1
|
Gary S, Roy A, Bloom S. Carbocyclic setmelanotide analogs maintain biochemical potency at melanocortin 4 receptors. J Pept Sci 2025; 31:e3656. [PMID: 39394922 DOI: 10.1002/psc.3656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
The melanocortin 4 receptor (MC4R) plays a critical role in satiety and energy homeostasis, and its dysregulation is implicated in numerous hyperphagic and obese disease states. Setmelanotide, a disulfide-based cyclic peptide, can rescue MC4R activity and treat obesities caused by genetic defects in MC4R signaling. But this peptide has moderate blood-brain barrier penetrance and metabolic stability, which can limit its efficacy in practice. Based on the cryo-electron microscopy structure of setmelanotide-bound MC4R, we hypothesized that replacing its lone disulfide bond with more metabolically stable and permeability-enhancing carbon-based linker groups could improve pharmacokinetic properties without abolishing activity. To test this, we used chemistry developed by our lab to prepare 11 carbocyclic (alkyl, aryl, perfluoroalkyl, and ethereal) analogs of setmelanotide and determined their biochemical potencies at MC4R in vitro. Ten analogs displayed full agonism, showing that disulfide replacement is tolerant of linkers ranging in size, rigidity, and functional groups, with heteroatom- or aryl-rich linkers displaying superior potencies.
Collapse
Affiliation(s)
- Samuel Gary
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
2
|
Weirath NA, Haskell-Luevano C. Recommended Tool Compounds for the Melanocortin Receptor (MCR) G Protein-Coupled Receptors (GPCRs). ACS Pharmacol Transl Sci 2024; 7:2706-2724. [PMID: 39296259 PMCID: PMC11406693 DOI: 10.1021/acsptsci.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
The melanocortin receptors are a centrally and peripherally expressed family of Class A GPCRs with physiological roles, including pigmentation, steroidogenesis, energy homeostasis, and others yet to be fully characterized. There are five melanocortin receptor subtypes that, apart from the melanocortin-2 receptor (MC2R), are stimulated by a shared set of endogenous agonists. Until 2020, X-ray crystallographic and cryo-electron microscopic (cryo-EM) structures of these receptors were unavailable, and the investigation of their mechanisms of action and putative ligand-receptor interactions was driven by site-directed mutagenesis studies of the receptors and targeted structure-activity relationship (SAR) studies of the endogenous and derivative synthetic ligands. Synthetic derivatives of the endogenous agonist ligand α-MSH have evolved into a suite of powerful ligands such as NDP-MSH (melanotan I), melanotan II (MTII), and SHU9119. This suite of tool compounds now enables the study of the melanocortin receptors and serves as scaffolds for FDA-approved drugs, means of validating stably expressing melanocortin receptor cell lines, core ligands in assessing cryo-EM structures of active and inactive receptor complexes, and essential references for high-throughput discovery and mechanism of action studies. Herein, we review the history and significance of a finite set of these essential tool compounds and discuss how they are being utilized to further the field's understanding of melanocortin receptor physiology and greater druggability.
Collapse
Affiliation(s)
- Nicholas A Weirath
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Trotta MC, Gesualdo C, Lepre CC, Russo M, Ferraraccio F, Panarese I, Marano E, Grieco P, Petrillo F, Hermenean A, Simonelli F, D’Amico M, Bucolo C, Lazzara F, De Nigris F, Rossi S, Platania CBM. Ocular pharmacological and biochemical profiles of 6-thioguanine: a drug repurposing study. Front Pharmacol 2024; 15:1375805. [PMID: 38590636 PMCID: PMC10999531 DOI: 10.3389/fphar.2024.1375805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction The purine analog 6-thioguanine (6TG), an old drug approved in the 60s to treat acute myeloid leukemia (AML), was tested in the diabetic retinopathy (DR) experimental in vivo setting along with a molecular modeling approach. Methods A computational analysis was performed to investigate the interaction of 6TG with MC1R and MC5R. This was confirmed in human umbilical vein endothelial cells (HUVECs) exposed to high glucose (25 mM) for 24 h. Cell viability in HUVECs exposed to high glucose and treated with 6TG (0.05-0.5-5 µM) was performed. To assess tube formation, HUVECs were treated for 24 h with 6TG 5 µM and AGRP (0.5-1-5 µM) or PG20N (0.5-1-5-10 µM), which are MC1R and MC5R antagonists, respectively. For the in vivo DR setting, diabetes was induced in C57BL/6J mice through a single streptozotocin (STZ) injection. After 2, 6, and 10 weeks, diabetic and control mice received 6TG intravitreally (0.5-1-2.5 mg/kg) alone or in combination with AGRP or PG20N. Fluorescein angiography (FA) was performed after 4 and 14 weeks after the onset of diabetes. After 14 weeks, mice were euthanized, and immunohistochemical analysis was performed to assess retinal levels of CD34, a marker of endothelial progenitor cell formation during neo-angiogenesis. Results The computational analysis evidenced a more stable binding of 6TG binding at MC5R than MC1R. This was confirmed by the tube formation assay in HUVECs exposed to high glucose. Indeed, the anti-angiogenic activity of 6TG was eradicated by a higher dose of the MC5R antagonist PG20N (10 µM) compared to the MC1R antagonist AGRP (5 µM). The retinal anti-angiogenic effect of 6TG was evident also in diabetic mice, showing a reduction in retinal vascular alterations by FA analysis. This effect was not observed in diabetic mice receiving 6TG in combination with AGRP or PG20N. Accordingly, retinal CD34 staining was reduced in diabetic mice treated with 6TG. Conversely, it was not decreased in diabetic mice receiving 6TG combined with AGRP or PG20N. Conclusion 6TG evidenced a marked anti-angiogenic activity in HUVECs exposed to high glucose and in mice with DR. This seems to be mediated by MC1R and MC5R retinal receptors.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marina Russo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Franca Ferraraccio
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Iacopo Panarese
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ernesto Marano
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Francesco Petrillo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filomena De Nigris
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Zhou Y, Mowlazadeh Haghighi S, Sawyer JR, Hruby VJ, Cai M. Ψ and χ Angle Constrains at the C-Terminus Trp Position of the Melanotropin Tetrapeptide Ac-His-d-Phe-Arg-Trp-NH 2 Lead to Potent and Selective Agonists at hMC1R and hMC4R. J Med Chem 2023; 66:6715-6724. [PMID: 37133411 DOI: 10.1021/acs.jmedchem.2c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Melanocortin receptors (MCRs) are a family of G protein-coupled receptors that regulate important physiological functions. Yet, drug development targeting MCRs is hindered by potential side effects due to a lack of receptor subtype-selective ligands with bioavailability. Here, we report novel synthetic pathways to introduce Ψ and χ angle constraints at the C-terminus Trp position of the nonselective prototype tetrapeptide agonist Ac-His-d-Phe-Arg-Trp-NH2. With these conformational constraints, peptide 1 (Ac-His-d-Phe-Arg-Aia) shows improved selectivity at hMC1R, with an EC50 of 11.2 nM for hMC1R and at least 15-fold selectivity compared to other MCR subtypes. Peptide 3 (Ac-His-pCF3-d-Phe-Arg-Aia) is a potent and selective hMC4R agonist with an EC50 of 4.1 nM at hMC4R and at least ninefold selectivity. Molecular docking studies reveal that the Ψ and χ angle constraints force the C-terminal Aia residue to flip and interact with TM6 and TM7, a feature that we hypothesize leads to the receptor subtype selectivity.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Saghar Mowlazadeh Haghighi
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jonathon R Sawyer
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Minying Cai
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
La Manna S, Fortuna S, Leone M, Mercurio FA, Di Donato I, Bellavita R, Grieco P, Merlino F, Marasco D. Ad-hoc modifications of cyclic mimetics of SOCS1 protein: Structural and functional insights. Eur J Med Chem 2022; 243:114781. [PMID: 36152385 DOI: 10.1016/j.ejmech.2022.114781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Suppressors of cytokine signaling 1 (SOCS1) protein, a negative regulator of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that mimetics of KIR-SOCS1 can be potent therapeutics in several disorders (e.g., neurological, autoimmune or cardiovascular diseases). In this work, starting from a recently identified cyclic peptidomimetic of KIR-SOCS1, icPS5(Nal1), to optimize the peptide structure and improve its biological activity, we designed novel derivatives, containing crucial amino acids substitutions and/or modifications affecting the ring size. By combining microscale thermophoresis (MST), Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR) and computational studies, we showed that the cycle size plays a key role in the interaction with JAK2 and the substitution of native residues with un-natural building blocks is a valid tool to maintain low-micromolar affinity toward JAK2, greatly increasing their serum stability. These findings contribute to increase the structural knowledge required for the recognition of SOCS1/JAK2 and to progress towards their conversion into more drug-like compounds.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Sara Fortuna
- CONCEPT Lab, Istituto Italiano di Tecnologia (IIT), Via E. Melen, 83, I-16152, Genova, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, CNR, 80145, Naples, Italy
| | - Flavia A Mercurio
- Institute of Biostructures and Bioimaging, CNR, 80145, Naples, Italy
| | - Ilaria Di Donato
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
6
|
Gimenez LE, Noblin TA, Williams SY, Mullick Bagchi S, Ji RL, Tao YX, Jeppesen CB, Conde-Frieboes KW, Sawyer TK, Grieco P, Cone RD. Demonstration of a Common DPhe 7 to DNal(2') 7 Peptide Ligand Antagonist Switch for Melanocortin-3 and Melanocortin-4 Receptors Identifies the Systematic Mischaracterization of the Pharmacological Properties of Melanocortin Peptides. J Med Chem 2022; 65:5990-6000. [PMID: 35404053 PMCID: PMC9059122 DOI: 10.1021/acs.jmedchem.1c01295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanocortin peptides containing a 3-(2-naphthyl)-d-alanine residue in position 7 (DNal(2')7), reported as melanocortin-3 receptor (MC3R) subtype-specific agonists in two separate publications, were found to lack significant MC3R agonist activity. The cell lines used at the University of Arizona for pharmacological characterization of these peptides, consisting of HEK293 cells stably transfected with human melanocortin receptor subtypes MC1R, MC3R, MC4R, or MC5R, were then obtained and characterized by quantitative polymerase chain reaction (PCR). While the MC1R cell line correctly expressed only hMCR1, the three other cell lines were mischaracterized with regard to receptor subtype expression. The demonstration that a 3-(2-naphthyl)-d-alanine residue in position 7, irrespective of the melanocortin peptide template, results primarily in the antagonism of MC3R and MC4R then allowed us to search the published literature for additional errors. The erroneously characterized DNal(2')7-containing peptides date back to 2003; thus, our analysis suggests that systematic mischaracterization of the pharmacological properties of melanocortin peptides occurred.
Collapse
Affiliation(s)
- Luis E. Gimenez
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States,
| | - Terry A. Noblin
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Savannah Y. Williams
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Ren-Lei Ji
- Department
of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - Ya-Xiong Tao
- Department
of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, United States
| | | | | | - Tomi K. Sawyer
- Courage
Therapeutics, 64 Homer
Street, Newton, Massachusetts 02459, United States
| | - Paolo Grieco
- #Department of Pharmacy and ∇CIRPEB, Centro Interuniversitario
di Ricerca sui
Peptidi Bioattivi, University of Naples,
Federico II, Naples 80131, Italy
| | - Roger D. Cone
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States,Department
of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States,
| |
Collapse
|
7
|
Wang S, Krummenacher K, Landrum GA, Sellers BD, Di Lello P, Robinson SJ, Martin B, Holden JK, Tom JYK, Murthy AC, Popovych N, Riniker S. Incorporating NOE-Derived Distances in Conformer Generation of Cyclic Peptides with Distance Geometry. J Chem Inf Model 2022; 62:472-485. [PMID: 35029985 DOI: 10.1021/acs.jcim.1c01165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear magnetic resonance (NMR) data from NOESY (nuclear Overhauser enhancement spectroscopy) and ROESY (rotating frame Overhauser enhancement spectroscopy) experiments can easily be combined with distance geometry (DG) based conformer generators by modifying the molecular distance bounds matrix. In this work, we extend the modern DG based conformer generator ETKDG, which has been shown to reproduce experimental crystal structures from small molecules to large macrocycles well, to include NOE-derived interproton distances. In noeETKDG, the experimentally derived interproton distances are incorporated into the distance bounds matrix as loose upper (or lower) bounds to generate large conformer sets. Various subselection techniques can subsequently be applied to yield a conformer bundle that best reproduces the NOE data. The approach is benchmarked using a set of 24 (mostly) cyclic peptides for which NOE-derived distances as well as reference solution structures obtained by other software are available. With respect to other packages currently available, the advantages of noeETKDG are its speed and that no prior force-field parametrization is required, which is especially useful for peptides with unnatural amino acids. The resulting conformer bundles can be further processed with the use of structural refinement techniques to improve the modeling of the intramolecular nonbonded interactions. The noeETKDG code is released as a fully open-source software package available at www.github.com/rinikerlab/customETKDG.
Collapse
Affiliation(s)
- Shuzhe Wang
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Kajo Krummenacher
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Gregory A Landrum
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Benjamin D Sellers
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Paola Di Lello
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sarah J Robinson
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Bryan Martin
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeffrey K Holden
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Jeffrey Y K Tom
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Anastasia C Murthy
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Nataliya Popovych
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Gesualdo C, Balta C, Platania CBM, Trotta MC, Herman H, Gharbia S, Rosu M, Petrillo F, Giunta S, Della Corte A, Grieco P, Bellavita R, Simonelli F, D'Amico M, Hermenean A, Rossi S, Bucolo C. Fingolimod and Diabetic Retinopathy: A Drug Repurposing Study. Front Pharmacol 2021; 12:718902. [PMID: 34603029 PMCID: PMC8484636 DOI: 10.3389/fphar.2021.718902] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
This study aimed to investigate the interactions between fingolimod, a sphingosine 1-phosphate receptor (S1PR) agonist, and melanocortin receptors 1 and 5 (MCR1, MCR5). In particular, we investigated the effects of fingolimod, a drug approved to treat relapsing-remitting multiple sclerosis, on retinal angiogenesis in a mouse model of diabetic retinopathy (DR). We showed, by a molecular modeling approach, that fingolimod can bind with good-predicted affinity to MC1R and MC5R. Thereafter, we investigated the fingolimod actions on retinal MC1Rs/MC5Rs in C57BL/6J mice. Diabetes was induced in C57BL/6J mice through streptozotocin injection. Diabetic and control C57BL/6J mice received fingolimod, by oral route, for 12 weeks and a monthly intravitreally injection of MC1R antagonist (AGRP), MC5R antagonist (PG20N), and the selective S1PR1 antagonist (Ex 26). Diabetic animals treated with fingolimod showed a decrease of retinal vascular endothelial growth factor A (VEGFA) and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2), compared to diabetic control group. Fingolimod co-treatment with MC1R and MC5R selective antagonists significantly (p < 0.05) increased retinal VEGFR1, VEGFR2, and VEGFA levels compared to mice treated with fingolimod alone. Diabetic animals treated with fingolimod plus Ex 26 (S1PR1 selective blocker) had VEGFR1, VEGFR2, and VEGFA levels between diabetic mice group and the group of diabetic mice treated with fingolimod alone. This vascular protective effect of fingolimod, through activation of MC1R and MC5R, was evidenced also by fluorescein angiography in mice. Finally, molecular dynamic simulations showed a strong similarity between fingolimod and the MC1R agonist BMS-470539. In conclusion, the anti-angiogenic activity exerted by fingolimod in DR seems to be mediated not only through S1P1R, but also by melanocortin receptors.
Collapse
Affiliation(s)
- Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | - Sami Gharbia
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | - Marcel Rosu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | | | - Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Alberto Della Corte
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Grieco
- Pharmacy Department, University of Naples Federico II, Naples, Italy
| | - Rosa Bellavita
- Pharmacy Department, University of Naples Federico II, Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania.,Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Bellavita R, Falanga A, Buommino E, Merlino F, Casciaro B, Cappiello F, Mangoni ML, Novellino E, Catania MR, Paolillo R, Grieco P, Galdieroa S. Novel temporin L antimicrobial peptides: promoting self-assembling by lipidic tags to tackle superbugs. J Enzyme Inhib Med Chem 2021; 35:1751-1764. [PMID: 32957844 PMCID: PMC7534258 DOI: 10.1080/14756366.2020.1819258] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rapid development of antimicrobial resistance is pushing the search in the discovering of novel antimicrobial molecules to prevent and treat bacterial infections. Self-assembling antimicrobial peptides, as the lipidated peptides, are a novel and promising class of molecules capable of meeting this need. Based on previous work on Temporin L analogs, several new molecules lipidated at the N- or and the C-terminus were synthesised. Our goal is to improve membrane interactions through finely tuning self-assembly to reduce oligomerisation in aqueous solution and enhance self-assembly in bacterial membranes while reducing toxicity against human cells. The results here reported show that the length of the aliphatic moiety is a key factor to control target cell specificity and the oligomeric state of peptides either in aqueous solution or in a membrane-mimicking environment. The results of this study pave the way for the design of novel molecules with enhanced activities.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | | | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Bruno Casciaro
- Center for Life Nano Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Floriana Cappiello
- Department of Biochemical Sciences, Laboratory affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Rossella Paolillo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Stefania Galdieroa
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
10
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
11
|
Breast Tumor Cell Invasion and Pro-Invasive Activity of Cancer-Associated Fibroblasts Co-Targeted by Novel Urokinase-Derived Decapeptides. Cancers (Basel) 2020; 12:cancers12092404. [PMID: 32847144 PMCID: PMC7564779 DOI: 10.3390/cancers12092404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 01/11/2023] Open
Abstract
Among peritumoral cells, cancer-associated fibroblasts (CAFs) are major facilitators of tumor progression. This study describes the effects of two urokinase-derived, novel decapeptides, denoted as Pep 1 and its cyclic derivative Pep 2. In a mouse model of tumor dissemination, using HT1080 fibrosarcoma cells, Pep 2 reduced the number and size of lung metastases. Specific binding of fluoresceinated Pep 2 to HT1080 and telomerase immortalised fibroblasts (TIF) cell surfaces was enhanced by αv overexpression or abolished by excess vitronectin, anti-αv antibodies or silencing of ITGAV αv gene, identifying αv-integrin as the Pep 2 molecular target. In 3D-organotypic assays, peptide-exposed TIFs and primary CAFs from breast carcinoma patients both exhibited a markedly reduced pro-invasive ability of either HT1080 fibrosarcoma or MDA-MB-231 mammary carcinoma cells, respectively. Furthermore, TIFs, either exposed to Pep 2, or silenced for αv integrin, were impaired in their ability to chemoattract cancer cells and to contract collagen matrices, exhibiting reduced α-smooth muscle actin (α-SMA) levels. Finally, peptide exposure of αv-expressing primary CAFs led to the downregulation of α-SMA protein and to a dramatic reduction of their pro-invasive capability. In conclusion, the ability of the novel decapeptides to interfere with tumor cell invasion directly and through the down-modulation of CAF phenotype suggests their use as lead compounds for co-targeting anti-cancer strategies.
Collapse
|
12
|
Zhou Y, Mowlazadeh Haghighi S, Liu Z, Wang L, Hruby VJ, Cai M. Development of Ligand-Drug Conjugates Targeting Melanoma through the Overexpressed Melanocortin 1 Receptor. ACS Pharmacol Transl Sci 2020; 3:921-930. [PMID: 33073191 DOI: 10.1021/acsptsci.0c00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Melanoma is a lethal form of skin cancer. Despite recent breakthroughs of BRAF-V600E and PD-1 inhibitors showing remarkable clinical responses, melanoma can eventually survive these targeted therapies and become resistant. To solve the drug resistance issue, we designed and synthesized ligand-drug conjugates that couple cytotoxic drugs, which have a low cancer resistance issue, with the melanocortin 1 receptor (MC1R) agonist melanotan-II (MT-II), which provides specificity to MC1R-overexpressing melanoma. The drug-MT-II conjugates maintain strong binding interactions to MC1R and induce selective drug delivery to A375 melanoma cells through its MT-II moiety in vitro. Furthermore, using camptothecin as the cytotoxic drug, camptothecin-MT-II (compound 1) can effectively inhibit A375 melanoma cell growth with an IC50 of 16 nM. By providing selectivity to melanoma cells through its MT-II moiety, this approach of drug-MT-II conjugates enables us to have many more options for cytotoxic drug selection, which can be the key to solving the cancer resistant problem for melanoma.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Saghar Mowlazadeh Haghighi
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Zekun Liu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Lingzhi Wang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Minying Cai
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|