medicinal resources but also serve as sources for the discovery of natural products that target bacterial virulence factors. This review discusses the mechanisms of the major virulence factors of S. aureus, including the accessory gene regulator quorum-sensing system, bacterial biofilm formation, α-hemolysin, sortase A, and staphyloxanthin. We also provide an overview of natural products isolated from plants and microorganisms with activity against the major virulence factors of S. aureus and their adjuvant effects on existing antibiotics to overcome antibiotic-resistant S. aureus. Finally, the limitations and solutions of these antivirulence compounds are discussed, which will help in the development of novel antibacterial drugs against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Shuai-Cheng Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
- College of Veterinary Medicine , Qingdao Agricultural University , No. 700 Changcheng Road , Qingdao , Shandong 266109 , People's Republic of China
| | - Fei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Jian-Zhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|
11
|
Gatadi S, Madhavi YV, Chopra S, Nanduri S. Promising antibacterial agents against multidrug resistant Staphylococcus aureus. Bioorg Chem 2019; 92:103252. [PMID: 31518761 DOI: 10.1016/j.bioorg.2019.103252] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Rapid emergence of multidrug resistant Staphylococcus aureus infections has created a critical health menace universally. Resistance to all the available chemotherapeutics has been on rise which led to WHO to stratify Staphylococcus aureus as high tier priorty II pathogen. Hence, discovery and development of new antibacterial agents with new mode of action is crucial to address the multidrug resistant Staphylococcus aureus infections. The egressing understanding of new antibacterials on their biological target provides opportunities for new therapeutic agents. This review underlines on various aspects of drug design, structure activity relationships (SARs) and mechanism of action of various new antibacterial agents and also covers the recent reports on new antibacterial agents with potent activity against multidrug resistant Staphylococcus aureus. This review provides attention on in vitro and in vivo pharmacological activities of new antibacterial agents in the point of view of drug discovery and development.
Collapse
Affiliation(s)
- Srikanth Gatadi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
12
|
Ni S, Li B, Xu Y, Mao F, Li X, Lan L, Zhu J, Li J. Targeting virulence factors as an antimicrobial approach: Pigment inhibitors. Med Res Rev 2019; 40:293-338. [PMID: 31267561 DOI: 10.1002/med.21621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
The fascinating and dangerous colored pathogens contain unique chemically pigmented molecules, which give varied and efficient assistance as virulence factors to the crucial reproduction and growth of microbes. Therefore, multiple novel strategies and inhibitors have been developed in recent years that target virulence factor pigments. However, despite the importance and significance of this topic, it has not yet been comprehensively reviewed. Moreover, research groups around the world have made successful progress against antibacterial infections by targeting pigment production, including our serial works on the discovery of CrtN inhibitors against staphyloxanthin production in Staphylococcus aureus. On the basis of the previous achievements and recent progress of our group in this field, this article will be the first comprehensive review of pigment inhibitors against colored pathogens, especially S. aureus infections, and this article includes design strategies, representative case studies, advantages, limitations, and perspectives to guide future research.
Collapse
Affiliation(s)
- Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baoli Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Chang MY, Hsiao YT, Lai KH. mCPBA-Mediated Intramolecular Oxidative Annulation of ortho-Crotyl or Cinnamyl Arylaldehydes: Synthesis of Benzofused Five-, Six-, and Seven-Membered Oxacycles. J Org Chem 2018; 83:14110-14119. [PMID: 30351146 DOI: 10.1021/acs.joc.8b02146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
mCPBA-mediated intramolecular oxidative annulation of ortho-crotyl or cinnamyl arylaldehydes provides chroman, coumaran, isochroman, and tetrahydrobenzo[ c]oxepine under different reaction conditions. This research investigates the reaction conditions for facile and efficient transformation.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan.,Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung 807 , Taiwan
| | - Yu-Ting Hsiao
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| | - Kai-Hsiang Lai
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| |
Collapse
|
14
|
Dhanda G, Sarkar P, Samaddar S, Haldar J. Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. J Med Chem 2018; 62:3184-3205. [DOI: 10.1021/acs.jmedchem.8b01093] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sandip Samaddar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
15
|
Ni S, Li B, Chen F, Wei H, Mao F, Liu Y, Xu Y, Qiu X, Li X, Liu W, Hu L, Ling D, Wang M, Zheng X, Zhu J, Lan L, Li J. Novel Staphyloxanthin Inhibitors with Improved Potency against Multidrug Resistant Staphylococcus aureus. ACS Med Chem Lett 2018. [PMID: 29541366 DOI: 10.1021/acsmedchemlett.7b00501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diapophytoene desaturase (CrtN) is a potential novel target for intervening in the biosynthesis of the virulence factor staphyloxanthin. In this study, 38 1,4-benzodioxan-derived CrtN inhibitors were designed and synthesized to overwhelm the defects of leading compound 4a. Derivative 47 displayed superior pigment inhibitory activity, better hERG inhibitory properties and water solubility, and significantly sensitized MRSA strains to immune clearance in vitro. Notably, 47 displayed excellent efficacy against pigmented S. aureus Newman, Mu50 (vancomycin-intermediate MRSA, VISA), and NRS271 (linezolid-resistant MRSA, LRSA) comparable to that of linezolid and vancomycin in vivo.
Collapse
Affiliation(s)
- Shuaishuai Ni
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Baoli Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanwen Wei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yifu Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yixiang Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoxi Qiu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Linghao Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dazheng Ling
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Manjiong Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Guan D, Chen F, Xiong L, Tang F, Faridoon, Qiu Y, Zhang N, Gong L, Li J, Lan L, Huang W. Extra Sugar on Vancomycin: New Analogues for Combating Multidrug-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococci. J Med Chem 2018; 61:286-304. [DOI: 10.1021/acs.jmedchem.7b01345] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Dongliang Guan
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | | | - Lun Xiong
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Tang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | | | - Yunguang Qiu
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Naixia Zhang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Likun Gong
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jian Li
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lefu Lan
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Wei Huang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|