1
|
Hammerschmidt SJ, Huber S, Braun NJ, Lander M, Steinmetzer T, Kersten C. Thermodynamic characterization of a macrocyclic Zika virus NS2B/NS3 protease inhibitor and its acyclic analogs. Arch Pharm (Weinheim) 2022; 356:e2200518. [PMID: 36480352 DOI: 10.1002/ardp.202200518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Cyclization of small molecules is a widely applied strategy in drug design for ligand optimization to improve affinity, as it eliminates the putative need for structural preorganization of the ligand before binding, or to improve pharmacokinetic properties. In this work, we provide a deeper insight into the binding thermodynamics of a macrocyclic Zika virus NS2B/NS3 protease inhibitor and its linear analogs. Characterization of the thermodynamic binding profiles by isothermal titration calorimetry experiments revealed an unfavorable entropy of the macrocycle compared to the open linear reference ligands. Molecular dynamic simulations and X-ray crystal structure analysis indicated only minor benefits from macrocyclization to fixate a favorable conformation, while linear ligands retained some flexibility even in the protein-bound complex structure, possibly explaining the initially surprising effect of a higher entropic penalty for the macrocyclic ligand.
Collapse
Affiliation(s)
- Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Simon Huber
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Niklas J Braun
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Marc Lander
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Minetti CA, Remeta DP. Forces Driving a Magic Bullet to Its Target: Revisiting the Role of Thermodynamics in Drug Design, Development, and Optimization. Life (Basel) 2022; 12:1438. [PMID: 36143474 PMCID: PMC9504344 DOI: 10.3390/life12091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022] Open
Abstract
Drug discovery strategies have advanced significantly towards prioritizing target selectivity to achieve the longstanding goal of identifying "magic bullets" amongst thousands of chemical molecules screened for therapeutic efficacy. A myriad of emerging and existing health threats, including the SARS-CoV-2 pandemic, alarming increase in bacterial resistance, and potentially fatal chronic ailments, such as cancer, cardiovascular disease, and neurodegeneration, have incentivized the discovery of novel therapeutics in treatment regimens. The design, development, and optimization of lead compounds represent an arduous and time-consuming process that necessitates the assessment of specific criteria and metrics derived via multidisciplinary approaches incorporating functional, structural, and energetic properties. The present review focuses on specific methodologies and technologies aimed at advancing drug development with particular emphasis on the role of thermodynamics in elucidating the underlying forces governing ligand-target interaction selectivity and specificity. In the pursuit of novel therapeutics, isothermal titration calorimetry (ITC) has been utilized extensively over the past two decades to bolster drug discovery efforts, yielding information-rich thermodynamic binding signatures. A wealth of studies recognizes the need for mining thermodynamic databases to critically examine and evaluate prospective drug candidates on the basis of available metrics. The ultimate power and utility of thermodynamics within drug discovery strategies reside in the characterization and comparison of intrinsic binding signatures that facilitate the elucidation of structural-energetic correlations which assist in lead compound identification and optimization to improve overall therapeutic efficacy.
Collapse
Affiliation(s)
- Conceição A. Minetti
- Department of Chemistry and Chemical Biology, Rutgers—The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David P. Remeta
- Department of Chemistry and Chemical Biology, Rutgers—The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Feng M, Heinzelmann G, Gilson MK. Absolute binding free energy calculations improve enrichment of actives in virtual compound screening. Sci Rep 2022; 12:13640. [PMID: 35948614 PMCID: PMC9365818 DOI: 10.1038/s41598-022-17480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
We determined the effectiveness of absolute binding free energy (ABFE) calculations to refine the selection of active compounds in virtual compound screening, a setting where the more commonly used relative binding free energy approach is not readily applicable. To do this, we conducted baseline docking calculations of structurally diverse compounds in the DUD-E database for three targets, BACE1, CDK2 and thrombin, followed by ABFE calculations for compounds with high docking scores. The docking calculations alone achieved solid enrichment of active compounds over decoys. Encouragingly, the ABFE calculations then improved on this baseline. Analysis of the results emphasizes the importance of establishing high quality ligand poses as starting points for ABFE calculations, a nontrivial goal when processing a library of diverse compounds without informative co-crystal structures. Overall, our results suggest that ABFE calculations can play a valuable role in the drug discovery process.
Collapse
Affiliation(s)
- Mudong Feng
- Department of Chemistry and Biochemistry, and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, 92093, USA
| | - Germano Heinzelmann
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Michael K Gilson
- Department of Chemistry and Biochemistry, and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Liu H, Fu H, Chipot C, Shao X, Cai W. Accurate Description of Solvent-Exposed Salt Bridges with a Non-polarizable Force Field Incorporating Solvent Effects. J Chem Inf Model 2022; 62:3863-3873. [PMID: 35920605 DOI: 10.1021/acs.jcim.2c00678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The strength of salt bridges resulting from the interaction of cations and anions is modulated by their environment. However, polarization of the solvent molecules by the charged moieties makes the accurate description of cation-anion interactions in an aqueous solution by means of a pairwise additive potential energy function and classical combination rules particularly challenging. In this contribution, aiming at improving the representation of solvent-exposed salt-bridge interactions with an all-atom non-polarizable force field, we put forth here a parametrization strategy. First, the interaction of a cation and an anion is characterized by hybrid quantum mechanical/molecular mechanics (QM/MM) potential of mean force (PMF) calculations, whereby constantly exchanging solvent molecules around the ions are treated at the quantum mechanical level. The Lennard-Jones (LJ) parameters describing the salt-bridge ion pairs are then optimized to match the reference QM/MM PMFs through the so-called nonbonded FIX, or NBFIX, feature of the CHARMM force field. We apply the new set of parameters, coined CHARMM36m-SBFIX, to the calculation of association constants for the ammonium-acetate and guanidinium-acetate complexes, the osmotic pressures for glycine zwitterions, guanidinium, and acetate ions, and to the simulation of both folded and intrinsically disordered proteins. Our findings indicate that CHARMM36m-SBFIX improves the description of solvent-exposed salt-bridge interactions, both structurally and thermodynamically. However, application of this force field to the standard binding free-energy calculation of a protein-ligand complex featuring solvent-excluded salt-bridge interactions leads to a poor reproduction of the experimental value, suggesting that the parameters optimized in an aqueous solution cannot be readily transferred to describe solvent-excluded salt-bridge interactions. Put together, owing to their sensitivity to the environment, modeling salt-bridge interactions by means of a single, universal set of LJ parameters remains a daunting theoretical challenge.
Collapse
Affiliation(s)
- Han Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haohao Fu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, UMR n°7019, Université de Lorraine, F-54506 Vandœuvre-lès-Nancy, France.,Theoretical and Computational Biophysics Group, Beckman Institute, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana 61801, Illinois, United States.,Department of Biochemistry and Molecular Biology and Gordon Center for Integrative Science, The University of Chicago, Chicago 60637, Illinois, United States
| | - Xueguang Shao
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
5
|
Improving the selectivity of 3-amidinophenylalanine-derived matriptase inhibitors. Eur J Med Chem 2022; 238:114437. [DOI: 10.1016/j.ejmech.2022.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/19/2022]
|
6
|
Pantsar T, Kaiser PD, Kudolo M, Forster M, Rothbauer U, Laufer SA. Decisive role of water and protein dynamics in residence time of p38α MAP kinase inhibitors. Nat Commun 2022; 13:569. [PMID: 35091547 PMCID: PMC8799644 DOI: 10.1038/s41467-022-28164-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022] Open
Abstract
Target residence time plays a crucial role in the pharmacological activity of small molecule inhibitors. Little is known, however, about the underlying causes of inhibitor residence time at the molecular level, which complicates drug optimization processes. Here, we employ all-atom molecular dynamics simulations (~400 μs in total) to gain insight into the binding modes of two structurally similar p38α MAPK inhibitors (type I and type I½) with short and long residence times that otherwise show nearly identical inhibitory activities in the low nanomolar IC50 range. Our results highlight the importance of protein conformational stability and solvent exposure, buried surface area of the ligand and binding site resolvation energy for residence time. These findings are further confirmed by simulations with a structurally diverse short residence time inhibitor SB203580. In summary, our data provide guidance in compound design when aiming for inhibitors with improved target residence time. The molecular determinants of the residence time of a small molecule inhibitor at its target protein are not well understood. Here, Pantsar et al. show that the target protein’s conformational stability and solvent exposure are key factors governing the target residence time of kinase inhibitors.
Collapse
Affiliation(s)
- Tatu Pantsar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Philipp D Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770, Reutlingen, Germany
| | - Mark Kudolo
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Michael Forster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770, Reutlingen, Germany.,Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Markwiesenstrasse 55, 72770, Reutlingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Tuebingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany. .,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Tuebingen, Germany. .,Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany.
| |
Collapse
|
7
|
Götz C, Hinze G, Gellert A, Maus H, von Hammerstein F, Hammerschmidt SJ, Lauth LM, Hellmich UA, Schirmeister T, Basché T. Conformational Dynamics of the Dengue Virus Protease Revealed by Fluorescence Correlation and Single-Molecule FRET Studies. J Phys Chem B 2021; 125:6837-6846. [PMID: 34137269 DOI: 10.1021/acs.jpcb.1c01797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dengue virus protease (DENV-PR) represents an attractive target for counteracting DENV infections. It is generally assumed that DENV-PR can exist in an open and a closed conformation and that active site directed ligands stabilize the closed state. While crystal structures of both the open and the closed conformation were successfully resolved, information about the prevalence of these conformations in solution remains elusive. Herein, we address the question of whether there is an equilibrium between different conformations in solution which can be influenced by addition of a competitive inhibitor. To this end, DENV-PR was statistically labeled by two dye molecules constituting a FRET (fluorescence resonance energy transfer) couple. Fluorescence correlation spectroscopy and photon-burst detection were employed to examine FRET pair labeled DENV-PRs freely diffusing in solution. The measurements were performed with two double mutants and with two dye couples. The data provide strong evidence that an equilibrium of at least two conformations of DENV-PR exists in solution. The competitive inhibitor stabilizes the closed state. Because the open and closed conformations appear to coexist in solution, our results support the picture of a conformational selection rather than that of an induced fit mechanism with respect to the inhibitor-induced formation of the closed state.
Collapse
Affiliation(s)
- Christian Götz
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gerald Hinze
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea Gellert
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franziska von Hammerstein
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luca M Lauth
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ute A Hellmich
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Frankfurt, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Basché
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Falconer RJ, Schuur B, Mittermaier AK. Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020. J Mol Recognit 2021; 34:e2901. [PMID: 33975380 DOI: 10.1002/jmr.2901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
The last 5 years have seen a series of advances in the application of isothermal titration microcalorimetry (ITC) and interpretation of ITC data. ITC has played an invaluable role in understanding multiprotein complex formation including proteolysis-targeting chimeras (PROTACS), and mitochondrial autophagy receptor Nix interaction with LC3 and GABARAP. It has also helped elucidate complex allosteric communication in protein complexes like trp RNA-binding attenuation protein (TRAP) complex. Advances in kinetics analysis have enabled the calculation of kinetic rate constants from pre-existing ITC data sets. Diverse strategies have also been developed to study enzyme kinetics and enzyme-inhibitor interactions. ITC has also been applied to study small molecule solvent and solute interactions involved in extraction, separation, and purification applications including liquid-liquid separation and extractive distillation. Diverse applications of ITC have been developed from the analysis of protein instability at different temperatures, determination of enzyme kinetics in suspensions of living cells to the adsorption of uremic toxins from aqueous streams.
Collapse
Affiliation(s)
- Robert J Falconer
- School of Chemical Engineering & Advanced Materials, University of Adelaide, Adelaide, South Australia, Australia
| | - Boelo Schuur
- Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|
9
|
Smola M, Gutten O, Dejmek M, Kožíšek M, Evangelidis T, Tehrani ZA, Novotná B, Nencka R, Birkuš G, Rulíšek L, Boura E. Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein. Angew Chem Int Ed Engl 2021; 60:10172-10178. [PMID: 33616279 PMCID: PMC8251555 DOI: 10.1002/anie.202016805] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/19/2022]
Abstract
STING (stimulator of interferon genes) is a key regulator of innate immunity that has recently been recognized as a promising drug target. STING is activated by cyclic dinucleotides (CDNs) which eventually leads to expression of type I interferons and other cytokines. Factors underlying the affinity of various CDN analogues are poorly understood. Herein, we correlate structural biology, isothermal calorimetry (ITC) and computational modeling to elucidate factors contributing to binding of six CDNs-three pairs of natural (ribo) and fluorinated (2'-fluororibo) 3',3'-CDNs. X-ray structural analyses of six {STING:CDN} complexes did not offer any explanation for the different affinities of the studied ligands. ITC showed entropy/enthalpy compensation up to 25 kcal mol-1 for this set of similar ligands. The higher affinities of fluorinated analogues are explained with help of computational methods by smaller loss of entropy upon binding and by smaller strain (free) energy.
Collapse
Affiliation(s)
- Miroslav Smola
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Ondrej Gutten
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Milan Dejmek
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Milan Kožíšek
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Thomas Evangelidis
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Zahra Aliakbar Tehrani
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Barbora Novotná
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Radim Nencka
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Gabriel Birkuš
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Lubomír Rulíšek
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Evzen Boura
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| |
Collapse
|
10
|
Smola M, Gutten O, Dejmek M, Kožíšek M, Evangelidis T, Tehrani ZA, Novotná B, Nencka R, Birkuš G, Rulíšek L, Boura E. Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Miroslav Smola
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Ondrej Gutten
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Milan Dejmek
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Milan Kožíšek
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Thomas Evangelidis
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Zahra Aliakbar Tehrani
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Barbora Novotná
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Radim Nencka
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Gabriel Birkuš
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Lubomír Rulíšek
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Evzen Boura
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| |
Collapse
|
11
|
Cramer DL, Cheng B, Tian J, Clements JH, Wypych RM, Martin SF. Some thermodynamic effects of varying nonpolar surfaces in protein-ligand interactions. Eur J Med Chem 2020; 208:112771. [PMID: 32916312 PMCID: PMC7680455 DOI: 10.1016/j.ejmech.2020.112771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/18/2022]
Abstract
Understanding how making structural changes in small molecules affects their binding affinities for targeted proteins is central to improving strategies for rational drug design. To assess the effects of varying the nature of nonpolar groups upon binding entropies and enthalpies, we designed and prepared a set of Grb2-SH2 domain ligands, Ac-pTyr-Ac6c-Asn-(CH2)n-R, in which the size and electrostatic nature of R groups at the pTyr+3 site were varied. The complexes of these ligands with the Grb2-SH2 domain were evaluated in a series of studies in which the binding thermodynamics were determined using isothermal titration calorimetry, and binding interactions were examined in crystallographic studies of two different complexes. Notably, adding nonpolar groups to the pTyr+3 site leads to higher binding affinities, but the magnitude and energetic origins of these effects vary with the nature of the R substituent. For example, enhancements to binding affinities using aliphatic R groups are driven by more favorable changes in binding entropies, whereas aryl R groups improve binding free energies through a combination of more favorable changes in binding enthalpies and entropies. However, enthalpy/entropy compensation plays a significant role in these associations and mitigates against any significant variation in binding free energies, which vary by only 0.8 kcal•mol-1, with changes in the electrostatic nature and size of the R group. Crystallographic studies show that differences in ΔG° or ΔH° correlate with buried nonpolar surface area, but they do not correlate with the total number of polar or van der Waals contacts. The relative number of ordered water molecules and relative order in the side chains at pTyr+3 correlate with differences in -TΔS°. Overall, these studies show that burial of nonpolar surface can lead to enhanced binding affinities arising from dominating entropy- or enthalpy-driven hydrophobic effects, depending upon the electrostatic nature of the apolar R group.
Collapse
Affiliation(s)
- David L Cramer
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Bo Cheng
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Jianhua Tian
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - John H Clements
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Rachel M Wypych
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | - Stephen F Martin
- Department of Chemistry and the Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Tosh DK, Salmaso V, Rao H, Campbell R, Bitant A, Gao ZG, Auchampach JA, Jacobson KA. Direct Comparison of (N)-Methanocarba and Ribose-Containing 2-Arylalkynyladenosine Derivatives as A 3 Receptor Agonists. ACS Med Chem Lett 2020; 11:1935-1941. [PMID: 33062176 DOI: 10.1021/acsmedchemlett.9b00637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
A side-by-side pharmacological comparison of ribose and (N)-methanocarba (bicyclo[3.1.0]hexane) nucleosides as A3AR agonists indicated that the bicyclic pseudoribose ring constraint provided higher affinity/selectivity at human and mouse A3AR. The mean affinity enhancement for 5 pairs of 5'-methylamides was 11-fold at hA3AR and 42-fold at mA3AR. Novel C2-(5-fluorothien-2-ylethynyl) substitution enhanced affinity in the methanocarba but not ribose series, with highly hA3AR-selective 16 (MRS7334) displaying Ki 280 pM and favorable pharmacokinetics and off-target activity profile. Molecular dynamics comparison of 16 and its corresponding riboside 8 suggested a qualitative entropic advantage of 16 in hA3AR binding. The 5-F substitution tended to increase hA3AR affinity (cf. 5-Cl) for methanocarba but not ribose derivatives. A representative methanocarba agonist 4 was shown to interact potently exclusively with A3AR, among 240 GPCRs and 466 kinases. Thus, despite added synthetic difficulty, the (N)-methanocarba modification has distinct advantages for A3AR agonists, which have translational potential for chronic disease treatment.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Laboratory of Bioorganic Chemistry, Mouse Metabolism Core, and Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Veronica Salmaso
- Laboratory of Bioorganic Chemistry, Mouse Metabolism Core, and Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Harsha Rao
- Laboratory of Bioorganic Chemistry, Mouse Metabolism Core, and Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Ryan Campbell
- Laboratory of Bioorganic Chemistry, Mouse Metabolism Core, and Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Amelia Bitant
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, Mouse Metabolism Core, and Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - John A. Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, Mouse Metabolism Core, and Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
13
|
Ngo K, Collins-Kautz C, Gerstenecker S, Wagner B, Heine A, Klebe G. Protein-Induced Change in Ligand Protonation during Trypsin and Thrombin Binding: Hint on Differences in Selectivity Determinants of Both Proteins? J Med Chem 2020; 63:3274-3289. [DOI: 10.1021/acs.jmedchem.9b02061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Khang Ngo
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Chelsey Collins-Kautz
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Stefan Gerstenecker
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Björn Wagner
- Pharma Research Non-Clinical Safety, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Andreas Heine
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
14
|
Hüfner-Wulsdorf T, Klebe G. Protein–Ligand Complex Solvation Thermodynamics: Development, Parameterization, and Testing of GIST-Based Solvent Functionals. J Chem Inf Model 2020; 60:1409-1423. [DOI: 10.1021/acs.jcim.9b01109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tobias Hüfner-Wulsdorf
- Institut für Pharmazeutische Chemie, Philipps Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| |
Collapse
|