1
|
Anandhan R, Prasanth K, Nithishkumar P. Purple light-induced Ritter-type reaction of diazophosphonates: access to α-amido-β-keto phosphonates. Org Biomol Chem 2024; 22:8401-8406. [PMID: 39329525 DOI: 10.1039/d4ob01212g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A Ritter-type reaction of diazophosphonates to synthesize α-amido-β-keto phosphonates has been reported in this study under purple light in the absence of a photocatalyst. This protocol shows that the synthesis of the amide functionality involves in situ generation of a carbene, followed by C-N bond formation with a nitrile. The purple LED irradiation alone is sufficient for the efficient transformation to afford synthetic routes to various amide moieties. A rationalization of the reaction mechanism was well supported by control experiments. A library of α-amido-β-keto phosphonates has been well documented for the synthetic community.
Collapse
Affiliation(s)
- Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India.
| | - Kesavan Prasanth
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India.
| | | |
Collapse
|
2
|
Kim T, Jin F, Titi HM, Tsantrizos YS. Diastereoselective Synthesis of Phosphinyl Peptides via Rh-Catalyzed 1,4-Addition in Coparticipation of a P-Chiral Moiety and Difluorphos. J Org Chem 2024; 89:13418-13428. [PMID: 39208077 DOI: 10.1021/acs.joc.4c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The asymmetric Rh-catalyzed 1,4-addition of aryl/heteroaryl moieties to α,β-unsaturated esters was achieved in high diastereoselectivity via the coparticipation of a P-chiral phosphinyl moiety at Cβ to the prochiral center and (R)- or (S)-Difluorphos. This methodology expands the synthetic toolbox available for the preparation of structurally diverse chiral phosphinyl peptides.
Collapse
Affiliation(s)
- Taeok Kim
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G8, Canada
| | - Fuqing Jin
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G8, Canada
| | - Hatem M Titi
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G8, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
3
|
Zhang G, Wodrich MD, Cramer N. Catalytic enantioselective reductive Eschenmoser-Claisen rearrangements. Science 2024; 383:395-401. [PMID: 38271525 DOI: 10.1126/science.adl3369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
An important challenge in enantioselective catalysis is developing strategies for the precise synthesis of neighboring congested all-carbon quaternary stereocenters. The well-defined transition states of [3,3]-sigmatropic rearrangements and their underlying stereospecificity render them powerful tools for the synthesis of such arrays. However, this type of pericyclic reaction remains notoriously difficult to catalyze, especially in an enantioselective fashion. Herein, we describe an enantioselective reductive Eschenmoser-Claisen rearrangement catalyzed by chiral 1,3,2-diazaphospholene-hydrides. This developed transformation enables full control of the two newly formed acyclic stereogenic centers, leading to amides with vicinal all-carbon quaternary-tertiary or quaternary-quaternary carbon atoms.
Collapse
Affiliation(s)
- Guoting Zhang
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Matthew D Wodrich
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Lelis A, Skoulikas N, Papathanasopoulou M, Voreakos K, Georgiadis D. Diastereoselective Synthesis of Phosphinic Dipeptide Isosteres: Domino Chirality Transfer during a Stereocontrolled P-Michael Reaction. Org Lett 2023; 25:6623-6627. [PMID: 37669620 DOI: 10.1021/acs.orglett.3c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A highly diastereoselective P-Michael addition of chiral aminophosphinic acids to achiral acrylates has been developed, leading to phosphinic dipeptide isosteres in high yields and dr of up to >50:1. The method allows for the diastereoselective preparation of target compounds without the need for chiral auxiliaries or P-chiral substrates. A possible mechanistic explanation involves a domino chirality transfer from the aminophosphinic acid to the P center, amplified by a crucial benzhydryl ester group, and then to the α-carbon.
Collapse
Affiliation(s)
- Angelos Lelis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece
| | - Nikolaos Skoulikas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece
| | - Mirto Papathanasopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece
| | - Kostas Voreakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece
| |
Collapse
|
5
|
Georgiadis D, Skoulikas N, Papakyriakou A, Stratikos E. Phosphinic Peptides as Tool Compounds for the Study of Pharmacologically Relevant Zn-Metalloproteases. ACS Pharmacol Transl Sci 2022; 5:1228-1253. [PMID: 36524013 PMCID: PMC9745897 DOI: 10.1021/acsptsci.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Phosphinic peptides constitute an important class of bioactive compounds that have found a wide range of applications in the field of biology and pharmacology of Zn-metalloproteases, the largest family of proteases in humans. They are designed to mimic the structure of natural substrates during their proteolysis, thus acting as mechanism-based, transition state analogue inhibitors. A combination of electrostatic interactions between the phosphinic acid group and the Zn cation as well as optimal noncovalent enzyme-ligand interactions can result in both high binding affinity for the desired target and selectivity against other proteases. Due to these unique properties, phosphinic peptides have been mainly employed as tool compounds for (a) the purposes of rational drug design by serving as ligands in X-ray crystal structures of target enzymes and allowing the identification of crucial interactions that govern optimal molecular recognition, and (b) the delineation of biological pathways where Zn-metalloproteases are key regulators. For the latter objective, inhibitors of the phosphinopeptidic type have been used either unmodified or after being transformed to probes of various types, thus expanding the arsenal of functional tools available to researchers. The aim of this review is to summarize all recent research achievements in which phosphinic peptides have played a central role as tool compounds in the understanding of the mechanism and biological functions of Zn-metalloproteases in both health and disease.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
| | - Nikolaos Skoulikas
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
| | - Athanasios Papakyriakou
- National
Centre for Scientific Research “Demokritos”, Agia Paraskevi GR-15341 Athens, Greece
| | - Efstratios Stratikos
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
- National
Centre for Scientific Research “Demokritos”, Agia Paraskevi GR-15341 Athens, Greece
| |
Collapse
|
6
|
Liu W, Jiang J, Lin Y, You Q, Wang L. Insight into Thermodynamic and Kinetic Profiles in Small-Molecule Optimization. J Med Chem 2022; 65:10809-10847. [PMID: 35969687 DOI: 10.1021/acs.jmedchem.2c00682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-activity relationships (SARs) and structure-property relationships (SPRs) have been considered the most important factors during the drug optimization process. For medicinal chemists, improvements in the potencies and druglike properties of small molecules are regarded as their major goals. Among them, the binding affinity and selectivity of small molecules on their targets are the most important indicators. In recent years, there has been growing interest in using thermodynamic and kinetic profiles to analyze ligand-receptor interactions, which could provide not only binding affinities but also detailed binding parameters for small-molecule optimization. In this perspective, we are trying to provide an insight into thermodynamic and kinetic profiles in small-molecule optimization. Through a highlight of strategies on the small-molecule optimization with specific cases, we aim to put forward the importance of structure-thermodynamic relationships (STRs) and structure-kinetic relationships (SKRs), which could provide more guidance to find safe and effective small-molecule drugs.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jingsheng Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yating Lin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
7
|
Kokkala P, Voreakos K, Lelis A, Patiniotis K, Skoulikas N, Devel L, Ziotopoulou A, Kaloumenou E, Georgiadis D. Practical Synthesis of Phosphinic Dipeptides by Tandem Esterification of Aminophosphinic and Acrylic Acids under Silylating Conditions. Molecules 2022; 27:molecules27041242. [PMID: 35209031 PMCID: PMC8876710 DOI: 10.3390/molecules27041242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this report, a synthetic protocol for the preparation of phosphinic dipeptides of type 5 is presented. These compounds serve as valuable building blocks for the development of highly potent phosphinopeptidic inhibitors of medicinally relevant Zn-metalloproteases and aspartyl proteases. The proposed method is based on the tandem esterification of α-aminophosphinic and acrylic acids under silylating conditions in order to subsequently participate in a P-Michael reaction. The scope of the transformation was investigated by using a diverse set of readily available acrylic acids and (R)-α-aminophosphinic acids, and high yields were achieved in all cases. In most examples reported herein, the isolation of biologically relevant (R,S)-diastereoisomers became possible by simple crystallization from the crude products, thus enhancing the operational simplicity of the proposed method. Finally, functional groups corresponding to acidic or basic natural amino acids are also compatible with the reaction conditions. Based on the above, we expect that the practicality of the proposed protocol will facilitate the discovery of pharmacologically useful bioactive phosphinic peptides.
Collapse
Affiliation(s)
- Paraskevi Kokkala
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Kostas Voreakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Angelos Lelis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Konstantinos Patiniotis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Nikolaos Skoulikas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Laurent Devel
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France;
| | - Angeliki Ziotopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Eleni Kaloumenou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece; (P.K.); (K.V.); (A.L.); (K.P.); (N.S.); (A.Z.); (E.K.)
- Correspondence: ; Tel.: +30-2107274903
| |
Collapse
|
8
|
Liu D, Ke M, Ru T, Ning Y, Chen FE. Room-temperature Pd-catalyzed methoxycarbonylation of terminal alkynes with high branched selectivity enabled by bisphosphine-picolinamide ligand. Chem Commun (Camb) 2021; 58:1041-1044. [PMID: 34951615 DOI: 10.1039/d1cc06098h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the room-temperature Pd-catalyzed methoxy-carbonylation with high branched selectivity using a new class of bisphosphine-picolinamide ligands. Systematic optimization of ligand structures and reaction conditions revealed the significance of both the picolinamide and bisphosphine groups in the ligand backbone. This strategic design of ligand was leveraged to deliver various α-substituted acrylates in good to excellent yields.
Collapse
Affiliation(s)
- Ding Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Miaolin Ke
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China. .,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Tong Ru
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China. .,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Yingtang Ning
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China. .,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, China. .,Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
9
|
Kokkala P, Rajeshkumar T, Mpakali A, Stratikos E, Vogiatzis KD, Georgiadis D. A Carbodiimide-Mediated P-C Bond-Forming Reaction: Mild Amidoalkylation of P-Nucleophiles by Boc-Aminals. Org Lett 2021; 23:1726-1730. [PMID: 33617265 DOI: 10.1021/acs.orglett.1c00155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first example of a carbodiimide-mediated P-C bond-forming reaction is described. The reaction involves activation of β-carboxyethylphosphinic acids and subsequent reaction with Boc-aminals using acid-catalysis. Mechanistic experiments using 31P NMR spectroscopy and DFT calculations support the contribution of unusually reactive cyclic phosphinic/carboxylic mixed anhydrides in a reaction pathway involving ion-pair "swapping". The utility of this protocol is highlighted by the direct synthesis of Boc-protected phosphinic dipeptides, as precursors to potent Zn-aminopeptidase inhibitors.
Collapse
Affiliation(s)
- Paraskevi Kokkala
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784, Athens, Greece
| | - Thayalan Rajeshkumar
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341 Athens, Greece.,Department of Chemistry, Laboratory of Biochemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784, Athens, Greece
| | - Konstantinos D Vogiatzis
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784, Athens, Greece
| |
Collapse
|
10
|
Xiong W, Shi F, Cheng R, Zhu B, Wang L, Chen P, Lou H, Wu W, Qi C, Lei M, Jiang H. Palladium-Catalyzed Highly Regioselective Hydrocarboxylation of Alkynes with Carbon Dioxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01687] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruixiang Cheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Baiyao Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pengquan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongming Lou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|