1
|
Al-Ghamdi HA, Almughem FA, Alshabibi MA, Bakr AA, Alshehri AA, Aodah AH, Al Zahrani NA, Tawfik EA, Damiati LA. Synthesis and Biological Evaluation of Novel Imidazole Derivatives as Antimicrobial Agents. Biomolecules 2024; 14:1198. [PMID: 39334964 PMCID: PMC11429776 DOI: 10.3390/biom14091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Imidazole derivatives are considered potential chemical compounds that could be therapeutically effective against several harmful pathogenic microbes. The chemical structure of imidazole, with a five-membered heterocycle, three carbon atoms, and two double bonds, tends to show antibacterial activities. In the present study, novel imidazole derivatives were designed and synthesized to be evaluated as antimicrobial agents owing to the low number of attempts to discover new antimicrobial agents and the emerging cases of antimicrobial resistance. Two imidazole compounds were prepared and evaluated as promising candidates regarding in vitro cytotoxicity against human skin fibroblast cells and antimicrobial activity against several bacterial strains. The synthesized imidazole derivatives were chemically identified using nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR). The results demonstrated a relatively high cell viability of one of the imidazole derivatives, i.e., HL2, upon 24 and 48 h cell exposure. Both derivatives were able to inhibit the growth of the tested bacterial strains. This study provides valuable insight into the potential application of imidazole derivatives for treating microbial infections; however, further in vitro and in vivo studies are required to confirm their safety and effectiveness.
Collapse
Affiliation(s)
- Huda A Al-Ghamdi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Fahad A Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11451, Saudi Arabia
| | - Manal A Alshabibi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11451, Saudi Arabia
| | - Abrar A Bakr
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11451, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11451, Saudi Arabia
| | - Alhassan H Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11451, Saudi Arabia
| | - Nourah A Al Zahrani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Essam A Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11451, Saudi Arabia
| | - Laila A Damiati
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| |
Collapse
|
2
|
Liu L, Zhao L, Yang L, Chai M, Liu Z, Ma N, Wang Y, Wu Q, Guo J, Zhou F, Huang W, Ren X, Wang J, Ding M, Wang Z, Ding K. Discovery of LLC355 as an Autophagy-Tethering Compound for the Degradation of Discoidin Domain Receptor 1. J Med Chem 2024; 67:8043-8059. [PMID: 38730324 DOI: 10.1021/acs.jmedchem.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Discoidin domain receptor 1 (DDR1) is a potential target for cancer drug discovery. Although several DDR1 kinase inhibitors have been developed, recent studies have revealed the critical roles of the noncatalytic functions of DDR1 in tumor progression, metastasis, and immune exclusion. Degradation of DDR1 presents an opportunity to block its noncatalytic functions. Here, we report the discovery of the DDR1 degrader LLC355 by employing autophagosome-tethering compound technology. Compound LLC355 efficiently degraded DDR1 protein with a DC50 value of 150.8 nM in non-small cell lung cancer NCI-H23 cells. Mechanistic studies revealed compound LLC355 to induce DDR1 degradation via lysosome-mediated autophagy. Importantly, compound LLC355 potently suppressed cancer cell tumorigenicity, migration, and invasion and significantly outperformed the corresponding inhibitor 1. These results underline the therapeutic advantage of targeting the noncatalytic function of DDR1 over inhibition of its kinase activity.
Collapse
Affiliation(s)
- Lianchao Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Lijie Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Lujun Yang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, #1 Xiangshan Branch Lane, Hangzhou 310024, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Minxue Chai
- College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Zhengyong Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Nan Ma
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Yongxing Wang
- Livzon Research Institute, Livzon Pharmaceutical Group Inc., #38 Chuangye North Road, Jinwan District, Zhuhai 519000, China
| | - Qinxue Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Jian Wang
- College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Ming Ding
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| |
Collapse
|
3
|
Liu M, Zhang J, Li X, Wang Y. Research progress of DDR1 inhibitors in the treatment of multiple human diseases. Eur J Med Chem 2024; 268:116291. [PMID: 38452728 DOI: 10.1016/j.ejmech.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase (RTK) and plays pivotal roles in regulating cellular functions such as proliferation, differentiation, invasion, migration, and matrix remodeling. DDR1 is involved in the occurrence and progression of many human diseases, including cancer, fibrosis, and inflammation. Therefore, DDR1 represents a highly promising therapeutic target. Although no selective small-molecule inhibitors have reached clinical trials to date, many molecules have shown therapeutic effects in preclinical studies. For example, BK40143 has demonstrated significant promise in the therapy of neurodegenerative diseases. In this context, our perspective aims to provide an in-depth exploration of DDR1, encompassing its structure characteristics, biological functions, and disease relevance. Furthermore, we emphasize the importance of understanding the structure-activity relationship of DDR1 inhibitors and highlight the unique advantages of dual-target or multitarget inhibitors. We anticipate offering valuable insights into the development of more efficacious DDR1-targeted drugs.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
4
|
Xiang S, Lu X. Selective type II TRK inhibitors overcome xDFG mutation mediated acquired resistance to the second-generation inhibitors selitrectinib and repotrectinib. Acta Pharm Sin B 2024; 14:517-532. [PMID: 38322338 PMCID: PMC10840435 DOI: 10.1016/j.apsb.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/15/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
Neurotrophic receptor kinase (NTRK) fusions are actionable oncogenic drivers of multiple pediatric and adult solid tumors, and tropomyosin receptor kinase (TRK) has been considered as an attractive therapeutic target for "pan-cancer" harboring these fusions. Currently, two generations TRK inhibitors have been developed. The representative second-generation inhibitors selitrectinib and repotrectinib were designed to overcome clinic acquired resistance of the first-generation inhibitors larotrectinib or entrectinib resulted from solvent-front and gatekeeper on-target mutations. However, xDFG (TRKAG667C/A/S, homologous TRKCG696C/A/S) and some double mutations still confer resistance to selitrectinib and repotrectinib, and overcoming these resistances represents a major unmet clinical need. In this review, we summarize the acquired resistance mechanism of the first- and second-generation TRK inhibitors, and firstly put forward the emerging selective type II TRK inhibitors to overcome xDFG mutations mediated resistance. Additionally, we concluded our perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Shuang Xiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Xie J, Meng D, Li Y, Li R, Deng P. Virtual screening for potential discoidin domain receptor 1 (DDR1) inhibitors based on structural assessment. Mol Divers 2023; 27:2297-2314. [PMID: 36322341 DOI: 10.1007/s11030-022-10557-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Discoidin domain receptor 1 (DDR1) (EC Number 2.7.10.1) has recently been considered as a promising therapeutic target for idiopathic pulmonary fibrosis (IPF). However, none of the currently discovered DDR1 inhibitors have been included in clinical studies due to low target specificity or druggability limitations, necessitating various approaches to develop novel DDR1 inhibitors. In this study, to assure target specificity, a docking assessment of the DDR1 crystal structures was undertaken to find the well-differentiated crystal structure, and 4CKR was identified among many crystal structures. Then, using the best pharmacophore model and molecular docking, virtual screening of the ChEMBL database was done, and five potential molecules were identified as promising inhibitors of DDR1. Subsequently, all hit compound complex systems were validated using molecular dynamics simulations and MM/PBSA methods to assess the stability of the system after ligand binding to DDR1. Based on molecular dynamics simulations and hydrogen-bonding occupancy analysis, the DDR1-Cpd2, DDR1-Cpd17, and DDR1-Cpd18 complex systems exhibited superior stability compared to the DDR1-Cpd1 and DDR-Cpd33 complex systems. Meanwhile, when targeting DDR1, the descending order of the five hit molecules' binding free energies was Cpd17 (- 145.820 kJ/mol) > Cpd2 (- 131.818 kJ/mol) > Cpd18 (- 130.692 kJ/mol) > Cpd33 (- 129.175 kJ/mol) > Cpd1 (- 126.103 kJ/mol). Among them, Cpd2, Cpd17, and Cpd18 showed improved binding characteristics, indicating that they may be potential DDR1 inhibitors. In this research, we developed a high-hit rate, effective screening method that serves as a theoretical guide for finding DDR1 inhibitors for the development of IPF therapeutics.
Collapse
Affiliation(s)
- Jiali Xie
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, 400016, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing, 400016, China
| | - Dan Meng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, 400016, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing, 400016, China
| | - Yihao Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, 400016, China
| | - Ruoyu Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Ping Deng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, 400016, China.
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing, 400016, China.
| |
Collapse
|
6
|
Philo JE, Caudle JD, Moussa RN, Kampmeyer PM, Hasin TR, Seo DK, Sheaff RJ, Lamar AA. Synthesis and Biological Evaluation of a Library of Sulfonamide Analogs of Memantine to Target Glioblastoma. ChemMedChem 2023; 18:e202300134. [PMID: 37248422 DOI: 10.1002/cmdc.202300134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023]
Abstract
A library of 34 lipophilic sulfonamides based upon the memantine core has been synthesized to identify potential drug candidates to cross the blood-brain barrier and target glioblastoma. The library was screened for in vitro activity against 4 mammalian cell lines, including U-87 (glioblastoma). Additional synthetic variation of the active compounds has validated the importance of specific regions of the pharmacophore, with the sulfonamide functionality and S-aryl unit displaying the most significant impact. In silico investigations suggest the active compounds might target DDR1 or RET proteins. The investigation has resulted in several compounds that warrant further development for lead optimization.
Collapse
Affiliation(s)
- John E Philo
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Jenna D Caudle
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Reema N Moussa
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Patrick M Kampmeyer
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Tasfia R Hasin
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - David K Seo
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Robert J Sheaff
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Angus A Lamar
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| |
Collapse
|
7
|
Franceschi RT, Hallett SA, Ge C. Discoidin domain receptors; an ancient family of collagen receptors has major roles in bone development, regeneration and metabolism. FRONTIERS IN DENTAL MEDICINE 2023; 4:1181817. [PMID: 38222874 PMCID: PMC10785288 DOI: 10.3389/fdmed.2023.1181817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
The extracellular matrix (ECM) niche plays a critical role in determining cellular behavior during bone development including the differentiation and lineage allocation of skeletal progenitor cells to chondrocytes, osteoblasts, or marrow adipocytes. As the major ECM component in mineralized tissues, collagen has instructive as well as structural roles during bone development and is required for bone cell differentiation. Cells sense their extracellular environment using specific cell surface receptors. For many years, specific β1 integrins were considered the main collagen receptors in bone, but, more recently, the important role of a second, more primordial collagen receptor family, the discoidin domain receptors, has become apparent. This review will specifically focus on the roles of discoidin domain receptors in mineralized tissue development as well as related functions in abnormal bone formation, regeneration and metabolism.
Collapse
Affiliation(s)
- Renny T. Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Shawn A. Hallett
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Chunxi Ge
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Tröster A, DiPrima M, Jores N, Kudlinzki D, Sreeramulu S, Gande SL, Linhard V, Ludig D, Schug A, Saxena K, Reinecke M, Heinzlmeir S, Leisegang MS, Wollenhaupt J, Lennartz F, Weiss MS, Kuster B, Tosato G, Schwalbe H. Optimization of the Lead Compound NVP-BHG712 as a Colorectal Cancer Inhibitor. Chemistry 2023; 29:e202203967. [PMID: 36799129 PMCID: PMC10133194 DOI: 10.1002/chem.202203967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
The ephrin type-A receptor 2 (EPHA2) kinase belongs to the largest family of receptor tyrosine kinases. There are several indications of an involvement of EPHA2 in the development of infectious diseases and cancer. Despite pharmacological potential, EPHA2 is an under-examined target protein. In this study, we synthesized a series of derivatives of the inhibitor NVP-BHG712 and triazine-based compounds. These compounds were evaluated to determine their potential as kinase inhibitors of EPHA2, including elucidation of their binding mode (X-ray crystallography), affinity (microscale thermophoresis), and selectivity (Kinobeads assay). Eight inhibitors showed affinities in the low-nanomolar regime (KD <10 nM). Testing in up to seven colon cancer cell lines that express EPHA2 reveals that several derivatives feature promising effects for the control of human colon carcinoma. Thus, we have developed a set of powerful tool compounds for fundamental new research on the interplay of EPH receptors in a cellular context.
Collapse
Affiliation(s)
- Alix Tröster
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Michael DiPrima
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus, Building 37, Room 4124, Bethesda, MD 20892, USA
| | - Nathalie Jores
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Denis Kudlinzki
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Santosh L. Gande
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| | - Verena Linhard
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Damian Ludig
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Alexander Schug
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Krishna Saxena
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Maria Reinecke
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
- German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
| | - Matthias S. Leisegang
- Institute for Cardiovascular Physiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)
| | - Frank Lennartz
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)
| | - Manfred S. Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
- German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus, Building 37, Room 4124, Bethesda, MD 20892, USA
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| |
Collapse
|
9
|
Li X, Chen H, Zhang D. Discoidin domain receptor 1 may be involved in biological barrier homeostasis. J Clin Pharm Ther 2022; 47:2397-2407. [PMID: 35665520 DOI: 10.1111/jcpt.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase involved in the pathological processes of several diseases, such as keloid formation, renal fibrosis, atherosclerosis, tumours, and inflammatory processes. The biological barrier is the first line of defence against pathogens, and its disruption is closely related to diseases. In this review, we attempt to elucidate the relationship between DDR1 and the biological barrier, explore the potential biological value of DDR1, and review the current research status and clinical potential of DDR1-selective inhibitors. METHODS We conducted an extensive literature search on PubMed to collect studies on the relevance of DDR1 to biological barriers and DDR1-selective inhibitors. With these studies, we explored the relationship between DDR1 and biological barriers and briefly reviewed representative DDR1-selective inhibitors that have been reported in recent years. RESULTS AND DISCUSSION First, the review of the potential mechanisms by which DDR1 regulates biological barriers, including the epithelial, vascular, glomerular filtration, blood-labyrinth, and blood-brain barriers. In the body, DDR1 dysfunction and aberrant expression may be involved in the homeostasis of the biological barrier. Secondly, the review of DDR1 inhibitors reported in recent years shows that DDR1-targeted inhibition is an attractive and promising pharmacological intervention. WHAT IS NEW AND CONCLUSIONS This review shows that DDR1 is involved in various physiological and pathological processes and in the regulation of biological barrier homeostasis. However, studies on DDR1 and biological barriers are still scarce, and further studies are needed to elucidate their specific mechanisms. The development of targeted inhibitors provides a new direction and idea to study the mechanism of DDR1.
Collapse
Affiliation(s)
- Xiaoli Li
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Huiling Chen
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, LanZhou University, Lanzhou, China
| |
Collapse
|
10
|
Prasad Shenoy G, Pal R, Gurubasavaraja Swamy P, Singh E, Manjunathaiah Raghavendra N, Sanjay Dhiwar P. Discoidin Domain Receptor Inhibitors as Anticancer Agents: A Systematic Review on Recent Development of DDRs Inhibitors, their Resistance and Structure Activity Relationship. Bioorg Chem 2022; 130:106215. [DOI: 10.1016/j.bioorg.2022.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/02/2022]
|
11
|
Pandrala M, Bruyneel AAN, Hnatiuk AP, Mercola M, Malhotra SV. Designing Novel BCR-ABL Inhibitors for Chronic Myeloid Leukemia with Improved Cardiac Safety. J Med Chem 2022; 65:10898-10919. [PMID: 35944901 PMCID: PMC9421657 DOI: 10.1021/acs.jmedchem.1c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Development of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL oncogene constitutes an effective approach for the treatment of chronic myeloid leukemia (CML) and/or acute lymphoblastic leukemia. However, currently available inhibitors are limited by drug resistance and toxicity. Ponatinib, a third-generation inhibitor, has demonstrated excellent efficacy against both wild type and mutant BCR-ABL kinase, including the "gatekeeper" T315I mutation that is resistant to all other currently available TKIs. However, it is one of the most cardiotoxic of the FDA-approved TKIs. Herein, we report the structure-guided design of a novel series of potent BCR-ABL inhibitors, particularly for the T315I mutation. Our drug design paradigm was coupled to iPSC-cardiomyocyte models. Systematic structure-activity relationship studies identified two compounds, 33a and 36a, that significantly inhibit the kinase activity of both native BCR-ABL and the T315I mutant. We have identified the most cardiac-safe TKIs reported to date, and they may be used to effectively treat CML patients with the T315I mutation.
Collapse
Affiliation(s)
- Mallesh Pandrala
- Department
of Cell, Developmental and Cancer Biology, Center for Experimental
Therapeutics, Knight Cancer Institute, Oregon
Health and Science University, Portland, Oregon 97201, United States
| | - Arne Antoon N. Bruyneel
- Cardiovascular
Institute and Department of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Anna P. Hnatiuk
- Cardiovascular
Institute and Department of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Mark Mercola
- Cardiovascular
Institute and Department of Medicine, Stanford
University, Stanford, California 94305, United States,
| | - Sanjay V. Malhotra
- Department
of Cell, Developmental and Cancer Biology, Center for Experimental
Therapeutics, Knight Cancer Institute, Oregon
Health and Science University, Portland, Oregon 97201, United States,
| |
Collapse
|
12
|
Jang H, Lee C, Hwang Y, Lee SJ. Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences. Dalton Trans 2021; 50:17817-17831. [PMID: 34806716 DOI: 10.1039/d1dt03501k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding ability of lectins has gained attention owing to the carbohydrate-specific interactions of these proteins. Such interactions can be applied to diverse fields of biotechnology, including the detection, isolation, and concentration of biological target molecules. The physiological aspects of the lectin concanavalin A (ConA) have been intensively studied through structural and functional investigations. X-ray crystallography studies have proven that ConA has two β-sheets and a short α-helix and that it exists in the form of a metalloprotein containing Mn2+ and Ca2+. These heterometals are coordinated with side chains located in a metal-coordinated domain (MCD), and they affect the structural environment in the carbohydrate-binding domain (CBD), which interacts with carbohydrates through hydrogen bonds. Recent studies have shown that ConA can regulate biophysical interactions with glycoproteins in virus envelopes because it specifically interacts with diverse polysaccharides through its CBD (Tyr, Asn, Asp, and Arg residues positioned next to the MCD). Owing to their protein-protein interaction abilities, ConA can form diverse self-assembled complexes including monomers, dimers, trimers, and tetramers, thus affording unique results in different applications. In this regard, herein, we present a review of the structural modifications in ConA through metal-ion coordination and their effect on complex formation. In recent approaches, ConA has been applied for viral protein detection, on the basis of the interactions of ConA. These aspects indicate that lectins should be thoroughly investigated with respect to their biophysical interactions, for avoiding unexpected changes in their interaction abilities.
Collapse
Affiliation(s)
- Hara Jang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Chaemin Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Yunha Hwang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seung Jae Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
13
|
Denny WA, Flanagan JU. Inhibitors of Discoidin Domain Receptor (DDR) Kinases for Cancer and Inflammation. Biomolecules 2021; 11:1671. [PMID: 34827669 PMCID: PMC8615839 DOI: 10.3390/biom11111671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/22/2023] Open
Abstract
The discoidin domain receptor tyrosine kinases DDR1 and DDR2 are distinguished from other kinase enzymes by their extracellular domains, which interact with collagen rather than with peptidic growth factors, before initiating signaling via tyrosine phosphorylation. They share significant sequence and structural homology with both the c-Kit and Bcr-Abl kinases, and so many inhibitors of those kinases are also effective. Nevertheless, there has been an extensive research effort to develop potent and specific DDR inhibitors. A key interaction for many of these compounds is H-bonding to Met-704 in a hydrophobic pocket of the DDR enzyme. The most widespread use of DDR inhibitors has been for cancer therapy, but they have also shown effectiveness in animal models of inflammatory conditions such as Alzheimer's and Parkinson's diseases, and in chronic renal failure and glomerulonephritis.
Collapse
Affiliation(s)
- William A. Denny
- Auckland Cancer Society Research Centre, Maurice Wilkins Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand;
| | - Jack U. Flanagan
- Auckland Cancer Society Research Centre, Maurice Wilkins Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand;
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Röhm S, Berger BT, Schröder M, Chatterjee D, Mathea S, Joerger AC, Pinkas DM, Bufton JC, Tjaden A, Kovooru L, Kudolo M, Pohl C, Bullock AN, Müller S, Laufer S, Knapp S. Development of a Selective Dual Discoidin Domain Receptor (DDR)/p38 Kinase Chemical Probe. J Med Chem 2021; 64:13451-13474. [PMID: 34506142 DOI: 10.1021/acs.jmedchem.1c00868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Discoidin domain receptors 1 and 2 (DDR1/2) play a central role in fibrotic disorders, such as renal and pulmonary fibrosis, atherosclerosis, and various forms of cancer. Potent and selective inhibitors, so-called chemical probe compounds, have been developed to study DDR1/2 kinase signaling. However, these inhibitors showed undesired activity on other kinases such as the tyrosine protein kinase receptor TIE or tropomyosin receptor kinases, which are related to angiogenesis and neuronal toxicity. In this study, we optimized our recently published p38 mitogen-activated protein kinase inhibitor 7 toward a potent and cell-active dual DDR/p38 chemical probe and developed a structurally related negative control. The structure-guided design approach used provided insights into the P-loop folding process of p38 and how targeting of non-conserved amino acids modulates inhibitor selectivity. The developed and comprehensively characterized DDR/p38 probe, 30 (SR-302), is a valuable tool for studying the role of DDR kinase in normal physiology and in disease development.
Collapse
Affiliation(s)
- Sandra Röhm
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Martin Schröder
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Deep Chatterjee
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Daniel M Pinkas
- Centre for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Joshua C Bufton
- Centre for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lohitesh Kovooru
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institute of Biochemistry II, Faculty of Medicine, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Mark Kudolo
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Christian Pohl
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institute of Biochemistry II, Faculty of Medicine, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Elkamhawy A, Lu Q, Nada H, Woo J, Quan G, Lee K. The Journey of DDR1 and DDR2 Kinase Inhibitors as Rising Stars in the Fight Against Cancer. Int J Mol Sci 2021; 22:ijms22126535. [PMID: 34207360 PMCID: PMC8235339 DOI: 10.3390/ijms22126535] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Discoidin domain receptor (DDR) is a collagen-activated receptor tyrosine kinase that plays critical roles in regulating essential cellular processes such as morphogenesis, differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. As a result, DDR dysregulation has been attributed to a variety of human cancer disorders, for instance, non-small-cell lung carcinoma (NSCLC), ovarian cancer, glioblastoma, and breast cancer, in addition to some inflammatory and neurodegenerative disorders. Since the target identification in the early 1990s to date, a lot of efforts have been devoted to the development of DDR inhibitors. From a medicinal chemistry perspective, we attempted to reveal the progress in the development of the most promising DDR1 and DDR2 small molecule inhibitors covering their design approaches, structure-activity relationship (SAR), biological activity, and selectivity.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Qili Lu
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Jiyu Woo
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Guofeng Quan
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
- Correspondence:
| |
Collapse
|
16
|
DDR1 and DDR2: a review on signaling pathway and small molecule inhibitors as an anticancer agent. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02694-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Chen T, Zhu G, Meng X, Zhang X. Recent developments of small molecules with anti-inflammatory activities for the treatment of acute lung injury. Eur J Med Chem 2020; 207:112660. [DOI: 10.1016/j.ejmech.2020.112660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
|
18
|
Huang M, Huang Y, Guo J, Yu L, Chang Y, Wang X, Luo J, Huang Y, Tu Z, Lu X, Xu Y, Zhang Z, Zhang Z, Ding K. Pyrido[2, 3-d]pyrimidin-7(8H)-ones as new selective orally bioavailable Threonine Tyrosine Kinase (TTK) inhibitors. Eur J Med Chem 2020; 211:113023. [PMID: 33248853 DOI: 10.1016/j.ejmech.2020.113023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 11/10/2020] [Indexed: 01/12/2023]
Abstract
A series of pyrido [2, 3-d]pyrimidin-7(8H)-ones were designed and synthesized as new selective orally bioavailable Threonine Tyrosine Kinase (TTK) inhibitors. One of the representative compounds, 5o, exhibited strong binding affinity with a Kd value of 0.15 nM, but was significantly less potent against a panel of 402 wild-type kinases at 100 nM. The compound also potently inhibited the kinase activity of TTK with an IC50 value of 23 nM, induced chromosome missegregation and aneuploidy, and suppressed proliferation of a panel of human cancer cell lines with low μM IC50 values. Compound 5o demonstrated good oral pharmacokinetic properties with a bioavailability value of 45.3% when administered at a dose of 25 mg/kg in rats. Moreover, a combination therapy of 5o with paclitaxel displayed promising in vivo efficacy against the HCT-116 human colon cancer xenograft model in nude mice with a Tumor Growth Inhibition (TGI) value of 78%. Inhibitor 5o may provide a new research tool for further validating therapeutic potential of TTK inhibition.
Collapse
Affiliation(s)
- Minhao Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Yongjun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lei Yu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yu Chang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaolu Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Yanhui Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zhengchao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yong Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zhimin Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
19
|
Allosterische Kinaseinhibitoren – Erwartungen und Chancen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Lu X, Smaill JB, Ding K. New Promise and Opportunities for Allosteric Kinase Inhibitors. Angew Chem Int Ed Engl 2020; 59:13764-13776. [PMID: 31889388 DOI: 10.1002/anie.201914525] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Drugs that function through allosteric inhibition of kinase signaling represent a promising approach for the targeted discovery of therapeutics. The majority of developed allosteric kinase inhibitors are characterized as type III and IV inhibitors that show good kinome selectivity but generally lack the subtype selectivity of same kinase family. Recently allosteric inhibitors have been developed that bind outside the catalytic kinase domain with high selectivity for specific kinase subtypes. Allosteric inhibitors that bind to the pseudokinase domain of pseudokinase or the extracellular domain of receptor tyrosine kinases are reviewed. We also review recent developments in the field of allosteric kinase inhibitors including examples of proteolysis targeting chimeras, and highlight the unique binding modes for each type of inhibitors and address future opportunities in this area.
Collapse
Affiliation(s)
- Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| |
Collapse
|
21
|
Mo C, Zhang Z, Li Y, Huang M, Zou J, Luo J, Tu ZC, Xu Y, Ren X, Ding K, Lu X. Design and Optimization of 3'-(Imidazo[1,2- a]pyrazin-3-yl)-[1,1'-biphenyl]-3-carboxamides as Selective DDR1 Inhibitors. ACS Med Chem Lett 2020; 11:379-384. [PMID: 32184973 DOI: 10.1021/acsmedchemlett.9b00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022] Open
Abstract
DDR1 is considered as a promising target for cancer therapy, and selective inhibitors against DDR1 over other kinases may be considered as promising therapeutic agents. Herein, we have identified a series of 3'-(imidazo[1,2-a]pyrazin-3-yl)-[1,1'-biphenyl]-3-carboxamides as novel selective DDR1 inhibitors. Among these, compound 8v potently inhibited DDR1 with an IC50 of 23.8 nM, while it showed less inhibitory activity against DDR2 (IC50 = 1740 nM) and negligible activities against Bcr-Abl (IC50 > 10 μM) and c-Kit (IC50 > 10 μM). 8v also exhibited excellent selectivity in a KINOMEscan screening platform with 468 kinases. This compound dose-dependently suppressed NSCLC cell tumorigenicity, migration, and invasion. Collectively, these studies support its potential application for treatment of NSCLC.
Collapse
Affiliation(s)
- Cheng Mo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yupeng Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Minhao Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jian Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zheng-Chao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
22
|
Zhu D, Huang H, Pinkas DM, Luo J, Ganguly D, Fox AE, Arner E, Xiang Q, Tu ZC, Bullock AN, Brekken RA, Ding K, Lu X. 2-Amino-2,3-dihydro-1 H-indene-5-carboxamide-Based Discoidin Domain Receptor 1 (DDR1) Inhibitors: Design, Synthesis, and in Vivo Antipancreatic Cancer Efficacy. J Med Chem 2019; 62:7431-7444. [PMID: 31310125 PMCID: PMC6985936 DOI: 10.1021/acs.jmedchem.9b00365] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A series of 2-amino-2,3-dihydro-1H-indene-5-carboxamides were designed and synthesized as new selective discoidin domain receptor 1 (DDR1) inhibitors. One of the representative compounds, 7f, bound with DDR1 with a Kd value of 5.9 nM and suppressed the kinase activity with an half-maximal (50%) inhibitory concentration value of 14.9 nM. 7f potently inhibited collagen-induced DDR1 signaling and epithelial-mesenchymal transition, dose-dependently suppressed colony formation of pancreatic cancer cells, and exhibited promising in vivo therapeutic efficacy in orthotopic mouse models of pancreatic cancer.
Collapse
Affiliation(s)
- Dongsheng Zhu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy , Jinan University , 601 Huangpu Avenue West , Guangzhou 510632 , China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China
| | - Huocong Huang
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research , UT Southwestern , Dallas , Texas 75390-8593 , United States
| | - Daniel M Pinkas
- Structural Genomics Consortium , University of Oxford , Old Road Campus Research Building, Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China
| | - Debolina Ganguly
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research , UT Southwestern , Dallas , Texas 75390-8593 , United States
| | - Alice E Fox
- Structural Genomics Consortium , University of Oxford , Old Road Campus Research Building, Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Emily Arner
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research , UT Southwestern , Dallas , Texas 75390-8593 , United States
| | - Qiuping Xiang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China
| | - Zheng-Chao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China
| | - Alex N Bullock
- Structural Genomics Consortium , University of Oxford , Old Road Campus Research Building, Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research , UT Southwestern , Dallas , Texas 75390-8593 , United States
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy , Jinan University , 601 Huangpu Avenue West , Guangzhou 510632 , China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy , Jinan University , 601 Huangpu Avenue West , Guangzhou 510632 , China
| |
Collapse
|
23
|
Huang H, Wright S, Zhang J, Brekken RA. Getting a grip on adhesion: Cadherin switching and collagen signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118472. [PMID: 30954569 DOI: 10.1016/j.bbamcr.2019.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a developmental biological process that is hijacked during tumor progression. Cadherin switching, which disrupts adherens junctions and alters cadherin-associated signaling pathways, is common during EMT. In many tumors, substantial extracellular matrix (ECM) is deposited. Collagen is the most abundant ECM constituent and it mediates specific signaling pathways by binding to integrins and discoidin domain receptors (DDRs). The interaction of the collagen receptors results in activation of signaling pathways that promote tumor progression including an induction of the cadherin switching. DDR inhibitors have demonstrated anticancer therapeutic efficacy preclinically by inhibiting the collagen signaling. Understanding how collagen signaling impacts cellular processes including EMT and cadherin switching is of great interest especially given the strong interest in stromal targeted therapies for desmoplastic cancers.
Collapse
Affiliation(s)
- Huocong Huang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven Wright
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junqiu Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Huang YY, Yu YF, Zhang C, Chen Y, Zhou Q, Li Z, Zhou S, Li Z, Guo L, Wu D, Wu Y, Luo HB. Validation of Phosphodiesterase-10 as a Novel Target for Pulmonary Arterial Hypertension via Highly Selective and Subnanomolar Inhibitors. J Med Chem 2019; 62:3707-3721. [PMID: 30888810 DOI: 10.1021/acs.jmedchem.9b00224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) causes pathological increase in pulmonary vascular resistance, leading to right-heart failure and eventual death. Previously, phosphodiesterase-10 (PDE10) was reported to be a promising target for PAH based on the studies with a nonselective PDE inhibitor papaverine, but little progress has been made to confirm the practical application of PDE10 inhibitors. To validate whether PAH is ameliorated by PDE10 inhibition rather than other PDE isoforms, here we report an integrated strategy to discover highly selective PDE10 inhibitors as chemical probes. Structural optimization resulted in a PDE10 inhibitor 2b with subnanomolar affinity and good selectivity of >45 000-fold against other PDEs. The cocrystal structure of the PDE10-2b complex revealed an important H-bond interaction between 2b and Tyr693. Finally, compound 2b significantly decreased the arterial pressure in PAH rats and thus validated the potential of PDE10 as a novel anti-PAH target. These findings suggest that PDE10 inhibition may be a viable treatment option for PAH.
Collapse
Affiliation(s)
- Yi-You Huang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Yan-Fa Yu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Chen Zhang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Yiping Chen
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Qian Zhou
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Zhuoming Li
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Sihang Zhou
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Zhe Li
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Lei Guo
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Deyan Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Yinuo Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| |
Collapse
|