1
|
Zou Y, He Y, Tan L, Xu X, Qi C, Zhang Y. Discovery of Cytotoxic Nitric Oxide-Releasing Piperlongumine Derivatives Targeting Wnt/β-Catenin in Colon Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2024; 87:1893-1902. [PMID: 39045852 DOI: 10.1021/acs.jnatprod.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Piperlongumine (1) increases reactive oxygen species (ROS) levels and induces apoptosis in cancer cells through various pathways. Nitric oxide (NO) donors have demonstrated potent anticancer activities with exogenous NO being oxidized by ROS in the tumor microenvironment to form highly reactive N-oxides (RNOS). This amplifies oxidative stress cascade reactions, ultimately inducing cancer cell apoptosis. To exploit this synergy, a series of NO-releasing piperlongumine derivatives (2-5) were designed and synthesized. These compounds were expected to release NO in cancer cells, simultaneously generating piperlongumine derivative fragments to enhance the anticancer effects. Compound 6, structurally similar to compounds 2-5 but not releasing NO, served as a control. Among these derivatives, compound 5 exhibited the most potent antiproliferative activity against HCT-116 cells and efficiently released NO in this cell line. Further investigation revealed that compound 5 inhibited colon cancer cell proliferation by modulating β-catenin expression, which is a pivotal protein in the Wnt/β-catenin signaling pathway. These findings highlight compound 5 as a promising candidate for colon cancer treatment targeting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yu Zou
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Yuying He
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Lijuan Tan
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Xiaofei Xu
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei Province, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
2
|
Ghaffari-Bohlouli P, Jafari H, Okoro OV, Alimoradi H, Nie L, Jiang G, Kakkar A, Shavandi A. Gas Therapy: Generating, Delivery, and Biomedical Applications. SMALL METHODS 2024; 8:e2301349. [PMID: 38193272 DOI: 10.1002/smtd.202301349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Oxygen (O2), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and hydrogen (H2) with direct effects, and carbon dioxide (CO2) with complementary effects on the condition of various diseases are known as therapeutic gases. The targeted delivery and in situ generation of these therapeutic gases with controllable release at the site of disease has attracted attention to avoid the risk of gas poisoning and improve their performance in treating various diseases such as cancer therapy, cardiovascular therapy, bone tissue engineering, and wound healing. Stimuli-responsive gas-generating sources and delivery systems based on biomaterials that enable on-demand and controllable release are promising approaches for precise gas therapy. This work highlights current advances in the design and development of new approaches and systems to generate and deliver therapeutic gases at the site of disease with on-demand release behavior. The performance of the delivered gases in various biomedical applications is then discussed.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Hafez Jafari
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Houman Alimoradi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Lei Nie
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
3
|
Ye H, Wu J, Liang Z, Zhang Y, Huang Z. Protein S-Nitrosation: Biochemistry, Identification, Molecular Mechanisms, and Therapeutic Applications. J Med Chem 2022; 65:5902-5925. [PMID: 35412827 DOI: 10.1021/acs.jmedchem.1c02194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein S-nitrosation (SNO), a posttranslational modification (PTM) of cysteine (Cys) residues elicited by nitric oxide (NO), regulates a wide range of protein functions. As a crucial form of redox-based signaling by NO, SNO contributes significantly to the modulation of physiological functions, and SNO imbalance is closely linked to pathophysiological processes. Site-specific identification of the SNO protein is critical for understanding the underlying molecular mechanisms of protein function regulation. Although careful verification is needed, SNO modification data containing numerous functional proteins are a potential research direction for druggable target identification and drug discovery. Undoubtedly, SNO-related research is meaningful not only for the development of NO donor drugs but also for classic target-based drug design. Herein, we provide a comprehensive summary of SNO, including its origin and transport, identification, function, and potential contribution to drug discovery. Importantly, we propose new views to develop novel therapies based on potential protein SNO-sourced targets.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Zhuangzhuang Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
4
|
Liu S, Li G, Ma D. Controllable Nitric Oxide‐Delivering Platforms for Biomedical Applications. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shixin Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Department of Biomedical Engineering Jinan University Guangzhou 510632 China
| | - Guowei Li
- Department of Nuclear Medicine and PET/CT‐MRI Center The First Affiliated Hospital of Jinan University Guangzhou 510630 China
| | - Dong Ma
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Department of Biomedical Engineering Jinan University Guangzhou 510632 China
| |
Collapse
|
5
|
Zhou X, Zhang N, Li Y, Mo Z, Ma X, Chen Y, Xu Y. Metal-free synthesis of 3-sulfonyl-5-selanyl-4a,8a-dihydro-2H-chromen-6(5H)-ones via visible light driven intermolecular cascade cyclization of alkyne-tethered cyclohexadienones and selenosulfonates. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Wu J, Sun T, Yang C, Lv T, Bi Y, Xu Y, Ling Y, Zhao J, Cong R, Zhang Y, Wang J, Wen H, Jiang H, Li F, Huang Z. Tetrazine-mediated bioorthogonal removal of 3-isocyanopropyl groups enables the controlled release of nitric oxide in vivo. Biomater Sci 2021; 9:1816-1825. [PMID: 33458722 DOI: 10.1039/d0bm01841d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bond cleavage bioorthogonal chemistry has been widely employed to restore or activate proteins or prodrugs. Nitric oxide (NO), as a free radical molecule, has joined the clinical arena of cancer therapy, since high levels of NO could produce a cancer cell growth inhibitory effect. However, the spatiotemporal controlled release of NO remains a great challenge, and bioorthogonal chemistry may open a new window. Herein, we described a class of O2-3-isocyanopropyl diazeniumdiolates 3a-f as new bioorthogonal NO precursors, which can be effectively uncaged via tetrazine-mediated bond cleavage reactions to liberate NO and acrolein in living cancer cells, exhibiting potent antiproliferative activity. Furthermore, 3a and tetrazine BTZ were respectively encapsulated into two liposomes. It was found that simultaneous administrations of the two liposomes could specifically release large amounts of NO in the implanted cancer cells in zebrafish, thus generating potent tumor suppression activity in vivo. Our findings indicate that the TZ-labile NO precursors could serve to expand the NO-based smart therapeutics and the scope of bioorthogonal chemistry utility in vivo in the near future.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China and State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Tao Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China and State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Chenxi Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Tian Lv
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Yuyang Bi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Yuan Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong, 226001, P.R. China
| | - Jun Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China and Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China
| | - Rigang Cong
- National-certified Enterprise Technology Center, Disha Pharmaceutical Group Co., Ltd., Weihai 264205, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Jianhua Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China and Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China
| | - Hulin Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China and State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Zhangjian Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China and State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| |
Collapse
|
7
|
Yang Y, Huang Z, Li LL. Advanced nitric oxide donors: chemical structure of NO drugs, NO nanomedicines and biomedical applications. NANOSCALE 2021; 13:444-459. [PMID: 33403376 DOI: 10.1039/d0nr07484e] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO), as an endogenous diatomic molecule, plays a key regulatory role in many physiological and pathological processes. This diatomic free radical has been shown to affect different physiological and cellular functions and participates in many regulatory functions ranging from changing the cardiovascular system to regulating neuronal functions. Thus, NO gas therapy as an emerging and promising treatment method has attracted increasing attention in the treatment of various pathological diseases. As is known, the physiological and pathological regulation of NO depends mainly on its location, exposure time and released dosage. However, NO gas lacks effective accumulation and controlled long-term gas releasing capacity at specific sites, resulting in limited therapeutic efficacy and potential side effects. Thus, researchers have developed various NO donors, but eventually found that it is still difficult to control the long-term release of NO. Inspired by the self-assembly properties of nanomaterials, researchers have realized that nanomaterials can be used to support NO donors to form nanomedicine to achieve spatial and temporal controlled release of NO. In this review, according to the history of the medicinal development of NO, we first summarize the chemical design of NO donors, NO prodrugs, and NO-conjugated drugs. Then, NO nanomedicines formed by various nanomaterials and NO donors depending on nanotechnology are highlighted. Finally, the biomedical applications of NO nanomedicine with optimized properties are summarized.
Collapse
Affiliation(s)
- Yueqi Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P. R. China. and Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Li-Li Li
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.
| |
Collapse
|
8
|
Sun T, Lv T, Wu J, Zhu M, Fei Y, Zhu J, Zhang Y, Huang Z. General Strategy for Integrated Bioorthogonal Prodrugs: Pt(II)-Triggered Depropargylation Enables Controllable Drug Activation In Vivo. J Med Chem 2020; 63:13899-13912. [PMID: 33141588 DOI: 10.1021/acs.jmedchem.0c01435] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal decaging reactions for controllable drug activation within complex biological systems are highly desirable yet extremely challenging. Herein, we find a new class of Pt(II)-triggered bioorthogonal cleavage reactions in which Pt(II) but not Pt(IV) complexes effectively trigger the cleavage of O/N-propargyl in a variety of ranges of caged molecules under biocompatible conditions. Based on these findings, we propose a general strategy for integrated bioorthogonal prodrugs and accordingly design a prodrug 16, in which a Pt(IV) moiety is covalently connected with an O2-propargyl diazeniumdiolate moiety. It is found that 16 can be specifically reduced by cytoplasmic reductants in human ovarian cancer cells to liberate cisplatin, which subsequently stimulates the cleavage of O2-propargyl to release large amounts of NO in situ, thus generating synergistic and potent tumor suppression activity in vivo. Therefore, Pt(II)-triggered depropargylation and the integration concept might provide a general strategy for broad applicability of bioorthogonal cleavage chemistry in vivo.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tian Lv
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mingchao Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yue Fei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
9
|
Du J, Guo J, Kang D, Li Z, Wang G, Wu J, Zhang Z, Fang H, Hou X, Huang Z, Li G, Lu X, Liu X, Ouyang L, Rao L, Zhan P, Zhang X, Zhang Y. New techniques and strategies in drug discovery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, Tsakovska I, Zidar N, Fruttero R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat 2020; 50:100682. [PMID: 32087558 DOI: 10.1016/j.drup.2020.100682] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is the dominant cause of the failure of cancer chemotherapy. The design of antitumor drugs that are able to evade MDR is rapidly evolving, showing that this area of biomedical research attracts great interest in the scientific community. The current review explores promising recent approaches that have been developed with the aim of circumventing or overcoming MDR. Encouraging results have been obtained in the investigation of the MDR-modulating properties of various classes of natural compounds and their analogues. Inhibition of P-gp or downregulation of its expression have proven to be the main mechanisms by which MDR can be surmounted. The use of hybrid molecules that are able to simultaneously interact with two or more cancer cell targets is currently being explored as a means to circumvent drug resistance. This strategy is based on the design of hybrid compounds that are obtained either by merging the structural features of separate drugs, or by conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The approach is highly promising due to the pharmacokinetic and pharmacodynamic advantages that can be achieved over the independent administration of the two individual components. However, it should be stressed that the task of obtaining successful multivalent drugs is a very challenging one. The conjugation of anticancer agents with nitric oxide (NO) donors has recently been developed, creating a particular class of hybrid that can combat tumor drug resistance. Appropriate NO donors have been shown to reverse drug resistance via nitration of ABC transporters and by interfering with a number of metabolic enzymes and signaling pathways. In fact, hybrid compounds that are produced by covalently attaching NO-donors and antitumor drugs have been shown to elicit a synergistic cytotoxic effect in a variety of drug resistant cancer cell lines. Another strategy to circumvent MDR is based on nanocarrier-mediated transport and the controlled release of chemotherapeutic drugs and P-gp inhibitors. Their pharmacokinetics are governed by the nanoparticle or polymer carrier and make use of the enhanced permeation and retention (EPR) effect, which can increase selective delivery to cancer cells. These systems are usually internalized by cancer cells via endocytosis and accumulate in endosomes and lysosomes, thus preventing rapid efflux. Other modalities to combat MDR are described in this review, including the pharmaco-modulation of acridine, which is a well-known scaffold in the development of bioactive compounds, the use of natural compounds as means to reverse MDR, and the conjugation of anticancer drugs with carriers that target specific tumor-cell components. Finally, the outstanding potential of in silico structure-based methods as a means to evaluate the ability of antitumor drugs to interact with drug transporters is also highlighted in this review. Structure-based design methods, which utilize 3D structural data of proteins and their complexes with ligands, are the most effective of the in silico methods available, as they provide a prediction regarding the interaction between transport proteins and their substrates and inhibitors. The recently resolved X-ray structure of human P-gp can help predict the interaction sites of designed compounds, providing insight into their binding mode and directing possible rational modifications to prevent them from becoming P-gp drug substrates. In summary, although major efforts were invested in the search for new tools to combat drug resistant tumors, they all require further implementation and methodological development. Further investigation and progress in the abovementioned strategies will provide significant advances in the rational combat against cancer MDR.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Elena Gazzano
- Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Turin, Italy
| | - Miguel Machuqueiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, C8 Building, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ilza Pajeva
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Ivanka Tsakovska
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
11
|
Liu W, Zhang Y, He J, Yu Y, Yuan J, Ye X, Zhang Z, Xue L, Cao H. Transition-Metal-Free Three-Component Reaction: Additive Controlled Synthesis of Sulfonylated Imidazoles. J Org Chem 2019; 84:11348-11358. [PMID: 31379165 DOI: 10.1021/acs.joc.9b01818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two efficient transition-metal-free highly regioselective pathways for constructing sulfonylated imidazoles via three-component reactions of amidines, ynals, and sodium sulfonates have been developed. The generations of different sulfonylated imidazoles were simply controlled by additives. In addition, this method features environmental friendliness, good functional group tolerance, and high atom economy, which makes it practical.
Collapse
Affiliation(s)
- Wei Liu
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Jiaming He
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Yue Yu
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Jiajun Yuan
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Xiaoyi Ye
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Ziwu Zhang
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Liang Xue
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| |
Collapse
|
12
|
Thiruvengetam P, Chakravarthy RD, Chand DK. A molybdenum based metallomicellar catalyst for controlled and chemoselective oxidation of activated alcohols in aqueous medium. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Tsugawa H, Nakabayashi R, Mori T, Yamada Y, Takahashi M, Rai A, Sugiyama R, Yamamoto H, Nakaya T, Yamazaki M, Kooke R, Bac-Molenaar JA, Oztolan-Erol N, Keurentjes JJB, Arita M, Saito K. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat Methods 2019; 16:295-298. [PMID: 30923379 DOI: 10.1038/s41592-019-0358-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/19/2019] [Indexed: 12/24/2022]
Abstract
We report a computational approach (implemented in MS-DIAL 3.0; http://prime.psc.riken.jp/) for metabolite structure characterization using fully 13C-labeled and non-labeled plants and LC-MS/MS. Our approach facilitates carbon number determination and metabolite classification for unknown molecules. Applying our method to 31 tissues from 12 plant species, we assigned 1,092 structures and 344 formulae to 3,604 carbon-determined metabolite ions, 69 of which were found to represent structures currently not listed in metabolome databases.
Collapse
Affiliation(s)
- Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan. .,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yutaka Yamada
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Amit Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | - Taiki Nakaya
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Rik Kooke
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Nihal Oztolan-Erol
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Masanori Arita
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.,National Institute of Genetics, Mishima, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan. .,Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|
14
|
Sun F, Wang Y, Luo X, Ma Z, Xu Y, Zhang X, Lv T, Zhang Y, Wang M, Huang Z, Zhang J. Anti-CD24 Antibody-Nitric Oxide Conjugate Selectively and Potently Suppresses Hepatic Carcinoma. Cancer Res 2019; 79:3395-3405. [PMID: 30918001 DOI: 10.1158/0008-5472.can-18-2839] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/04/2019] [Accepted: 03/22/2019] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) has a wide range of potential applications in tumor therapy. However, a targeted delivery system for NO donors has remained elusive, creating a bottleneck that limits its druggability. The antibody-drug conjugate (ADC) is a targeted drug delivery system composed of an antibody linked to an active cytotoxic drug. This design may compensate for the weak targeting ability and various biological functions of the NO donor. In this study, we designed the NO donor HL-2, which had a targeted, cleaved disulfide bond and an attachable maleimide terminal. We conjugated HL-2 with an antibody that targeted CD24 through a thioether bond to generate an ADC-like immunoconjugate, antibody-nitric oxide conjugate (ANC), which we named HN-01. HN-01 showed efficient internalization and significantly increased the release of NO in hepatic carcinoma cells in vitro. HN-01 induced apoptosis of tumor cells and suppressed tumor growth in hepatic carcinoma-bearing nude mice through antibody-dependent co-toxicity; HN-01 also increased NO levels in tumor cells. Collectively, this study expands the concept of ADC and provides an innovative NO donor and ANC to address current challenges in targeted delivery of NO. This new inspiration for an ANC design can also be used in future studies for other molecules with intracellular targets. SIGNIFICANCE: This study is the first to expand the concept of ADC with an antibody-nitric oxide conjugate that suppresses hepatic carcinoma in vitro and in vivo.
Collapse
Affiliation(s)
- Fumou Sun
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Yang Wang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaojun Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Zhaoxiong Ma
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Yao Xu
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xinrong Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Tian Lv
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Min Wang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China.
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
15
|
Design, Synthesis and Biological Evaluation of Nitrate Derivatives of Sauropunol A and B as Potent Vasodilatory Agents. Molecules 2019; 24:molecules24030583. [PMID: 30736379 PMCID: PMC6384914 DOI: 10.3390/molecules24030583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
A group of nitrate derivatives of naturally occurring sauropunol A and B were designed and synthesized. Nitric oxide (NO) releasing capacity and vasodilatory capacity studies were performed to explore the structure-activity relationship of resulted nitrates. Biological evaluation of these compounds revealed that most of the synthesized mononitrate derivatives demonstrated superior releasing capacity than isosorbide mononitrate (ISMN), and 2MNS-6 even demonstrated stronger NO releasing capacity than isosorbide dinitrate (ISDN). Two dinitrates, DNS-1 and DNS-2, showed higher NO releasing capacity than ISDN. Evaluation of inhibitory activities to the contractions in mesenteric artery rings revealed that 2MNS-8 and DNS-2 showed stronger vasorelaxation activities than ISDN. High level of NO and soluble guanylyl cyclase (sGC) may be essential for the potent vasodilatory effect of DNS-2. The vasodilatory effects of DNS-2 may result from cellular signal transduction of NO-sGC-cGMP. DNS-2 was found to be the most potent sauropunol-derived nitrate vasodilatory agent for further pharmaceutical investigation against cardiovascular diseases.
Collapse
|
16
|
Wong KS, Houry WA. Recent Advances in Targeting Human Mitochondrial AAA+ Proteases to Develop Novel Cancer Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:119-142. [PMID: 31452139 DOI: 10.1007/978-981-13-8367-0_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mitochondrion is a vital organelle that performs diverse cellular functions. In this regard, the cell has evolved various mechanisms dedicated to the maintenance of the mitochondrial proteome. Among them, AAA+ ATPase-associated proteases (AAA+ proteases) such as the Lon protease (LonP1), ClpXP complex, and the membrane-bound i-AAA, m-AAA and paraplegin facilitate the clearance of misfolded mitochondrial proteins to prevent the accumulation of cytotoxic protein aggregates. Furthermore, these proteases have additional regulatory functions in multiple biological processes that include amino acid metabolism, mitochondria DNA transcription, metabolite and cofactor biosynthesis, maturation and turnover of specific respiratory and metabolic proteins, and modulation of apoptosis, among others. In cancer cells, the increase in intracellular ROS levels promotes tumorigenic phenotypes and increases the frequency of protein oxidation and misfolding, which is compensated by the increased expression of specific AAA+ proteases as part of the adaptation mechanism. The targeting of AAA+ proteases has led to the discovery and development of novel anti-cancer compounds. Here, we provide an overview of the molecular characteristics and functions of the major mitochondrial AAA+ proteases and summarize recent research efforts in the development of compounds that target these proteases.
Collapse
Affiliation(s)
- Keith S Wong
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada. .,Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Discovery of novel NO-releasing celastrol derivatives with Hsp90 inhibition and cytotoxic activities. Eur J Med Chem 2018; 160:1-8. [DOI: 10.1016/j.ejmech.2018.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
|