1
|
Maeba T, Hirata K, Kotoku M, Seki N, Maeda K, Hirashima S, Yamanaka H, Sakai T, Obika S, Hori A, Hara Y, Noji S, Suwa Y, Yokota M, Fujioka S, Yamaguchi T, Katsuda Y, Hata T, Miyagawa N, Arita K, Nomura Y, Taniguchi T, Asahina K, Aratsu Y, Naka Y, Adachi T, Nomura A, Akai S, Oshida SI, Pai S, Crowe P, Bradley E, Steensma R, Tao H, Fenn M, Babine R, Li X, Thacher S, Soeta T, Ukaji Y, Shiozaki M. Discovery and SAR of JTE-151: A Novel RORγ Inhibitor for Clinical Development. J Med Chem 2024; 67:952-970. [PMID: 38170624 DOI: 10.1021/acs.jmedchem.3c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A number of RORγ inhibitors have been reported over the past decade. There were also several examples advancing to human clinical trials, however, none of them has reached the market yet, suggesting that there could be common obstacles for their future development. As was expected from the general homology of nuclear receptor ligands, insufficient selectivity as well as poor physicochemical properties were identified as potential risks for a RORγ program. Based on such considerations, we conducted a SAR investigation by prioritizing drug-like properties to mitigate such potential drawbacks. After an intensive SAR exploration with strong emphasis on "drug-likeness" indices, an orally available RORγ inhibitor, JTE-151, was finally generated and was advanced to a human clinical trial. The compound was confirmed to possess highly selective profiles along with good metabolic stability, and most beneficially, no serious adverse events (SAE) and good PK profiles were observed in the human clinical trial.
Collapse
Affiliation(s)
- Takaki Maeba
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuyuki Hirata
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masayuki Kotoku
- Akros Pharma Inc., Boston Office, One Broadway, 14th Floor, Cambridge, Massachusetts 02142, United States
| | - Noriyoshi Seki
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Katsuya Maeda
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shintaro Hirashima
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Hiroshi Yamanaka
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takayuki Sakai
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shingo Obika
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Akimi Hori
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshinori Hara
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Satoru Noji
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshihiro Suwa
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masahiro Yokota
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shingo Fujioka
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takayuki Yamaguchi
- Pharmaceutical Division, Japan Tobacco Inc., 3-4-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-0023, Japan
| | - Yoshiaki Katsuda
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takahiro Hata
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Naoki Miyagawa
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kojo Arita
- Pharmaceutical Division, Japan Tobacco Inc., 3-4-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-0023, Japan
| | - Yukihiro Nomura
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Toshio Taniguchi
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kota Asahina
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yusuke Aratsu
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yuichi Naka
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tsuyoshi Adachi
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Akihiro Nomura
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shota Akai
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shin-Ichi Oshida
- Central Pharmaceutical Research Institute, Yokohama Research Center, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Sudhakar Pai
- Akros Pharma Inc., 302 Carnegie Center, Suite 300, Princeton, New Jersey 08540, United States
| | - Paul Crowe
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Erin Bradley
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Ruo Steensma
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Haiyan Tao
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Morgan Fenn
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Robert Babine
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Xiaolin Li
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Scott Thacher
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Takahiro Soeta
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Yutaka Ukaji
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Makoto Shiozaki
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
2
|
Fang W, Zheng J, Deng L, An Y, Rong D, Wei J, Xiong XF, Wang J, Wang Y. Discovery of the First-in-Class RORγ Covalent Inhibitors for Treatment of Castration-Resistant Prostate Cancer. J Med Chem 2024; 67:1481-1499. [PMID: 38227771 DOI: 10.1021/acs.jmedchem.3c02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Nuclear receptor receptor-related orphan receptor γ (RORγ) is a ligand-dependent transcription factor and has been established as a key player in castration-resistant prostate cancers (CRPC) by driving androgen receptor (AR) overexpression, representing a potential therapeutical target for advanced prostate cancers. Here, we report the identification of the first-in-class RORγ covalent inhibitor 29 via the structure-based drug design approach following structure-activity relationship (SAR) exploration. Mass spectrometry assay validated its covalent inhibition mechanism. Compound 29 significantly inhibited RORγ transcriptional activity and remarkably suppressed the expression levels of AR and AR-targeted genes. Compound 29 also exhibited much superior activity in inhibiting the proliferation and colony formation and inducing apoptosis of the CRPC cell lines relative to the positive control 2 and noncovalent control 33. Importantly, it markedly suppressed the tumor growth in a 22Rv1 mouse tumor xenograft model with good safety. These results clearly demonstrate that 29 is a highly potent and selective RORγ covalent inhibitor.
Collapse
Affiliation(s)
- Wei Fang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianwei Zheng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lin Deng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yana An
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deqin Rong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianwei Wei
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Feng Xiong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Junjian Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Wu Y, Jiang Y, Wang F, Wang B, Chen C. Direct electrophilic and radical isoperfluoropropylation with i-C 3F 7-Iodine(III) reagent (PFPI reagent). Commun Chem 2023; 6:177. [PMID: 37620542 PMCID: PMC10449889 DOI: 10.1038/s42004-023-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The isoperfluoropropyl group (i-C3F7) is an emerging motif in pharmaceuticals, agrichemicals and functional materials. However, isoperfluoropropylated compounds remain largely underexplored, presumably due to the lack of efficient access to these compounds. Herein, we disclose the practical and efficient isoperfluoropropylation of aromatic C-H bonds through the invention of a hypervalent-iodine-based reagent-PFPI reagent, that proceeds via a Ag-X coupling process. The activation of the PFPI reagent without any catalysts or additives was demonstrated in the synthesis of isoperfluoropropylated electron-rich heterocycles, while its activity under photoredox catalysis was shown in the synthesis of isoperfluoropropylated non-activated arenes. Detailed mechanistic experiments and DFT calculations revealed a SET-induced concerted mechanistic pathway in the photoredox reactions. In addition, the unique conformation of i-C3F7 in products, that involved intramolecular hydrogen bond was investigated by X-ray single-crystal diffraction and variable-temperature NMR experiments.
Collapse
Affiliation(s)
- Yaxing Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yunchen Jiang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fei Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bin Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chao Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Meanwell NA. The pyridazine heterocycle in molecular recognition and drug discovery. Med Chem Res 2023; 32:1-69. [PMID: 37362319 PMCID: PMC10015555 DOI: 10.1007/s00044-023-03035-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
The pyridazine ring is endowed with unique physicochemical properties, characterized by weak basicity, a high dipole moment that subtends π-π stacking interactions and robust, dual hydrogen-bonding capacity that can be of importance in drug-target interactions. These properties contribute to unique applications in molecular recognition while the inherent polarity, low cytochrome P450 inhibitory effects and potential to reduce interaction of a molecule with the cardiac hERG potassium channel add additional value in drug discovery and development. The recent approvals of the gonadotropin-releasing hormone receptor antagonist relugolix (24) and the allosteric tyrosine kinase 2 inhibitor deucravacitinib (25) represent the first examples of FDA-approved drugs that incorporate a pyridazine ring. In this review, the properties of the pyridazine ring are summarized in comparison to the other azines and its potential in drug discovery is illustrated through vignettes that explore applications that take advantage of the inherent physicochemical properties as an approach to solving challenges associated with candidate optimization. Graphical Abstract
Collapse
|
5
|
Zhang J, Chen B, Zhang C, Sun N, Huang X, Wang W, Fu W. Modes of action insights from the crystallographic structures of retinoic acid receptor-related orphan receptor-γt (RORγt). Eur J Med Chem 2023; 247:115039. [PMID: 36566711 DOI: 10.1016/j.ejmech.2022.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
RORγt plays an important role in mediating IL-17 production and some tumor cells. It has four functional domains, of which the ligand-binding domain (LBD) is responsible for binding agonists to recruit co-activators or inverse agonists to prevent co-activator recruiting the agonists. Thus, potent ligands targeting the LBD of this protein could provide novel treatments for cancer and autoimmune diseases. In this perspective, we summarized and discussed various modes of action (MOA) of RORγt-ligand binding structures. The ligands can bind with RORγt at either orthosteric site or the allosteric site, and the binding modes at these two sites are different for agonists and inverse agonist. At the orthosteric site, the binding of agonist is to stabilize the H479-Y502-F506 triplet interaction network of RORγt. The binding of inverse agonist features as these four apparent ways: (1) blocking the entrance of the agonist pocket in RORγt; (2) directly breaking the H479-Y502 pair interactions; (3) destabilizing the triplet H479-Y502-F506 interaction network through perturbing the conformation of the side chain in M358 at the bottom of the binding pocket; (4) and destabilizing the triplet H479-Y502-F506 through changing the conformation of the side chain of residue W317 side chain. At the allosteric site of RORγt, the binding of inverse agonist was found recently to inhibit the activation of protein by interacting directly with H12, which results in unfolding of helix 11' and orientation of H12 to directly block cofactor peptide binding. This overview of recent advances in the RORγt structures is expected to provide a guidance of designing more potent drugs to treat RORγt-related diseases.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Baiyu Chen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Chao Zhang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Nannan Sun
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Xiaoqin Huang
- Center for Research Computing, Office of Information Technology, Center for Theoretical Biological Physics, Rice University, Houston, TX, 77030, USA
| | - Wuqing Wang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Wei Fu
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China.
| |
Collapse
|
6
|
Pham B, Cheng Z, Lopez D, Lindsay RJ, Foutch D, Majors RT, Shen T. Statistical Analysis of Protein-Ligand Interaction Patterns in Nuclear Receptor RORγ. Front Mol Biosci 2022; 9:904445. [PMID: 35782874 PMCID: PMC9240913 DOI: 10.3389/fmolb.2022.904445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
The receptor RORγ belongs to the nuclear receptor superfamily that senses small signaling molecules and regulates at the gene transcription level. Since RORγ has a high basal activity and plays an important role in immune responses, inhibitors targeting this receptor have been a focus for many studies. The receptor-ligand interaction is complex, and often subtle differences in ligand structure can determine its role as an inverse agonist or an agonist. We examined more than 130 existing RORγ crystal structures that have the same receptor complexed with different ligands. We reported the features of receptor-ligand interaction patterns and the differences between agonist and inverse agonist binding. Specific changes in the contact interaction map are identified to distinguish active and inactive conformations. Further statistical analysis of the contact interaction patterns using principal component analysis reveals a dominant mode which separates allosteric binding vs. canonical binding and a second mode which may indicate active vs. inactive structures. We also studied the nature of constitutive activity by performing a 100-ns computer simulation of apo RORγ. Using constitutively active nuclear receptor CAR as a comparison, we identified a group of conserved contacts that have similar contact strength between the two receptors. These conserved contact interactions, especially a couple key contacts in H11–H12 interaction, can be considered essential to the constitutive activity of RORγ. These protein-ligand and internal protein contact interactions can be useful in the development of new drugs that direct receptor activity.
Collapse
Affiliation(s)
- Bill Pham
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Ziju Cheng
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Daniel Lopez
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Richard J. Lindsay
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, United States
| | - David Foutch
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, United States
| | - Rily T. Majors
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Tongye Shen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
- *Correspondence: Tongye Shen,
| |
Collapse
|
7
|
Palchykov V. 2-Amino-4,6,7,8-tetrahydrothiopyrano[3,2-b]pyran-3-carbonitrile 5,5-dioxide VP-4535 as an antimicrobial agent selective toward methicillin‐resistant Staphylococcus aureus. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Moghadam ES, Mireskandari K, Abdel-Jalil R, Amini M. An approach to pharmacological targets of pyrrole family from a medicinal chemistry viewpoint. Mini Rev Med Chem 2022; 22:2486-2561. [PMID: 35339175 DOI: 10.2174/1389557522666220325150531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
Pyrrole is one of the most widely used heterocycles in the pharmaceutical industry. Due to the importance of pyrrole structure in drug design and development, herein, we tried to conduct an extensive review of the bioactive pyrrole based compounds reported recently. The bioactivity of pyrrole derivatives varies, so in the review, we categorized them based on their direct pharmacologic targets. Therefore, readers are able to find the variety of biologic targets for pyrrole containing compounds easily. This review explains around seventy different biologic targets for pyrrole based derivatives, so, it is helpful for medicinal chemists in design and development novel bioactive compounds for different diseases. This review presents an extensive meaningful structure activity relationship for each reported structure as much as possible. The review focuses on papers published between 2018 and 2020.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Katayoon Mireskandari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Gallagher WP, Coombs JR, Guerrero CA, Mudryk BM, Katipally K, Joe CL, Rupasinghe S, Zhu J, González-Bobes F. Asymmetric Synthesis of the Cyclohexyl Fragment in RORγt Inhibitor (BMS-986251) Enabled by a Dynamic Kinetic Resolution of Hageman’s Ester. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William P. Gallagher
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - John R. Coombs
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Carlos A. Guerrero
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Boguslaw M. Mudryk
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Kishta Katipally
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Candice L. Joe
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Sanjeewa Rupasinghe
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jason Zhu
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Francisco González-Bobes
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
10
|
Gallagher WP, Coombs JR, Guerrero CA, Simmons EM, González-Bobes F. A Radical Addition Approach to a Heptafluoroisopropyl Substituted Arene, Combined with a Highly Diastereoselective Annulation Reaction To Synthesize the Tricyclic Core of BMS-986251. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William P. Gallagher
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - John R. Coombs
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Carlos A. Guerrero
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Eric M. Simmons
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Francisco González-Bobes
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
11
|
Li Z, Liu T, He X, Bai C. The evolution paths of some reprehensive scaffolds of RORγt modulators, a perspective from medicinal chemistry. Eur J Med Chem 2021; 228:113962. [PMID: 34776280 DOI: 10.1016/j.ejmech.2021.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
The ligand binding domain (LBD) of retinoid-related orphan nuclear receptor γt (RORγt) has been exploited as a promising target for the new small molecule therapeutics to cure autoimmune diseases via modulating the IL-17 and IL-22 production by Th17 cells. Diverse chemical scaffolds of these small molecules have been discovered by multiple groups with methods such as high throughput screening (HTS) and virtual screening. These different scaffolds are further developed by medicinal chemists to afford lead compounds the best of which enter clinical trials. In this review, we summarize these chemical scaffolds and their evolution paths according to the groups in which they have been discovered or studied. We combine the data of the chemistry, biological assays and structural biology of each chemical scaffold, in order to afford insight to develop new RORγt modulators with higher potency, less toxicity and elucidated working mechanism.
Collapse
Affiliation(s)
- Zhuohao Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Tao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuan Bai
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
12
|
Hernandez LW, Gallagher WP, Guerrero CA, Gonzalez-Bobes F, Coombs JR. Radical Perfluoroalkylation of Arenes via Carbanion Intermediates. J Org Chem 2021; 86:10903-10913. [PMID: 34286987 DOI: 10.1021/acs.joc.1c01296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of sodium dithionite with perfluoroalkyl iodides under basic conditions facilitates the direct perfluoroalkylation of arenes with pendant benzylic electron-withdrawing groups. This occurs via attack of the arene on the electrophilic perfluoroalkyl radical, through the donation of electron density from a benzylic anion. The substrate scope was expanded beyond benzylic nitriles with cyclic substrates bearing electron-withdrawing groups at the benzylic position-enforcing donation of electron density to the aromatic ring and enabling attack on the perfluoroalkyl radical.
Collapse
Affiliation(s)
- Lucas W Hernandez
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - William P Gallagher
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Carlos A Guerrero
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Francisco Gonzalez-Bobes
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - John R Coombs
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
13
|
Gege C. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases - where are we presently? Expert Opin Drug Discov 2021; 16:1517-1535. [PMID: 34192992 DOI: 10.1080/17460441.2021.1948833] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The transcription factor retinoic acid-related orphan receptor gamma t (RORγt) has been identified as the master regulator of TH17 cell differentiation and IL-17/22 production and is therefore an attractive target for the treatment of inflammatory diseases. Several orally or topically administered small molecule RORγt inverse agonists (RIAs) have progressed up to the end of clinical Phase 2.Areas covered: Based on publications and patent evaluations this review summarizes the evolution of the chemical matter for all 16 pharmaceutical companies, who develop(ed) a clinical-stage RIAs (until March 2021). Structure proposals for some clinical stage RIAs are presented and the outcome of the clinical trials is discussed.Expert opinion: So far, the clinical trials have been plagued with a high attrition rate. Main reasons were lack of efficacy (topical) or safety signals (oral) as well as, amongst other things, thymic lymphomas as seen with BMS-986251 in a preclinical study and liver enzyme elevations in humans with VTP-43742. Possibilities to mitigate these risks could be the use of RIAs with different chemical structures not interfering with thymocytes maturation and no livertox-inducing properties. With new frontrunners (e.g., ABBV-157 (cedirogant), BI 730357 or IMU-935) this is still an exciting time for this treatment approach.
Collapse
|
14
|
Wu X, Shen H, Zhang Y, Wang C, Li Q, Zhang C, Zhuang X, Li C, Shi Y, Xing Y, Xiang Q, Xu J, Wu D, Liu J, Xu Y. Discovery and Characterization of Benzimidazole Derivative XY123 as a Potent, Selective, and Orally Available RORγ Inverse Agonist. J Med Chem 2021; 64:8775-8797. [PMID: 34121397 DOI: 10.1021/acs.jmedchem.1c00763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Receptor-related orphan receptor γ (RORγ) has emerged as an attractive therapeutic target for the treatment of cancer and inflammatory diseases. Herein, we report our effort on the discovery, optimization, and evaluation of benzothiazole and benzimidazole derivatives as novel inverse agonists of RORγ. The representative compound 27h (designated as XY123) potently inhibited the RORγ transcription activity with a half-maximal inhibitory concentration (IC50) value of 64 nM and showed excellent selectivity against other nuclear receptors. 27h also potently suppressed cell proliferation, colony formation, and the expression of androgen receptor (AR)-regulated genes in AR-positive prostate cancer cell lines. In addition, 27h demonstrated good metabolic stability and a pharmacokinetic property with reasonable oral bioavailability (32.41%) and moderate half-life (t1/2 = 4.98 h). Significantly, oral administration of compound 27h achieved complete and long-lasting tumor regression in the 22Rv1 xenograft tumor model in mice. Compound 27h may serve as a new valuable lead compound for further development of drugs for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Xishan Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Hui Shen
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Qiu Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Xiaoxi Zhuang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Chenchang Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Yudan Shi
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Yanli Xing
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Jinxin Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Donghai Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
15
|
Kalidindi S, Gangu AS, Kuppusamy S, Sathasivam S, Shekarappa V, Murugan S, Bondigela S, Kandasamy M, Ghanta K, Vinodini A, Shrikant A, Ramachandran R, Gallagher WP, Kopp N, González-Bobes F, Eastgate MD, Vaidyanathan R. Development of a Scalable Synthetic Route to BMS-986251, Part 2: Synthesis of the Tricyclic Core and the API. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Srinivas Kalidindi
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Aravind S. Gangu
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Sankar Kuppusamy
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Shunmugaraj Sathasivam
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Vijaykumar Shekarappa
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Saravanan Murugan
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Sivasankar Bondigela
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Moorthy Kandasamy
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Kishore Ghanta
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Arun Vinodini
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Abhishek Shrikant
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ravikumar Ramachandran
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - William P. Gallagher
- Chemical Process Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Nathaniel Kopp
- Chemical Process Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Francisco González-Bobes
- Chemical Process Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D. Eastgate
- Chemical Process Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Rajappa Vaidyanathan
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| |
Collapse
|
16
|
Hall A, Chanteux H, Ménochet K, Ledecq M, Schulze MSED. Designing Out PXR Activity on Drug Discovery Projects: A Review of Structure-Based Methods, Empirical and Computational Approaches. J Med Chem 2021; 64:6413-6522. [PMID: 34003642 DOI: 10.1021/acs.jmedchem.0c02245] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This perspective discusses the role of pregnane xenobiotic receptor (PXR) in drug discovery and the impact of its activation on CYP3A4 induction. The use of structural biology to reduce PXR activity on drug discovery projects has become more common in recent years. Analysis of this work highlights several important molecular interactions, and the resultant structural modifications to reduce PXR activity are summarized. The computational approaches undertaken to support the design of new drugs devoid of PXR activation potential are also discussed. Finally, the SAR of empirical design strategies to reduce PXR activity is reviewed, and the key SAR transformations are discussed and summarized. In conclusion, this perspective demonstrates that PXR activity can be greatly diminished or negated on active drug discovery projects with the knowledge now available. This perspective should be useful to anyone who seeks to reduce PXR activity on a drug discovery project.
Collapse
Affiliation(s)
- Adrian Hall
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | | | | - Marie Ledecq
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | |
Collapse
|
17
|
Liu Q, Xiao HY, Batt DG, Xiao Z, Zhu Y, Yang MG, Li N, Yip S, Li P, Sun D, Wu DR, Ruzanov M, Sack JS, Weigelt CA, Wang J, Li S, Shuster DJ, Xie JH, Song Y, Sherry T, Obermeier MT, Fura A, Stefanski K, Cornelius G, Chacko S, Khandelwal P, Dudhgaonkar S, Rudra A, Nagar J, Murali V, Govindarajan A, Denton R, Zhao Q, Meanwell NA, Borzilleri R, Dhar TGM. Azatricyclic Inverse Agonists of RORγt That Demonstrate Efficacy in Models of Rheumatoid Arthritis and Psoriasis. ACS Med Chem Lett 2021; 12:827-835. [PMID: 34055233 DOI: 10.1021/acsmedchemlett.1c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Structure-activity relationship studies directed toward the replacement of the fused phenyl ring of the lead hexahydrobenzoindole RORγt inverse agonist series represented by 1 with heterocyclic moieties led to the identification of three novel aza analogs 5-7. The hexahydropyrrolo[3,2-f]quinoline series 5 (X = N, Y = Z=CH) showed potency and metabolic stability comparable to series 1 but with improved in vitro membrane permeability and serum free fraction. This structural modification was applied to the hexahydrocyclopentanaphthalene series 3, culminating in the discovery of 8e as a potent and selective RORγt inverse agonist with an excellent in vitro profile, good pharmacokinetic properties, and biologic-like in vivo efficacy in preclinical models of rheumatoid arthritis and psoriasis.
Collapse
Affiliation(s)
- Qingjie Liu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Hai-Yun Xiao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Douglas G. Batt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Zili Xiao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Yeheng Zhu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Michael G. Yang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Ning Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Shiuhang Yip
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Peng Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Dawn Sun
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Dauh-Rurng Wu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Max Ruzanov
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - John S. Sack
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Carolyn A. Weigelt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Jinhong Wang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Sha Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - David J. Shuster
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Jenny H. Xie
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Yunling Song
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Tara Sherry
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Mary T. Obermeier
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Aberra Fura
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Kevin Stefanski
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Georgia Cornelius
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Silvi Chacko
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Purnima Khandelwal
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Shailesh Dudhgaonkar
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Anjuman Rudra
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Jignesh Nagar
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Venkata Murali
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Arun Govindarajan
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Rex Denton
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Qihong Zhao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Nicholas A. Meanwell
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Robert Borzilleri
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - T. G. Murali Dhar
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| |
Collapse
|
18
|
Karmakar A, Nimje RY, Silamkoti A, Pitchai M, Basha M, Singarayer C, Ramasamy D, Babu GTV, Samikannu R, Subramaniam S, Anjanappa P, Vetrichelvan M, Kumar H, Dikundwar AG, Gupta A, Gupta AK, Rampulla R, Dhar TGM, Mathur A. Practical Synthesis of (3aR, 9bR)-8-Fluoro-7-(perfluoropropan-2-yl)-9b-(phenylsulfonyl)-2,3,3a,4,5,9b-hexahydro-1H-benzo[e]indole: An Advanced Intermediate to Access the RORγt Inverse Agonist BMT-362265. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ananta Karmakar
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Roshan Y. Nimje
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Arundutt Silamkoti
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Manivel Pitchai
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Mushkin Basha
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Christuraj Singarayer
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Duraisamy Ramasamy
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - G. T. Venkatesh Babu
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Ramesh Samikannu
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Srinath Subramaniam
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Prakash Anjanappa
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Muthalagu Vetrichelvan
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Hemantha Kumar
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Amol G. Dikundwar
- Analytical Research & Development, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Anuradha Gupta
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Arun Kumar Gupta
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bangalore 560099, India
| | - Richard Rampulla
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, United States
| | - T. G. Murali Dhar
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
19
|
Yang MG, Beaudoin-Bertrand M, Xiao Z, Marcoux D, Weigelt CA, Yip S, Wu DR, Ruzanov M, Sack JS, Wang J, Yarde M, Li S, Shuster DJ, Xie JH, Sherry T, Obermeier MT, Fura A, Stefanski K, Cornelius G, Khandelwal P, Karmakar A, Basha M, Babu V, Gupta AK, Mathur A, Salter-Cid L, Denton R, Zhao Q, Dhar TGM. Tricyclic-Carbocyclic RORγt Inverse Agonists-Discovery of BMS-986313. J Med Chem 2021; 64:2714-2724. [PMID: 33591748 DOI: 10.1021/acs.jmedchem.0c01992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SAR efforts directed at identifying RORγt inverse agonists structurally different from our clinical compound 1 (BMS-986251) led to tricyclic-carbocyclic analogues represented by 3-7 and culminated in the identification of 3d (BMS-986313), with structural differences distinct from 1. The X-ray co-crystal structure of 3d with the ligand binding domain of RORγt revealed several key interactions, which are different from 1. The in vitro and in vivo PK profiles of 3d are described. In addition, we demonstrate robust efficacy of 3d in two preclinical models of psoriasis-the IMQ-induced skin lesion model and the IL-23-induced acanthosis model. The efficacy seen with 3d in these models is comparable to the results observed with 1.
Collapse
Affiliation(s)
- Michael G Yang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Myra Beaudoin-Bertrand
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Zili Xiao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - David Marcoux
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Carolyn A Weigelt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Shiuhang Yip
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Dauh-Rurng Wu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Max Ruzanov
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - John S Sack
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Jinhong Wang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Melissa Yarde
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Sha Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - David J Shuster
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Jenny H Xie
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Tara Sherry
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Mary T Obermeier
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Aberra Fura
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Kevin Stefanski
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Georgia Cornelius
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Purnima Khandelwal
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Ananta Karmakar
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Mushkin Basha
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Venkatesh Babu
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Arun Kumar Gupta
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Arvind Mathur
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Luisa Salter-Cid
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Rex Denton
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Qihong Zhao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - T G Murali Dhar
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
20
|
McDaniel J, Farley CA, Ramirez A, Sandhu B, Sarjeant A, Shi Q, Han A, Gallagher WP, Hynes J, Dhar TGM, Gonzalez-Bobes F, Coombs JR, Marcoux D. Discovery of Annulating Reagents Enabling the One-Step and Highly Stereoselective Synthesis of Cyclopentyl and Cyclohexyl Cores. Org Lett 2021; 23:60-65. [PMID: 33351641 DOI: 10.1021/acs.orglett.0c03695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of the unprecedented annulating reagents methyl N-(tert-butylsulfinyl)-4-chlorobutanimidate and methyl N-(tert-butylsulfinyl)-5-bromopentanimidate enables the diastereoselective preparation of 5- and 6-membered carbocycles bearing three contiguous stereocenters. These synthons undergo cycloaddition with a variety of Michael acceptors to form cyclopentane/cyclohexane rings with excellent stereochemical control, generating only one of the eight possible diastereomers. This novel methodology has enabled the highly enantioselective and high yielding synthesis of novel chemotypes of pharmacological relevance.
Collapse
Affiliation(s)
- Jade McDaniel
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Christopher A Farley
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Bhupinder Sandhu
- Material Science & Engineering, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Amy Sarjeant
- Material Science & Engineering, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Qing Shi
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Arthur Han
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - William P Gallagher
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - John Hynes
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - T G Murali Dhar
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Francisco Gonzalez-Bobes
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - John R Coombs
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - David Marcoux
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| |
Collapse
|
21
|
Liu Q, Batt DG, Weigelt CA, Yip S, Wu DR, Ruzanov M, Sack JS, Wang J, Yarde M, Li S, Shuster DJ, Xie JH, Sherry T, Obermeier MT, Fura A, Stefanski K, Cornelius G, Khandelwal P, Tino JA, Macor JE, Salter-Cid L, Denton R, Zhao Q, Dhar TGM. Novel Tricyclic Pyroglutamide Derivatives as Potent RORγt Inverse Agonists Identified using a Virtual Screening Approach. ACS Med Chem Lett 2020; 11:2510-2518. [PMID: 33335675 DOI: 10.1021/acsmedchemlett.0c00496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Employing a virtual screening approach, we identified the pyroglutamide moiety as a nonacid replacement for the cyclohexanecarboxylic acid group which, when coupled to our previously reported conformationally locked tricyclic core, provided potent and selective RORγt inverse agonists. Structure-activity relationship optimization of the pyroglutamide moiety led to the identification of compound 18 as a potent and selective RORγt inverse agonist, albeit with poor aqueous solubility. We took advantage of the tertiary carbinol group in 18 to synthesize a phosphate prodrug, which provided good solubility, excellent exposures in mouse PK studies, and significant efficacy in a mouse model of psoriasis.
Collapse
Affiliation(s)
- Qingjie Liu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Douglas G. Batt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Carolyn A. Weigelt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Shiuhang Yip
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Dauh-Rurng Wu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Max Ruzanov
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - John S. Sack
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Jinhong Wang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Melissa Yarde
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Sha Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - David J. Shuster
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Jenny H. Xie
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Tara Sherry
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Mary T. Obermeier
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Aberra Fura
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Kevin Stefanski
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Georgia Cornelius
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Purnima Khandelwal
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Joseph A. Tino
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - John E. Macor
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Luisa Salter-Cid
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Rex Denton
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Qihong Zhao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - T. G. Murali Dhar
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| |
Collapse
|
22
|
Shi Q, Xiao Z, Yang MG, Marcoux D, Cherney RJ, Yip S, Li P, Wu DR, Weigelt CA, Sack J, Khan J, Ruzanov M, Wang J, Yarde M, Ellen Cvijic M, Li S, Shuster DJ, Xie J, Sherry T, Obermeier M, Fura A, Stefanski K, Cornelius G, Chacko S, Shu YZ, Khandelwal P, Hynes J, Tino JA, Salter-Cid L, Denton R, Zhao Q, Dhar TM. Tricyclic sulfones as potent, selective and efficacious RORγt inverse agonists – Exploring C6 and C8 SAR using late-stage functionalization. Bioorg Med Chem Lett 2020; 30:127521. [DOI: 10.1016/j.bmcl.2020.127521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/20/2022]
|
23
|
He Y, Yang J, Liu Q, Zhang X, Fan X. Synthesis of β-Methylsulfonylated N-Heterocycles from Saturated Cyclic Amines with the Insertion of Sulfur Dioxide. J Org Chem 2020; 85:15600-15609. [DOI: 10.1021/acs.joc.0c02368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jintao Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qimeng Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
24
|
Marcoux D, Bertrand MB, Weigelt CA, Yip S, Galella M, Park H, Wu DR, Wang J, Yarde M, Cvijic ME, Li S, Hynes J, Tino JA, Zhao Q, Dhar TM. Annulation reaction enables the identification of an exocyclic amide tricyclic chemotype as retinoic acid Receptor-Related orphan receptor gamma (RORγ/RORc) inverse agonists. Bioorg Med Chem Lett 2020; 30:127466. [DOI: 10.1016/j.bmcl.2020.127466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
|
25
|
Cornelius LAM, Li J, Smith D, Krishnananthan S, Yip S, Wu DR, Pawluczyk J, Aulakh D, Sarjeant AA, Kempson J, Tino JA, Mathur A, Murali Dhar TG, Cherney RJ. Synthesis of 1-( tert-Butyl) 4-Methyl (1 R,2 S,4 R)-2-Methylcyclohexane-1,4-dicarboxylate from Hagemann's tert-Butyl Ester for an Improved Synthesis of BMS-986251. J Org Chem 2020; 85:10988-10993. [PMID: 32687358 DOI: 10.1021/acs.joc.0c01169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe an efficient synthetic route to differentially protected diester, 1-(tert-butyl) 4-methyl (1R,2S,4R)-2-methylcyclohexane-1,4-dicarboxylate (+)-1, via palladium-catalyzed methoxycarbonylation of an enol triflate derived from a Hagemann's ester derivative followed by a stereoselective Crabtree hydrogenation. Diester 1 is a novel chiral synthon useful in drug discovery and was instrumental in the generation of useful SAR during a RORγt inverse agonist program. In addition, we describe a second-generation synthesis of the clinical candidate BMS-986251, using diester 1 as a critical component.
Collapse
Affiliation(s)
- Lyndon A M Cornelius
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Jianqing Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Daniel Smith
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Subramaniam Krishnananthan
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Shiuhang Yip
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Dauh-Rurng Wu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Joseph Pawluczyk
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Darpandeep Aulakh
- Materials Science & Engineering, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Amy A Sarjeant
- Materials Science & Engineering, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - James Kempson
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Joseph A Tino
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | | | - T G Murali Dhar
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Robert J Cherney
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
26
|
Sun N, Huang Y, Yu M, Zhao Y, Chen JA, Zhu C, Song M, Guo H, Xie Q, Wang Y. Discovery of carboxyl-containing biaryl ureas as potent RORγt inverse agonists. Eur J Med Chem 2020; 202:112536. [PMID: 32698100 DOI: 10.1016/j.ejmech.2020.112536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/23/2020] [Accepted: 06/03/2020] [Indexed: 10/23/2022]
Abstract
GSK805 (1) is a potent RORγt inverse agonist, but a drawback of 1 is its low solubility, leading to a limited absorption in high doses. We have explored detailed structure-activity relationship on the amide linker, biaryl and arylsulfonyl moieties of 1 trying to improve solubility while maintaining RORγt activity. As a result, a novel series of carboxyl-containing biaryl urea derivatives was discovered as potent RORγt inverse agonists with improved drug-like properties. Compound 3i showed potent RORγt inhibitory activity and subtype selectivity with an IC50 of 63.8 nM in RORγ FRET assay and 85 nM in cell-based RORγ-GAL4 promotor reporter assay. Reasonable inhibitory activity of 3i was also achieved in mouse Th17 cell differentiation assay (76% inhibition at 0.3 μM). Moreover, 3i had greatly improved aqueous solubility at pH 7.4 compared to 1, exhibited decent mouse PK profile and demonstrated some in vivo efficacy in an imiquimod-induced psoriasis mice model.
Collapse
Affiliation(s)
- Nannan Sun
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Yafei Huang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Mingcheng Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Yunpeng Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Ji-An Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Chenyu Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Meiqi Song
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Huimin Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
27
|
Harikrishnan LS, Gill P, Kamau MG, Qin LY, Ruan Z, O'Malley D, Huynh T, Stachura S, Cavallaro CL, Lu Z, J-W Duan J, Weigelt CA, Sack JS, Ruzanov M, Khan J, Gururajan M, Wong JJ, Huang Y, Yarde M, Li Z, Chen C, Sun H, Borowski V, Murtaza A, Fink BE. Substituted benzyloxytricyclic compounds as retinoic acid-related orphan receptor gamma t (RORγt) agonists. Bioorg Med Chem Lett 2020; 30:127204. [PMID: 32334911 DOI: 10.1016/j.bmcl.2020.127204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
Substituted benzyloxy aryl compound 2 was identified as an RORγt agonist. Structure based drug design efforts resulted in a potent and selective tricyclic compound 19 which, when administered orally in an MC38 mouse tumor model, demonstrated a desired pharmacokinetic profile as well as a dose-dependent pharmacodynamic response. However, no perceptible efficacy was observed in this tumor model at the doses investigated.
Collapse
Affiliation(s)
- Lalgudi S Harikrishnan
- Department of Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA.
| | - Patrice Gill
- Department of Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Muthoni G Kamau
- Department of Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Lan-Ying Qin
- Department of Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Zheming Ruan
- Department of Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Daniel O'Malley
- Department of Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Tram Huynh
- Department of Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Sylwia Stachura
- Department of Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Cullen L Cavallaro
- Department of Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Zhonghui Lu
- Department of Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - James J-W Duan
- Department of Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Carolyn A Weigelt
- Molecular Structure & Design, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - John S Sack
- Molecular Structure & Design, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Max Ruzanov
- Molecular Structure & Design, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Javed Khan
- Molecular Structure & Design, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Murali Gururajan
- Immuno-Oncology Small Molecule Biology, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Jessica J Wong
- Immuno-Oncology Small Molecule Biology, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Yanling Huang
- Immuno-Oncology Small Molecule Biology, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Melissa Yarde
- Lead Discovery & Optimization, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Zhuyin Li
- Lead Discovery & Optimization, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Cliff Chen
- Preclinical Candidate Optimization, MAP, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Huadong Sun
- Preclinical Candidate Optimization, MAP, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Virna Borowski
- In vivo Pharmacology, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Anwar Murtaza
- In vivo Pharmacology, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| | - Brian E Fink
- Department of Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, NJ, USA
| |
Collapse
|
28
|
Cherney RJ, Cornelius LAM, Srivastava A, Weigelt CA, Marcoux D, Duan JJW, Shi Q, Batt DG, Liu Q, Yip S, Wu DR, Ruzanov M, Sack J, Khan J, Wang J, Yarde M, Cvijic ME, Mathur A, Li S, Shuster D, Khandelwal P, Borowski V, Xie J, Obermeier M, Fura A, Stefanski K, Cornelius G, Tino JA, Macor JE, Salter-Cid L, Denton R, Zhao Q, Carter PH, Dhar TGM. Discovery of BMS-986251: A Clinically Viable, Potent, and Selective RORγt Inverse Agonist. ACS Med Chem Lett 2020; 11:1221-1227. [PMID: 32551004 DOI: 10.1021/acsmedchemlett.0c00063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 01/03/2023] Open
Abstract
Novel tricyclic analogues were designed, synthesized, and evaluated as RORγt inverse agonists. Several of these compounds were potent in an IL-17 human whole blood assay and exhibited excellent oral bioavailability in mouse pharmacokinetic studies. This led to the identification of compound 5, which displayed dose-dependent inhibition of IL-17F production in a mouse IL-2/IL-23 stimulated pharmacodynamic model. In addition, compound 5 was studied in mouse acanthosis and imiquimod-induced models of skin inflammation, where it demonstrated robust efficacy comparable to a positive control. As a result of this excellent overall profile, compound 5 (BMS-986251) was selected as a clinically viable developmental candidate.
Collapse
Affiliation(s)
- Robert J. Cherney
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Lyndon A. M. Cornelius
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Anurag Srivastava
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Carolyn A. Weigelt
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - David Marcoux
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - James J.-W. Duan
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Qing Shi
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Douglas G. Batt
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Qingjie Liu
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Shiuhang Yip
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Dauh-Rurng Wu
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Max Ruzanov
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - John Sack
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Javed Khan
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Jinhong Wang
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Melissa Yarde
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Mary Ellen Cvijic
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Arvind Mathur
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Sha Li
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - David Shuster
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Purnima Khandelwal
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Virna Borowski
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Jenny Xie
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Mary Obermeier
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Aberra Fura
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Kevin Stefanski
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Georgia Cornelius
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Joseph A. Tino
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - John E. Macor
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Luisa Salter-Cid
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Rex Denton
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Qihong Zhao
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Percy H. Carter
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - T. G. Murali Dhar
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| |
Collapse
|
29
|
Discovery of novel N-sulfonamide-tetrahydroquinolines as potent retinoic acid receptor-related orphan receptor γt inverse agonists for the treatment of autoimmune diseases. Eur J Med Chem 2020; 187:111984. [DOI: 10.1016/j.ejmech.2019.111984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 11/19/2022]
|
30
|
Shi Q, Greenwood NS, Meehan MC, Park H, Galella M, Sandhu B, Khandelwal P, Coombs JR, Gallagher WP, Guerrero CA, Hynes J, Dhar TGM, Gonzalez Bobes F, Marcoux D. One-Step Diastereoselective Pyrrolidine Synthesis Using a Sulfinamide Annulating Reagent. Org Lett 2019; 21:9198-9202. [PMID: 31647672 DOI: 10.1021/acs.orglett.9b03560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This communication highlights the use of chiral sulfinamides as nitrogen nucleophiles in intermolecular aza-Michael reactions. When chiral sulfinamides are coupled to a chloroethyl group, the corresponding novel annulating reagents can be used to streamline the stereoselective synthesis of complex pyrrolidine-containing molecules. As a result, it has enabled a medicinal chemistry campaign for the synthesis of biologically active RORγt inverse agonists.
Collapse
Affiliation(s)
- Qing Shi
- Discovery Chemistry , Bristol-Myers Squibb , Route 206 and Province Line Road , Princeton , New Jersey 08543 , United States
| | - Nathaniel S Greenwood
- Discovery Chemistry , Bristol-Myers Squibb , Route 206 and Province Line Road , Princeton , New Jersey 08543 , United States
| | - Mariah C Meehan
- Discovery Chemistry , Bristol-Myers Squibb , Route 206 and Province Line Road , Princeton , New Jersey 08543 , United States
| | - Hyunsoo Park
- Materials Science & Engineering , Bristol-Myers Squibb , 1 Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Michael Galella
- Materials Science & Engineering , Bristol-Myers Squibb , 1 Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Bhupinder Sandhu
- Materials Science & Engineering , Bristol-Myers Squibb , 1 Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Purnima Khandelwal
- Discovery Chemistry , Bristol-Myers Squibb , Route 206 and Province Line Road , Princeton , New Jersey 08543 , United States
| | - John R Coombs
- Chemical & Synthetic Development , Bristol-Myers Squibb , 1 Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - William P Gallagher
- Chemical & Synthetic Development , Bristol-Myers Squibb , 1 Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Carlos A Guerrero
- Chemical & Synthetic Development , Bristol-Myers Squibb , 1 Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - John Hynes
- Discovery Chemistry , Bristol-Myers Squibb , Route 206 and Province Line Road , Princeton , New Jersey 08543 , United States
| | - T G Murali Dhar
- Discovery Chemistry , Bristol-Myers Squibb , Route 206 and Province Line Road , Princeton , New Jersey 08543 , United States
| | - Francisco Gonzalez Bobes
- Chemical & Synthetic Development , Bristol-Myers Squibb , 1 Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - David Marcoux
- Discovery Chemistry , Bristol-Myers Squibb , Route 206 and Province Line Road , Princeton , New Jersey 08543 , United States
| |
Collapse
|