1
|
Ou Y, Guo X, Zhang Q, Zhang W, Gan X. Design, synthesis, and nematicidal activity of novel 1,2,4-oxadiazole derivatives containing amide fragments. Mol Divers 2024:10.1007/s11030-024-10992-9. [PMID: 39327355 DOI: 10.1007/s11030-024-10992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Plant-parasitic nematodes are seriously affecting agricultural production worldwide and there are few highly effective and low-risk nematicides to control nematode diseases. In order to discover new nematicides, a series of 1,2,4-oxadiazole derivatives containing amide fragments have been designed and synthesized with the principle of active substructure splicing. The nematicidal activity of the target compounds was evaluated in vitro and it indicated that compound C3 exhibited the most nematicidal activity against Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Ditylenchus destructor with the LC50 values of 37.2, 36.6, and 43.4 μg/mL, respectively, which were superior to positive agent tioxazafen. The preliminary mechanism results revealed that compound C3 not only inhibited the reproduction of B. xylophilus populations, but also affected the production of ROS and the accumulation of lipofuscin and lipids. Furthermore, compound C3 showed good inhibition of succinate dehydrogenase (SDH) with the IC50 value of 45.5 µmol/L. Molecular docking indicated that compound C3 had excellent binding to amino acids around the SDH active pocket. This work indicated that 1,2,4-oxadiazole derivative containing amide fragment is a promising template for the discovery of new nematicides and compound C3 can be used as a potential nematicide candidate.
Collapse
Affiliation(s)
- Yuqin Ou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xue Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F, Zhang S. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol 2024; 15:1370800. [PMID: 38799423 PMCID: PMC11116789 DOI: 10.3389/fimmu.2024.1370800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Cai L, Xiong PF, Li T, Li C, Wu ZX, Hong YL, Wang JT, Zhang MY, Yang XQ, Xu QQ, Shi H, Luo QC, Li R, Liu MM. Discovery of novel diaryl substituted isoquinolin-1(2H)-one derivatives as hypoxia-inducible factor-1 signaling inhibitors for the treatment of rheumatoid arthritis. Eur J Med Chem 2024; 271:116417. [PMID: 38688063 DOI: 10.1016/j.ejmech.2024.116417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
Since synovial hypoxic microenvironment significantly promotes the pathological progress of rheumatoid arthritis (RA), hypoxia-inducible factor 1 (HIF-1) has been emerged as a promising target for the development of novel therapeutic agents for RA treatment. In this study, we designed and synthesized a series of diaryl substituted isoquinolin-1(2H)-one derivatives as HIF-1 signaling inhibitors using scaffold-hopping strategy. By modifying the substituents on N-atom and 6-position of isoquinolin-1-one, we discovered compound 17q with the most potent activities against HIF-1 (IC50 = 0.55 μM) in a hypoxia-reactive element (HRE) luciferase reporter assay. Further pharmacological studies revealed that 17q concentration-dependently blocked hypoxia-induced HIF-1α protein accumulation, reduced inflammation response, inhibited cellular invasiveness and promoted VHL-dependent HIF-1α degradation in human RA synovial cell line. Moreover, 17q improved the pathological injury of ankle joints, decreased angiogenesis and attenuated inflammation response in the adjuvant-induced arthritis (AIA) rat model, indicating the promising therapeutic potential of compound 17q as an effective HIF-1 inhibitor for RA therapy.
Collapse
Affiliation(s)
- Li Cai
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, PR China; Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, PR China
| | - Peng-Fei Xiong
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Tao Li
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Chong Li
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Zheng-Xing Wu
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Ya-Ling Hong
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Jin-Ting Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Meng-Yue Zhang
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Xi-Qin Yang
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Qian-Qian Xu
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Huan Shi
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Qi-Chao Luo
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| | - Rong Li
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230026, Anhui Province, PR China.
| | - Ming-Ming Liu
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| |
Collapse
|
4
|
Qin Y, Li G, Wang L, Yin G, Zhang X, Wang H, Zheng P, Hua W, Cheng Y, Zhao Y, Zhang J. Modular preparation of biphenyl triazoles via click chemistry as non-competitive hyaluronidase inhibitors. Bioorg Chem 2024; 146:107291. [PMID: 38521011 DOI: 10.1016/j.bioorg.2024.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Hyaluronidase is a promising target in drug discovery, given its overexpression in a range of physiological and pathological processes, including tumor migration, skin aging, sagging, and wrinkling, as well as inflammation and bacterial infections. In this study, to identify novel hyaluronidase inhibitors, we applied click chemistry for the modular synthesis of 370 triazoles in 96-well plates, starting with biphenyl azide. Utilizing an optimized turbidimetric screening assay in microplates, we identified Fmoc-containing triazoles 5 and 6, as well as quinoline-containing triazoles 15 and 16, as highly effective hyaluronidase inhibitors. Subsequent research indicated that these triazoles potentially interact with a novel binding site of hyaluronidase. Notably, these inhibitors displayed minimal cytotoxicity and showed promising anti-inflammatory effects in LPS-stimulated macrophages. Remarkably, compound 6 significantly reduced NO release by 74 % at a concentration of 20 μM.
Collapse
Affiliation(s)
- Yiman Qin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ling Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Guangyuan Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Xiang Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Hongxiang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Pengfei Zheng
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Wentao Hua
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Yan Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Yaxue Zhao
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Jiong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
5
|
Cai L, Meng B, Jiang F, Shu WH, Wang XH, Wang MQ, Wu XJ, Hu MW, Yang YC, Ran X, Li R. Novel HIF-1α Inhibitor AMSP-30m Mitigates the Pathogenic Cellular Behaviors of Hypoxia-Stimulated Fibroblast-Like Synoviocytes and Alleviates Collagen-Induced Arthritis in Rats via Inhibiting Sonic Hedgehog Pathway. Inflammation 2023; 46:2289-2305. [PMID: 37480451 DOI: 10.1007/s10753-023-01878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Synovial hypoxia-inducible factor 1α (HIF-1α) is a prospective therapeutic target for rheumatoid arthritis (RA). AMSP-30 m, a novel HIF-1α inhibitor, was reported to have notable anti-arthritic effects in rats with adjuvant-induced arthritis. However, its roles in inhibiting the pathogenic behaviors of fibroblast-like synoviocytes (FLS) and the involved mechanisms remain unknown. Here, AMSP-30 m inhibited proliferation and induced apoptosis in hypoxia-induced RA FLS (MH7A cell line), as evidenced by decreased cell viability, reduced Ki67-positive cells, G0/G1 phase arrest, lowered C-myc and Cyclin D1 protein levels, emergence of apoptotic nuclear fragmentation, raised apoptosis rates, and activation of caspase 3. Furthermore, AMSP-30 m prevented hypoxia-induced increases in pro-inflammatory factor production, MMP-2 activity, migration index, migrated/invasive cells, and actin cytoskeletal rearrangement. In vivo, AMSP-30 m alleviated the severity of rat collagen-induced arthritis (CIA). Mechanically, AMSP-30 m reduced HIF-1α expression and blocked sonic hedgehog (Shh) pathway activation in hypoxia-induced MH7A cells and CIA rat synovium, as shown by declines in pathway-related proteins (Shh, Smo, and Gli-1). Particularly, the combination of Shh pathway inhibitor cyclopamine enhanced AMSP-30 m's inhibitory effects on the pathogenic behaviors of hypoxia-stimulated MH7A cells, whereas the combination of Shh pathway activator SAG canceled AMSP-30 m's therapeutic effects in vitro and in CIA rats, implying a close involvement of Shh pathway inhibition in its anti-arthritic effects. We likewise confirmed AMSP-30 m's anti-proliferative role in hypoxia-induced primary CIA FLS. Totally, AMSP-30 m suppressed hypoxia-induced proliferation, inflammation, migration, and invasion of MH7A cells and ameliorated the severity of rat CIA via inhibiting Shh signaling.
Collapse
Affiliation(s)
- Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Bo Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Fei Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Wen-Hao Shu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Xiao-Hua Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Meng-Qing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Xin-Jie Wu
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Ming-Wang Hu
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Yu-Chen Yang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Xiang Ran
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230026, Anhui Province, People's Republic of China.
| |
Collapse
|
6
|
Nan X, Wang QX, Xing SJ, Liang ZG. Design, synthesis, and biological evaluation of thiazole/thiadiazole carboxamide scaffold-based derivatives as potential c-Met kinase inhibitors for cancer treatment. J Enzyme Inhib Med Chem 2023; 38:2247183. [PMID: 37642355 PMCID: PMC10467532 DOI: 10.1080/14756366.2023.2247183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
As part of our continuous efforts to discover novel c-Met inhibitors as antitumor agents, four series of thiazole/thiadiazole carboxamide-derived analogues were designed, synthesised, and evaluated for the in vitro activity against c-Met and four human cancer cell lines. After five cycles of optimisation on structure-activity relationship, compound 51am was found to be the most promising inhibitor in both biochemical and cellular assays. Moreover, 51am exhibited potency against several c-Met mutants. Mechanistically, 51am not only induced cell cycle arrest and apoptosis in MKN-45 cells but also inhibited c-Met phosphorylation in the cell and cell-free systems. It also exhibited a good pharmacokinetic profile in BALB/c mice. Furthermore, the binding mode of 51am with both c-Met and VEGFR-2 provided novel insights for the discovery of selective c-Met inhibitors. Taken together, these results indicate that 51am could be an antitumor candidate meriting further development.
Collapse
Affiliation(s)
- Xiang Nan
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, China
- School of Biomedical Engineering, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University Medical School, Shenzhen, China
| | - Qiu-Xu Wang
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Shao-Jun Xing
- School of Biomedical Engineering, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University Medical School, Shenzhen, China
| | - Zhi-Gang Liang
- Department of Stomatology, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
7
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 189.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
8
|
Luo S, Jiang Y, Anfu Zheng, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Chen M, Li W, Li X, Gu L, Sun Y, Xiao Z, Shen J. Targeting hypoxia-inducible factors for breast cancer therapy: A narrative review. Front Pharmacol 2022; 13:1064661. [PMID: 36532768 PMCID: PMC9751339 DOI: 10.3389/fphar.2022.1064661] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 09/15/2023] Open
Abstract
Hypoxia-inducible factors (HIFs), central regulators for cells to adapt to low cellular oxygen levels, are often overexpressed and activated in breast cancer. HIFs modulate the primary transcriptional response of downstream pathways and target genes in response to hypoxia, including glycolysis, angiogenesis and metastasis. They can promote the development of breast cancer and are associated with poor prognosis of breast cancer patients by regulating cancer processes closely related to tumor invasion, metastasis and drug resistance. Thus, specific targeting of HIFs may improve the efficiency of cancer therapy. In this review, we summarize the advances in HIF-related molecular mechanisms and clinical and preclinical studies of drugs targeting HIFs in breast cancer. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for HIF targeting are increasingly being developed. Therefore, we highlight the HIF related DDS, including liposomes, polymers, metal-based or carbon-based nanoparticles.
Collapse
Affiliation(s)
- Shuang Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Pharmacy, The Second People’s Hospital of Jiangyou, Mianyang, China
| | - Yu Jiang
- Department of Pharmacy, The People’s Hospital of Wusheng, Guang’an, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
9
|
Du N, Lin H, Zhang A, Cao C, Hu X, Zhang J, Wang L, Pan X, Zhu Y, Qian F, Wang Y, Zhao D, Liu M, Huang Y. N-phenethyl-5-phenylpicolinamide alleviates inflammation in acute lung injury by inhibiting HIF-1α/glycolysis/ASIC1a pathway. Life Sci 2022; 309:120987. [PMID: 36155179 DOI: 10.1016/j.lfs.2022.120987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
AIMS Acute lung injury (ALI) is triggered by an acute inflammatory response. Lipopolysaccharide (LPS) is recognized as an important participant in the pathogenesis of sepsis, which may induce ALI. N-phenethyl-5-phenylpicolinamide (N5P) is a newly synthesized HIF-1α inhibitor. The purpose of the present study was to investigate the potential protective effects of N5P on LPS-induced ALI and the underlying mechanisms. MAIN METHODS In vivo experiment, the ALI rat model was induced by intratracheal injection of LPS, and various concentrations of N5P were injected intraperitoneally before LPS administration. In vitro experiment, RAW264.7 macrophages were administrated LPS and N5P to detect inflammatory cytokine changes. HIF-1α overexpression plasmid (HIF1α-OE) and granulocyte-macrophage colony-stimulating factor (GM-CSF), a glycolysis agonist, were used to examine the relationship between the HIF-1α/glycolysis/ASIC1a pathway. KEY FINDINGS Pretreatment with N5P inhibited not only the histopathological changes that occurred in the lungs but also lung dysfunction in LPS-induced ALI. N5P also decreased the levels of lactic acid in lung tissue and arterial blood, and inflammatory factors IL-1β and IL-6 levels in serum. LPS increased HIF-1α, glycolysis proteins GLUT1, HK2, ASIC1a, IL-1β, IL-6, and these changes were reversed by N5P in primary alveolar macrophages and RAW264.7 macrophages. Overexpression of HIF-1α significantly increased glycolysis genes and ASIC1a as well as inflammatory cytokines. Excessive glycolysis levels weaken the ability of N5P to inhibit inflammation. SIGNIFICANCE N5P may alleviate inflammation in ALI through the HIF-1α/glycolysis/ASIC1a signaling pathway. The present findings have provided pertinent information in the assessment of N5P as a potential, future therapeutic drug for ALI.
Collapse
Affiliation(s)
- Na Du
- Shanghai Songjiang District Central Hospital, Shanghai 201600, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Huimin Lin
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Anqi Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chun Cao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaojie Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jin Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lili Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xuesheng Pan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yueqin Zhu
- Department of Pharmacy, West Branch of The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei 230031, China
| | - Fangyi Qian
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanyuan Wang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Dahai Zhao
- Respiratory Department of the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei 230601, China
| | - Mingming Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Yan Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
10
|
Su Y, Xing H, Kang J, Bai L, Zhang L. Role of the hedgehog signaling pathway in rheumatic diseases: An overview. Front Immunol 2022; 13:940455. [PMID: 36105801 PMCID: PMC9466598 DOI: 10.3389/fimmu.2022.940455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Hedgehog (Hh) signaling pathway is an evolutionarily conserved signal transduction pathway that plays an important regulatory role during embryonic development, cell proliferation, and differentiation of vertebrates, and it is often inhibited in adult tissues. Recent evidence has shown that Hh signaling also plays a key role in rheumatic diseases, as alterations in their number or function have been identified in rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, systemic sclerosis, and Sjogren's Syndrome. As a result, emerging studies have focused on the blockade of this pathogenic axis as a promising therapeutic target in several autoimmune disorders; nevertheless, a greater understanding of its contribution still requires further investigation. This review aims to elucidate the most recent studies and literature data on the pathogenetic role of Hh signaling in rheumatic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
11
|
AMSP-30 m as a novel HIF-1α inhibitor attenuates the development and severity of adjuvant-induced arthritis in rats: Impacts on synovial apoptosis, synovial angiogenesis and sonic hedgehog signaling pathway. Int Immunopharmacol 2022; 103:108467. [DOI: 10.1016/j.intimp.2021.108467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022]
|
12
|
Synthesis and biological evaluation of novel hybrids of phenylsulfonyl furoxan and phenstatin derivatives as potent anti-tumor agents. Eur J Med Chem 2022; 230:114112. [DOI: 10.1016/j.ejmech.2022.114112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/20/2022]
|
13
|
Design, Synthesis and Antifungal/Nematicidal Activity of Novel 1,2,4-Oxadiazole Derivatives Containing Amide Fragments. Int J Mol Sci 2022; 23:ijms23031596. [PMID: 35163522 PMCID: PMC8836147 DOI: 10.3390/ijms23031596] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Plant diseases that are caused by fungi and nematodes have become increasingly serious in recent years. However, there are few pesticide chemicals that can be used for the joint control of fungi and nematodes on the market. To solve this problem, a series of novel 1,2,4-oxadiazole derivatives containing amide fragments were designed and synthesized. Additionally, the bioassays revealed that the compound F15 demonstrated excellent antifungal activity against Sclerotinia sclerotiorum (S. sclerotiorum) in vitro, and the EC50 value of that was 2.9 μg/mL, which is comparable with commonly used fungicides thifluzamide and fluopyram. Meanwhile, F15 demonstrated excellent curative and protective activity against S. sclerotiorum-infected cole in vivo. The scanning electron microscopy results showed that the hyphae of S. sclerotiorum treated with F15 became abnormally collapsed and shriveled, thereby inhibiting the growth of the hyphae. Furthermore, F15 exhibited favorable inhibition against the succinate dehydrogenase (SDH) of the S. sclerotiorum (IC50 = 12.5 μg/mL), and the combination mode and binding ability between compound F15 and SDH were confirmed by molecular docking. In addition, compound F11 showed excellent nematicidal activity against Meloidogyne incognita at 200 μg/mL, the corrected mortality rate was 93.2%, which is higher than that of tioxazafen.
Collapse
|
14
|
Zhang B, Xu Z, Zhou W, Liu Z, Zhao J, Gou S. A light-controlled multi-step drug release nanosystem targeting tumor hypoxia for synergistic cancer therapy. Chem Sci 2021; 12:11810-11820. [PMID: 34659720 PMCID: PMC8442699 DOI: 10.1039/d1sc01888d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/25/2021] [Indexed: 12/25/2022] Open
Abstract
Hypoxia is a major obstacle for cancer therapy due to its association with cell proliferation, tumor distant metastasis, and treatment resistance. In this study, a hypoxia-activated bifunctional prodrug (CC5) was designed, synthesized and encapsulated by a photo-responsive ruthenium complex-derived polymer to yield a light-controlled multi-step drug release system (CC5-RuCa) for synergistic therapy against tumor hypoxia. Under NIR irradiation, CC5-RuCa not only generated ROS to kill the cancer cells in the exterior of the tumor but also released the prodrug CC5 with enhanced intratumoral penetration in the severe hypoxia region inside the tumor tissue. In vivo studies on MDA-MB-231 xenograft models revealed that CC5-RuCa with preferential accumulation in the tumor exhibited highly efficient tumor regression through the synergistic effect of photodynamic therapy and hypoxia-activated chemotherapy.
Collapse
Affiliation(s)
- Bin Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Zichen Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Wen Zhou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
- Nanjing Junruo Institute of Biomedicine Nanjing 211100 China
| |
Collapse
|
15
|
Acid-promoted reaction of N-(cyanomethyl) amide with nitrosation reagent: Facile synthesis of 1,2,4-oxadiazole-3-carboxamide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Upadhyay N, Tilekar K, Safuan S, Kumar AP, Stalin J, Ruegg C, Ramaa C S. Recent Anti‐angiogenic Drug Discovery Efforts To Combat Cancer. ChemistrySelect 2021. [DOI: 10.1002/slct.202101792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Neha Upadhyay
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy Sector 8, CBD Belapur Navi Mumbai 400614 India
| | - Kalpana Tilekar
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy Sector 8, CBD Belapur Navi Mumbai 400614 India
| | - Sabreena Safuan
- Pusat pengajian sains School of Health Sciences Universiti Sains Malaysia Malaysia 16150 Kubang Kerian Kelantan
| | - Alan P. Kumar
- Department of Pharmacology National University of Singapore Singapore
| | - Jimmy Stalin
- Department of Oncology Microbiology, and Immunology University of Fribourg Chemin du Musée 18, PER17, CH 1700 Fribourg Switzerland
| | - Curzio Ruegg
- Department of Oncology Microbiology, and Immunology University of Fribourg Chemin du Musée 18, PER17, CH 1700 Fribourg Switzerland
| | - Ramaa C S
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy Sector 8, CBD Belapur Navi Mumbai 400614 India
| |
Collapse
|
17
|
Li Y, Yao W, Lin J, Gao G, Huang C, Wu Y. Design, synthesis, and biological evaluation of phenyloxadiazole derivatives as potential antifungal agents against phytopathogenic fungi. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02717-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Yang K, Yang JQ, Luo SH, Mei WJ, Lin JY, Zhan JQ, Wang ZY. Synthesis of N-2(5H)-furanonyl sulfonyl hydrazone derivatives and their biological evaluation in vitro and in vivo activity against MCF-7 breast cancer cells. Bioorg Chem 2020; 107:104518. [PMID: 33303210 DOI: 10.1016/j.bioorg.2020.104518] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
A series of (E)-N-2(5H)-furanonyl sulfonyl hydrazone derivatives have been rationally designed and efficiently synthesized by one-pot reaction with good yields for the first time. This green approach with wide substrate range and good selectivity can be achieved at room temperature in a short time in the presence of metal-free catalyst. The cytotoxic activities against three human cancer cell lines of all newly obtained compounds have been evaluated by MTT assay. Among them, compound 5 k exhibits high cytotoxic activity against MCF-7 human breast cancer cells with an IC50 value of 14.35 μM. The cytotoxic mechanism may involve G2/M phase arrest pathway, which is probably caused by activating DNA damage. Comet test and immunofluorescence results show that compound 5 k can induce DNA damage in time- and dose-dependent manner. Importantly, 5 k also can effectively inhibit the proliferation of MCF-7 cells and angiogenesis in the zebrafish xenograft model. It is potential to further develop N-2(5H)-furanonyl sulfonyl hydrazone derivatives as potent drugs for breast cancer treatment with higher cytotoxic activity by modifying the structure of the compound.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China; College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jian-Qiong Yang
- Department of Clinical Research Center, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China.
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China.
| | - Jian-Yun Lin
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China
| | - Jia-Qi Zhan
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|