1
|
Kim Y, Pool E, Kim E, Dampalla CS, Nguyen HN, Johnson DK, Lovell S, Groutas WC, Chang KO. Potent small molecule inhibitors against the 3C protease of foot-and-mouth disease virus. Microbiol Spectr 2024; 12:e0337223. [PMID: 38466127 PMCID: PMC10986521 DOI: 10.1128/spectrum.03372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024] Open
Abstract
Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Emma Pool
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Eunji Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| | - David K. Johnson
- Computational Chemical Biology Core, The University of Kansas, Lawrence, Kansas, USA
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas, USA
| | | | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
2
|
Mehta NV, Degani MS. The expanding repertoire of covalent warheads for drug discovery. Drug Discov Today 2023; 28:103799. [PMID: 37839776 DOI: 10.1016/j.drudis.2023.103799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The reactive functionalities of drugs that engage in covalent interactions with the enzyme/receptor residue in either a reversible or an irreversible manner are called 'warheads'. Covalent warheads that were previously neglected because of safety concerns have recently gained center stage as a result of their various advantages over noncovalent drugs, including increased selectivity, increased residence time, and higher potency. With the approval of several covalent inhibitors over the past decade, research in this area has accelerated. Various strategies are being continuously developed to tune the characteristics of warheads to improve their potency and mitigate toxicity. Here, we review research progress in warhead discovery over the past 5 years to provide valuable insights for future drug discovery.
Collapse
Affiliation(s)
- Namrashee V Mehta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
3
|
Direct-Acting Antivirals and Host-Targeting Approaches against Enterovirus B Infections: Recent Advances. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enterovirus B (EV-B)-related diseases, which can be life threatening in high-risk populations, have been recognized as a serious health problem, but their clinical treatment is largely supportive, and no selective antivirals are available on the market. As their clinical relevance has become more serious, efforts in the field of anti-EV-B inhibitors have greatly increased and many potential antivirals with very high selectivity indexes and promising in vitro activities have been discovered. The scope of this review encompasses recent advances in the discovery of new compounds with anti-viral activity against EV-B, as well as further progress in repurposing drugs to treat these infections. Current progress and future perspectives in drug discovery against EV-Bs are briefly discussed and existing gaps are spotlighted.
Collapse
|
4
|
McAulay K, Bilsland A, Bon M. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals (Basel) 2022; 15:1366. [PMID: 36355538 PMCID: PMC9694498 DOI: 10.3390/ph15111366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 09/27/2023] Open
Abstract
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising that covalent fragment-based approaches have become popular and have recently led to the identification of novel targets and binding sites, as well as ligands for targets previously thought to be 'undruggable'. Understanding the properties of such covalent fragments is important, and characterizing and/or predicting reactivity can be highly useful. This review aims to discuss the requirements for an electrophilic fragment library and the importance of differing warhead reactivity. Successful case studies from the world of drug discovery are then be examined.
Collapse
Affiliation(s)
- Kirsten McAulay
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Centre for Targeted Protein Degradation, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Alan Bilsland
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Marta Bon
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, UK
| |
Collapse
|
5
|
Novel covalent and non-covalent complex-based pharmacophore models of SARS-CoV-2 main protease (M pro) elucidated by microsecond MD simulations. Sci Rep 2022; 12:14030. [PMID: 35982147 PMCID: PMC9386674 DOI: 10.1038/s41598-022-17204-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
As the world enters its second year of the pandemic caused by SARS-CoV-2, intense efforts have been directed to develop an effective diagnosis, prevention, and treatment strategies. One promising drug target to design COVID-19 treatments is the SARS-CoV-2 Mpro. To date, a comparative understanding of Mpro dynamic stereoelectronic interactions with either covalent or non-covalent inhibitors (depending on their interaction with a pocket called S1' or oxyanion hole) has not been still achieved. In this study, we seek to fill this knowledge gap using a cascade in silico protocol of docking, molecular dynamics simulations, and MM/PBSA in order to elucidate pharmacophore models for both types of inhibitors. After docking and MD analysis, a set of complex-based pharmacophore models was elucidated for covalent and non-covalent categories making use of the residue bonding point feature. The highest ranked models exhibited ROC-AUC values of 0.93 and 0.73, respectively for each category. Interestingly, we observed that the active site region of Mpro protein-ligand complex undergoes large conformational changes, especially within the S2 and S4 subsites. The results reported in this article may be helpful in virtual screening (VS) campaigns to guide the design and discovery of novel small-molecule therapeutic agents against SARS-CoV-2 Mpro protein.
Collapse
|
6
|
Direct couplings of secondary alcohols with primary alkenyl alcohols to α-alkylated ketones via a tandem transfer hydrogenation/hydrogen autotransfer process catalyzed by a metal-ligand bifunctional iridium catalyst. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Vázquez-Mendoza LH, Mendoza-Figueroa HL, García-Vázquez JB, Correa-Basurto J, García-Machorro J. In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking. Int J Mol Sci 2022; 23:3987. [PMID: 35409348 PMCID: PMC8999907 DOI: 10.3390/ijms23073987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The epidemic caused by the SARS-CoV-2 coronavirus, which has spread rapidly throughout the world, requires urgent and effective treatments considering that the appearance of viral variants limits the efficacy of vaccines. The main protease of SARS-CoV-2 (Mpro) is a highly conserved cysteine proteinase, fundamental for the replication of the coronavirus and with a specific cleavage mechanism that positions it as an attractive therapeutic target for the proposal of irreversible inhibitors. A structure-based strategy combining 3D pharmacophoric modeling, virtual screening, and covalent docking was employed to identify the interactions required for molecular recognition, as well as the spatial orientation of the electrophilic warhead, of various drugs, to achieve a covalent interaction with Cys145 of Mpro. The virtual screening on the structure-based pharmacophoric map of the SARS-CoV-2 Mpro in complex with an inhibitor N3 (reference compound) provided high efficiency by identifying 53 drugs (FDA and DrugBank databases) with probabilities of covalent binding, including N3 (Michael acceptor) and others with a variety of electrophilic warheads. Adding the energy contributions of affinity for non-covalent and covalent docking, 16 promising drugs were obtained. Our findings suggest that the FDA-approved drugs Vaborbactam, Cimetidine, Ixazomib, Scopolamine, and Bicalutamide, as well as the other investigational peptide-like drugs (DB04234, DB03456, DB07224, DB7252, and CMX-2043) are potential covalent inhibitors of SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Luis Heriberto Vázquez-Mendoza
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Posgrado en Farmacología de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (L.H.V.-M.); (J.C.-B.)
| | - Humberto L. Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Posgrado en Farmacología de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (L.H.V.-M.); (J.C.-B.)
| | - Juan Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Posgrado en Farmacología de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (L.H.V.-M.); (J.C.-B.)
- Cátedras CONACyT-Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Posgrado en Farmacología de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (L.H.V.-M.); (J.C.-B.)
| | - Jazmín García-Machorro
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico;
| |
Collapse
|
8
|
Wang J, Hu Y, Zheng M. Enterovirus A71 antivirals: Past, present, and future. Acta Pharm Sin B 2022; 12:1542-1566. [PMID: 35847514 PMCID: PMC9279511 DOI: 10.1016/j.apsb.2021.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a significant human pathogen, especially in children. EV-A71 infection is one of the leading causes of hand, foot, and mouth diseases (HFMD), and can lead to neurological complications such as acute flaccid myelitis (AFM) in severe cases. Although three EV-A71 vaccines are available in China, they are not broadly protective and have reduced efficacy against emerging strains. There is currently no approved antiviral for EV-A71. Significant progress has been made in developing antivirals against EV-A71 by targeting both viral proteins and host factors. However, viral capsid inhibitors and protease inhibitors failed in clinical trials of human rhinovirus infection due to limited efficacy or side effects. This review discusses major discoveries in EV-A71 antiviral development, analyzes the advantages and limitations of each drug target, and highlights the knowledge gaps that need to be addressed to advance the field forward.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
9
|
Fragment-to-lead tailored in silico design. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 40:44-57. [PMID: 34916022 DOI: 10.1016/j.ddtec.2021.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/25/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Fragment-based drug discovery (FBDD) emerged as a disruptive technology and became established during the last two decades. Its rationality and low entry costs make it appealing, and the numerous examples of approved drugs discovered through FBDD validate the approach. However, FBDD still faces numerous challenges. Perhaps the most important one is the transformation of the initial fragment hits into viable leads. Fragment-to-lead (F2L) optimization is resource-intensive and is therefore limited in the possibilities that can be actively pursued. In silico strategies play an important role in F2L, as they can perform a deeper exploration of chemical space, prioritize molecules with high probabilities of being active and generate non-obvious ideas. Here we provide a critical overview of current in silico strategies in F2L optimization and highlight their remarkable impact. While very effective, most solutions are target- or fragment- specific. We propose that fully integrated in silico strategies, capable of automatically and systematically exploring the fast-growing available chemical space can have a significant impact on accelerating the release of fragment originated drugs.
Collapse
|
10
|
Gao M, Moumbock AFA, Qaseem A, Xu Q, Günther S. CovPDB: a high-resolution coverage of the covalent protein-ligand interactome. Nucleic Acids Res 2021; 50:D445-D450. [PMID: 34581813 PMCID: PMC8728183 DOI: 10.1093/nar/gkab868] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 01/14/2023] Open
Abstract
In recent years, the drug discovery paradigm has shifted toward compounds that covalently modify disease-associated target proteins, because they tend to possess high potency, selectivity, and duration of action. The rational design of novel targeted covalent inhibitors (TCIs) typically starts from resolved macromolecular structures of target proteins in their apo or holo forms. However, the existing TCI databases contain only a paucity of covalent protein–ligand (cP–L) complexes. Herein, we report CovPDB, the first database solely dedicated to high-resolution cocrystal structures of biologically relevant cP–L complexes, curated from the Protein Data Bank. For these curated complexes, the chemical structures and warheads of pre-reactive electrophilic ligands as well as the covalent bonding mechanisms to their target proteins were expertly manually annotated. Totally, CovPDB contains 733 proteins and 1,501 ligands, relating to 2,294 cP–L complexes, 93 reactive warheads, 14 targetable residues, and 21 covalent mechanisms. Users are provided with an intuitive and interactive web interface that allows multiple search and browsing options to explore the covalent interactome at a molecular level in order to develop novel TCIs. CovPDB is freely accessible at http://www.pharmbioinf.uni-freiburg.de/covpdb/ and its contents are available for download as flat files of various formats.
Collapse
Affiliation(s)
- Mingjie Gao
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Aurélien F A Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Ammar Qaseem
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Qianqing Xu
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| |
Collapse
|
11
|
Lu W, Kostic M, Zhang T, Che J, Patricelli MP, Jones LH, Chouchani ET, Gray NS. Fragment-based covalent ligand discovery. RSC Chem Biol 2021; 2:354-367. [PMID: 34458789 PMCID: PMC8341086 DOI: 10.1039/d0cb00222d] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Targeted covalent inhibitors have regained widespread attention in drug discovery and have emerged as powerful tools for basic biomedical research. Fueled by considerable improvements in mass spectrometry sensitivity and sample processing, chemoproteomic strategies have revealed thousands of proteins that can be covalently modified by reactive small molecules. Fragment-based drug discovery, which has traditionally been used in a target-centric fashion, is now being deployed on a proteome-wide scale thereby expanding its utility to both the discovery of novel covalent ligands and their cognate protein targets. This powerful approach is allowing ‘high-throughput’ serendipitous discovery of cryptic pockets leading to the identification of pharmacological modulators of proteins previously viewed as “undruggable”. The reactive fragment toolkit has been enabled by recent advances in the development of new chemistries that target residues other than cysteine including lysine and tyrosine. Here, we review the emerging area of covalent fragment-based ligand discovery, which integrates the benefits of covalent targeting and fragment-based medicinal chemistry. We discuss how the two strategies synergize to facilitate the efficient discovery of new pharmacological modulators of established and new therapeutic target proteins. Covalent fragment-based ligand discovery greatly facilitates the discovery of useful fragments for drug discovery and helps unveil chemical-tractable biological targets in native biological systems.![]()
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| | - Milka Kostic
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA.,Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA 02215 USA
| | | | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA 02215 USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Cell Biology, Harvard Medical School Boston MA 02215 USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| |
Collapse
|
12
|
Wu F, Zhuo L, Wang F, Huang W, Hao G, Yang G. Auto In Silico Ligand Directing Evolution to Facilitate the Rapid and Efficient Discovery of Drug Lead. iScience 2020; 23:101179. [PMID: 32498019 PMCID: PMC7267738 DOI: 10.1016/j.isci.2020.101179] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/25/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Motivated by the growing demand for reducing the chemical optimization burden of H2L, we developed auto in silico ligand directing evolution (AILDE, http://chemyang.ccnu.edu.cn/ccb/server/AILDE), an efficient and general approach for the rapid identification of drug leads in accessible chemical space. This computational strategy relies on minor chemical modifications on the scaffold of a hit compound, and it is primarily intended for identifying new lead compounds with minimal losses or, in some cases, even increases in ligand efficiency. We also described how AILDE greatly reduces the chemical optimization burden in the design of mesenchymal-epithelial transition factor (c-Met) kinase inhibitors. We only synthesized eight compounds and found highly efficient compound 5g, which showed an ∼1,000-fold improvement in in vitro activity compared with the hit compound. 5g also displayed excellent in vivo antitumor efficacy as a drug lead. We believe that AILDE may be applied to a large number of studies for rapid design and identification of drug leads. AILDE was developed for the rapid identification of drug leads A potent drug lead targeted to c-Met was found by synthesizing only eight compounds
Collapse
Affiliation(s)
- Fengxu Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Linsheng Zhuo
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Fan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Gefei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Guangfu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.
| |
Collapse
|
13
|
Schaller D, Šribar D, Noonan T, Deng L, Nguyen TN, Pach S, Machalz D, Bermudez M, Wolber G. Next generation 3D pharmacophore modeling. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1468] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David Schaller
- Pharmaceutical and Medicinal Chemistry Freie Universität Berlin Berlin Germany
| | - Dora Šribar
- Pharmaceutical and Medicinal Chemistry Freie Universität Berlin Berlin Germany
| | - Theresa Noonan
- Pharmaceutical and Medicinal Chemistry Freie Universität Berlin Berlin Germany
| | - Lihua Deng
- Pharmaceutical and Medicinal Chemistry Freie Universität Berlin Berlin Germany
| | - Trung Ngoc Nguyen
- Pharmaceutical and Medicinal Chemistry Freie Universität Berlin Berlin Germany
| | - Szymon Pach
- Pharmaceutical and Medicinal Chemistry Freie Universität Berlin Berlin Germany
| | - David Machalz
- Pharmaceutical and Medicinal Chemistry Freie Universität Berlin Berlin Germany
| | - Marcel Bermudez
- Pharmaceutical and Medicinal Chemistry Freie Universität Berlin Berlin Germany
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry Freie Universität Berlin Berlin Germany
| |
Collapse
|
14
|
Erlanson DA, de Esch IJP, Jahnke W, Johnson CN, Mortenson PN. Fragment-to-Lead Medicinal Chemistry Publications in 2018. J Med Chem 2020; 63:4430-4444. [PMID: 31913033 DOI: 10.1021/acs.jmedchem.9b01581] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This Perspective, the fourth in an annual series, summarizes fragment-to-lead (F2L) success stories published during 2018. Topics such as target class, screening methods, physicochemical properties, and ligand efficiency are discussed for the 2018 examples as well as for the combined 111 F2L examples covering 2015-2018. While the overall properties of fragments and leads have remained constant, a number of new trends are noted, for example, broadening of target class coverage and application of FBDD to covalent inhibitors. Moreover, several studies make use of fragment hits that were previously described in the literature, illustrating that fragments are versatile starting points that can be optimized to structurally diverse leads. By focusing on success stories, the hope is that this Perspective will identify and inform best practices in fragment-based drug discovery.
Collapse
Affiliation(s)
- Daniel A Erlanson
- Frontier Medicines, 151 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wolfgang Jahnke
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, 4002 Basel, Switzerland
| | - Christopher N Johnson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Paul N Mortenson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
15
|
Jain S, Amin SA, Adhikari N, Jha T, Gayen S. Good and bad molecular fingerprints for human rhinovirus 3C protease inhibition: identification, validation, and application in designing of new inhibitors through Monte Carlo-based QSAR study. J Biomol Struct Dyn 2020; 38:66-77. [PMID: 30646829 DOI: 10.1080/07391102.2019.1566093] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/01/2019] [Indexed: 01/12/2023]
Abstract
HRV 3 C protease (HRV 3Cpro) is an important target for common cold and upper respiratory tract infection. Keeping in view of the non-availability of drug for the treatment, newer computer-based modelling strategies should be applied to rationalize the process of antiviral drug discovery in order to decrease the valuable time and huge expenditure of the process. The present work demonstrates a structure wise optimization using Monte Carlo-based QSAR method that decomposes ligand compounds (in SMILES format) into several molecular fingerprints/descriptors. The current state-of-the-art in QSAR study involves the balance of correlation approach using four different sets: training, invisible training, calibration, and validation. The final models were also validated through mean absolute error, index of ideality of correlation, Y-randomization and applicability domain analysis. R2 and Q2 values for the best model were 0.8602, 0.8507 (training); 0.8435, 0.8331 (invisible training); 0.7424, 0.7020 (calibration); 0.5993, 0.5216 (validation), respectively. The process identified some molecular substructures as good and bad fingerprints depending on their effect to increase or decrease the HRV 3Cpro inhibition. Finally, new inhibitors were designed based on the fundamental concept to replace the bad fragments with the good fragments as well as including more good fragments into the structure. The study points out the importance of the fingerprint based drug design strategy through Monte Carlo optimization method in the modelling of HRV 3Cpro inhibitors.
Collapse
Affiliation(s)
- Sanskar Jain
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, India
| |
Collapse
|
16
|
Hoffer L, Saez-Ayala M, Horvath D, Varnek A, Morelli X, Roche P. CovaDOTS: In Silico Chemistry-Driven Tool to Design Covalent Inhibitors Using a Linking Strategy. J Chem Inf Model 2019; 59:1472-1485. [PMID: 30908019 DOI: 10.1021/acs.jcim.8b00960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We recently reported an integrated fragment-based optimization strategy called DOTS (Diversity Oriented Target-focused Synthesis) that combines automated virtual screening (VS) with semirobotized organic synthesis coupled to in vitro evaluation. The molecular modeling part consists of hit-to-lead chemistry, based on the growing paradigm. Here, we have extended the applicability of the DOTS strategy by adding new functionalities, allowing a generic chemistry-driven linking approach with a particular emphasis on covalent drugs. Indeed, the covalent mode of action can be described as a specific case of linking, where suitable linkers are sought to fuse a bound organic compound with a nucleophilic protein side chain. The proof of concept is established using three retrospective study cases in which known noncovalent inhibitors have been converted to covalent inhibitors. Our method is able to automatically design reference covalent inhibitors (and/or analogs) from an initial activated substructure and predict their binding mode. More importantly, the reference compounds are ranked high among several hundred putative adducts, demonstrating the utility of the approach to design covalent inhibitors.
Collapse
Affiliation(s)
- Laurent Hoffer
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli Calmettes, CRCM , Marseille CEDEX 09 13273 , France
| | - Magali Saez-Ayala
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli Calmettes, CRCM , Marseille CEDEX 09 13273 , France
| | - Dragos Horvath
- Laboratoire de Chemoinformatique, CNRS UMR7140 , 1 rue Blaise Pascal , 67000 Strasbourg , France
| | - Alexandre Varnek
- Laboratoire de Chemoinformatique, CNRS UMR7140 , 1 rue Blaise Pascal , 67000 Strasbourg , France
| | - Xavier Morelli
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli Calmettes, CRCM , Marseille CEDEX 09 13273 , France
| | - Philippe Roche
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli Calmettes, CRCM , Marseille CEDEX 09 13273 , France
| |
Collapse
|
17
|
Validating Enterovirus D68-2A pro as an Antiviral Drug Target and the Discovery of Telaprevir as a Potent D68-2A pro Inhibitor. J Virol 2019; 93:JVI.02221-18. [PMID: 30674624 DOI: 10.1128/jvi.02221-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/11/2019] [Indexed: 02/08/2023] Open
Abstract
Enterovirus D68 (EV-D68) is a viral pathogen that leads to severe respiratory illness and has been linked with the development of acute flaccid myelitis (AFM) in children. No vaccines or antivirals are currently available for EV-D68 infection, and treatment options for hospitalized patients are limited to supportive care. Here, we report the expression of the EV-D68 2A protease (2Apro) and characterization of its enzymatic activity. Furthermore, we discovered that telaprevir, an FDA-approved drug used for the treatment of hepatitis C virus (HCV) infections, is a potent antiviral against EV-D68 by targeting the 2Apro enzyme. Using a fluorescence resonance energy transfer-based substrate cleavage assay, we showed that the purified EV-D68 2Apro has proteolytic activity selective against a peptide sequence corresponding to the viral VP1-2A polyprotein junction. Telaprevir inhibits EV-D68 2Apro through a nearly irreversible, biphasic binding mechanism. In cell culture, telaprevir showed submicromolar-to-low-micromolar potency against several recently circulating neurotropic strains of EV-D68 in different human cell lines. To further confirm the antiviral drug target, serial viral passage experiments were performed to select for resistance against telaprevir. An N84T mutation near the active site of 2Apro was identified in resistant viruses, and this mutation reduced the potency of telaprevir in both the enzymatic and cellular antiviral assays. Collectively, we report for the first time the in vitro enzymatic activity of EV-D68 2Apro and the identification of telaprevir as a potent EV-D68 2Apro inhibitor. These findings implicate EV-D68 2Apro as an antiviral drug target and highlight the repurposing potential of telaprevir to treat EV-D68 infection.IMPORTANCE A 2014 EV-D68 outbreak in the United States has been linked to the development of acute flaccid myelitis in children. Unfortunately, no treatment options against EV-D68 are currently available, and the development of effective therapeutics is urgently needed. Here, we characterize and validate a new EV-D68 drug target, the 2Apro, and identify telaprevir-an FDA-approved drug used to treat hepatitis C virus (HCV) infections-as a potent antiviral with a novel mechanism of action toward 2Apro 2Apro functions as a viral protease that cleaves a peptide sequence corresponding to the VP1-2A polyprotein junction. The binding of telaprevir potently inhibits its enzymatic activity, and using drug resistance selection, we show that the potent antiviral activity of telaprevir was due to 2Apro inhibition. This is the first inhibitor to selectively target the 2Apro from EV-D68 and can be used as a starting point for the development of therapeutics with selective activity against EV-D68.
Collapse
|
18
|
Traesel HJ, Olivato PR, Rodrigues DNS, Valença J, Rodrigues A, Zukerman-Schpector J, Colle MD. Spectroscopic and theoretical studies of some 2‑(methoxy)‑2‑[(4‑substituted)‑phenylsulfanyl]‑(4'‑substituted) acetophenones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:82-97. [PMID: 30447629 DOI: 10.1016/j.saa.2018.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The conformational analysis of some 2‑(methoxy)‑2‑[(4‑substituted)‑phenylsulfanyl]‑(4'‑substituted) acetophenones was performed through infrared (IR) spectroscopic analysis of the carbonyl stretching band (νCO), supported by B3LYP/6-31+G(d,p) calculations and X-ray diffraction. Five (1-5) of the seven studied compounds (1-7) presented Fermi resonance (FR) on the νCO fundamental transition band. Deuteration of these compounds (1a-5a) precluded the occurrence of FR, revealing a νCO doublet for all compounds in all solvents used. The computational results indicated the existence of three conformers (c1, c2 and c3) for the whole series whose relative abundances varied with solvent permittivity. The higher νCO frequency c1 conformer was assigned to the higher frequency component of the carbonyl doublet, while both c2 and c3 were assigned to the lower frequency one. Anharmonic vibrational frequencies and Potential Energy Distribution (PED) calculations of compound 3 indicated that the combination band (cb) between the methyne δCH and one skeletal mode couples with the νCO mode giving rise to the FR on the c2 conformer in vacuum and on the c1 one in non-polar solvents. The experimental data indicated a progressive increase in c1 conformer stability with the increase of the solvent dielectric constant, which is in good agreement with the polarizable continuum model (PCM) calculations. The higher νCO frequency and the stronger solvation of the c1 conformer is a consequence of the repulsive field effect (RFE) originated by the alignment and closeness of the Cδ+Oδ- and Cδ+Oδ- dipoles. Finally, the balance between orbital and electrostatic interactions dictates the conformational preferences. X-ray single crystal analysis for compound 6 revealed the c1 geometry in the solid state and its stabilization by CH…O hydrogen bonds.
Collapse
Affiliation(s)
- Henrique J Traesel
- Conformational Analysis and Electronic Interactions Laboratory, Institute of Chemistry, University of São Paulo, CP 26077, 05513-970 São Paulo, SP, Brazil
| | - Paulo R Olivato
- Conformational Analysis and Electronic Interactions Laboratory, Institute of Chemistry, University of São Paulo, CP 26077, 05513-970 São Paulo, SP, Brazil
| | - Daniel N S Rodrigues
- Conformational Analysis and Electronic Interactions Laboratory, Institute of Chemistry, University of São Paulo, CP 26077, 05513-970 São Paulo, SP, Brazil.
| | - Jéssica Valença
- Conformational Analysis and Electronic Interactions Laboratory, Institute of Chemistry, University of São Paulo, CP 26077, 05513-970 São Paulo, SP, Brazil
| | - Alessandro Rodrigues
- Department of Chemistry, Federal University of São Paulo, UNIFESP, 09972-270 Diadema, SP, Brazil
| | - Julio Zukerman-Schpector
- Department of Chemistry, Federal University of São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil
| | - Maurizio Dal Colle
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
19
|
Craven GB, Affron DP, Raymond PN, Mann DJ, Armstrong A. Vinyl sulfonamide synthesis for irreversible tethering via a novel α-selenoether protection strategy. MEDCHEMCOMM 2019; 10:158-163. [PMID: 30774862 DOI: 10.1039/c8md00566d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
Vinyl sulfonamides are valuable electrophiles for targeted protein modification and inhibition. We describe a novel approach to the synthesis of terminal vinyl sulfonamides which uses mild oxidative conditions to induce elimination of an α-selenoether masking group. The method complements traditional synthetic approaches and typically yields vinyl sulfonamides in high purity after aqueous work-up without requiring column chromatography of the final electrophilic product. The methodology is applied to the synthesis of covalent fragments for use in irreversible protein tethering and crucially enables the attachment of diverse fragments to the vinyl sulfonamide warhead via a chemical linker. Using thymidylate synthase as a model system, ethylene glycol is identified as an effective linker for irreversible protein tethering.
Collapse
Affiliation(s)
- Gregory B Craven
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub , White City Campus, Wood Lane , London W12 0BZ , UK .
| | - Dominic P Affron
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub , White City Campus, Wood Lane , London W12 0BZ , UK .
| | - Philip N Raymond
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub , White City Campus, Wood Lane , London W12 0BZ , UK .
| | - David J Mann
- Department of Life Sciences , Imperial College London , South Kensington Campus , London SW7 2AZ , UK
| | - Alan Armstrong
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub , White City Campus, Wood Lane , London W12 0BZ , UK .
| |
Collapse
|
20
|
Hoffer L, Muller C, Roche P, Morelli X. Chemistry-driven Hit-to-lead Optimization Guided by Structure-based Approaches. Mol Inform 2018; 37:e1800059. [PMID: 30051601 DOI: 10.1002/minf.201800059] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/24/2018] [Indexed: 12/17/2022]
Abstract
For several decades, hit identification for drug discovery has been facilitated by developments in both fragment-based and high-throughput screening technologies. However, a major bottleneck in drug discovery projects continues to be the optimization of primary hits from screening campaigns in order to derive lead compounds. Computational chemistry or molecular modeling can play an important role during this hit-to-lead (H2L) stage by both suggesting putative optimizations and decreasing the number of compounds to be experimentally synthesized and evaluated. However, it is also crucial to consider the feasibility of organically synthesizing these virtually designed compounds. Furthermore, the generated molecules should have reasonable physicochemical properties and be medicinally relevant. This review focuses on chemistry-driven and structure-based computational methods that can be used to tackle the difficult problem of H2L optimization, with emphasis being placed on the strategy developed in our laboratory.
Collapse
Affiliation(s)
- Laurent Hoffer
- CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, CRCM, Marseille, France
| | | | - Philippe Roche
- CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, CRCM, Marseille, France
| | - Xavier Morelli
- CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Univ, CRCM, Marseille, France.,Institut Paoli-Calmettes, IPC Drug Discovery, Marseille, France
| |
Collapse
|