1
|
Navals P, Kwiatkowska A, Mekdad N, Couture F, Desjardins R, Day R, Dory YL. Enhancing the Drug-Like Profile of a Potent Peptide PACE4 Inhibitor by the Formation of a Host-Guest Inclusion Complex with β-Cyclodextrin. Mol Pharm 2023; 20:4559-4573. [PMID: 37555521 DOI: 10.1021/acs.molpharmaceut.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The enzyme PACE4 has been validated as a promising therapeutic target to expand the range of prostate cancer (PCa) treatments. In recent years, we have developed a potent peptidomimetic inhibitor, namely, compound C23 (Ac-(DLeu)LLLRVK-4-amidinobenzylamide). Like many peptides, C23 suffers from an unfavorable drug-like profile which, despite our efforts, has not yet benefited from the usual SAR studies. Hence, we turned our attention toward a novel formulation strategy, i.e., the use of cyclodextrins (CDs). CDs can benefit compounds through the formation of "host-guest" complexes, shielding the guest from degradation and enhancing biological survival. In this study, a series of βCD-C23 complexes have been generated and their properties evaluated, including potency toward the enzyme in vitro, a cell-based proliferation assay, and stability in plasma. As a result, a new βCD-formulated lead compound has been identified, which, in addition to being more soluble and more potent, also showed an improved stability profile.
Collapse
Affiliation(s)
- Pauline Navals
- Institut de Pharmacologie de Sherbrooke, Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Anna Kwiatkowska
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Nawel Mekdad
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Frédéric Couture
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Roxane Desjardins
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Robert Day
- Phenoswitch Bioscience Inc, 975 Rue Léon-Trépanier, Sherbrooke, Québec J1G 5J6, Canada
| | - Yves L Dory
- Institut de Pharmacologie de Sherbrooke, Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
2
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|