1
|
Li X, Zhang J, Xiao Y, Song H, Li Y, Li W, Cao R, Li S, Qin Y, Wang C, Zhong W. Chemoproteomics enables identification of coatomer subunit zeta-1 targeted by a small molecule for enterovirus A71 inhibition. MedComm (Beijing) 2024; 5:e587. [PMID: 38840773 PMCID: PMC11151152 DOI: 10.1002/mco2.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Human enterovirus A71 (EV-A71) is a significant etiological agent responsible for epidemics of hand, foot, and mouth disease (HFMD) in Asia-Pacific regions. There are presently no licensed antivirals against EV-A71, and the druggable target for EV-A71 remains very limited. The phenotypic hit 10,10'-bis(trifluoromethyl) marinopyrrole A derivative, herein termed MPA-CF3, is a novel potent small-molecule inhibitor against EV-A71, but its pharmacological target(s) and antiviral mechanisms are not defined. Here, quantitative chemoproteomics deciphered the antiviral target of MAP-CF3 as host factor coatomer subunit zeta-1 (COPZ1). Mechanistically, MPA-CF3 disrupts the interaction of COPZ1 with the EV-A71 nonstructural protein 2C by destabilizing COPZ1 upon binding. The destruction of this interaction blocks the coatomer-mediated transport of 2C to endoplasmic reticulum, and ultimately inhibits EV-A71 replication. Taken together, our study disclosed that MPA-CF3 can be a structurally novel host-targeting anti-EV-A71 agent, providing a structural basis for developing the COPZ1-targeting broad-spectrum antivirals against enteroviruses. The mechanistic elucidation of MPA-CF3 against EV-A71 may offer an alternative COPZ1-involved therapeutic pathway for enterovirus infection.
Collapse
Affiliation(s)
- Xiaoyong Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengduChina
- National Engineering Research Center for the Emergence DrugsBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Jin Zhang
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Yaxin Xiao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengduChina
| | - Hao Song
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengduChina
| | - Yuexiang Li
- National Engineering Research Center for the Emergence DrugsBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Wei Li
- National Engineering Research Center for the Emergence DrugsBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergence DrugsBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Song Li
- National Engineering Research Center for the Emergence DrugsBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yong Qin
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengduChina
| | - Chu Wang
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Wu Zhong
- National Engineering Research Center for the Emergence DrugsBeijing Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
2
|
Wang S, Pang Z, Fan H, Tong Y. Advances in anti-EV-A71 drug development research. J Adv Res 2024; 56:137-156. [PMID: 37001813 PMCID: PMC10834817 DOI: 10.1016/j.jare.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is capable of causing hand, foot and mouth disease (HFMD), which may lead to neurological sequelae and even death. As EV-A71 is resistant to environmental changes and mutates easily, there is still a lack of effective treatments or globally available vaccines. AIM OF REVIEW For more than 50 years since the HFMD epidemic, related drug research has been conducted. Progress in this area can promote the further application of existing potential drugs and develop more efficient and safe antiviral drugs, and provide useful reference for protecting the younger generation and maintaining public health security. KEY SCIENTIFIC CONCEPTS OF REVIEW At present, researchers have identified hundreds of EV-A71 inhibitors based on screening repurposed drugs, targeted structural design, and rational modification of previously effective drugs as the main development strategies. This review systematically introduces the current potential drugs to inhibit EV-A71 infection, including viral inhibitors targeting key sites such as the viral capsid, RNA-dependent RNA polymerase (RdRp), 2C protein, internal ribosome entry site (IRES), 3C proteinase (3Cpro), and 2A proteinase (2Apro), starting from each stage of the viral life cycle. Meanwhile, the progress of host-targeting antiviral drugs and their development are summarized in terms of regulating host immunity, inhibiting autophagy or apoptosis, and regulating the cellular redox environment. In addition, the current clinical methods for the prevention and treatment of HFMD are summarized and discussed with the aim of providing support and recommendations for the treatment of enterovirus infections including EV-A71.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
3
|
Wei Y, Liu H, Hu D, He Q, Yao C, Li H, Hu K, Wang J. Recent Advances in Enterovirus A71 Infection and Antiviral Agents. J Transl Med 2024; 104:100298. [PMID: 38008182 DOI: 10.1016/j.labinv.2023.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease (HFMD) that majorly affects children. Most of the time, HFMD is a mild disease but can progress to severe complications, such as meningitis, brain stem encephalitis, acute flaccid paralysis, and even death. HFMD caused by EV-A71 has emerged as an acutely infectious disease of highly pathogenic potential in the Asia-Pacific region. In this review, we introduced the properties and life cycle of EV-A71, and the pathogenesis and the pathophysiology of EV-A71 infection, including tissue tropism and host range of virus infection, the diseases caused by the virus, as well as the genes and host cell immune mechanisms of major diseases caused by enterovirus 71 (EV-A71) infection, such as encephalitis and neurologic pulmonary edema. At the same time, clinicopathologic characteristics of EV-A71 infection were introduced. There is currently no specific medication for EV-A71 infection, highlighting the urgency and significance of developing suitable anti-EV-A71 agents. This overview also summarizes the targets of existing anti-EV-A71 agents, including virus entry, translation, polyprotein processing, replication, assembly and release; interferons; interleukins; the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase B signaling pathways; the oxidative stress pathway; the ubiquitin-proteasome system; and so on. Furthermore, it overviews the effects of natural products, monoclonal antibodies, and RNA interference against EV-A71. It also discusses issues limiting the research of antiviral drugs. This review is a systematic and comprehensive summary of the mechanism and pathological characteristics of EV-A71 infection, the latest progress of existing anti-EV-A71 agents. It would provide better understanding and guidance for the research and application of EV-A71 infection and antiviral inhibitors.
Collapse
Affiliation(s)
- Yanhong Wei
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Huihui Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Da Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Qun He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Chenguang Yao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Kanghong Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China.
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Abd-Aziz N, Lee MF, Ong SK, Poh CL. Antiviral activity of SP81 peptide against Enterovirus A71 (EV-A71). Virology 2024; 589:109941. [PMID: 37984152 DOI: 10.1016/j.virol.2023.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
The hand, food, and mouth disease (HFMD) is primarily caused by Enterovirus A71 (EV-A71). EV-A71 outbreaks in the Asia Pacific have been associated with severe neurological disease and high fatalities. Currently, there are no FDA-approved antivirals for the treatment of EV-A71 infections. In this study, the SP81 peptide, derived from the VP1 capsid protein of EV-A71 was shown to be a promising antiviral candidate for the treatment of EV-A71 infections. SP81 peptide was non-toxic to RD cells up to 45 μM, with a half-maximal cytotoxic concentration (CC50) of 90.32 μM. SP81 peptide exerted antiviral effects during the pre- and post-infection stages with 50% inhibitory concentrations (IC50) of 4.529 μM and 1.192 μM, respectively. Direct virus inactivation of EV-A71 by the SP81 peptide was also observed with an IC50 of 8.076 μM. Additionally, the SP81 peptide exhibited direct virus inactivation of EV-A71 at 95% upon the addition of the SP81 peptide within 5 min. This study showed that the SP81 peptide exhibited significant inhibition of EV-A71 and could serve as a promising antiviral agent for further clinical development against EV-A71 infections.
Collapse
Affiliation(s)
- Noraini Abd-Aziz
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Michelle Felicia Lee
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Abeywickrema M, Kelly D, Kadambari S. Management of neonatal central nervous system viral infections: Knowledge gaps and research priorities. Rev Med Virol 2023; 33:e2421. [PMID: 36639694 DOI: 10.1002/rmv.2421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023]
Abstract
Congenital CMV, enteroviruses, human parechovirus and herpes simplex virus are all common causes of severe central nervous system (CNS) infection in neonates. The introduction of screening (i.e. newborn hearing screening programme), integration of molecular syndromic testing (i.e. multiplex polymerase chain reaction assays) and increase in sexually transmitted infections (i.e. anogenital herpes) have contributed to increases in each of these infections over the last decade. However, therapeutic options are highly limited in part due to the lack of epidemiological data informing trials. This review will describe our current understanding of the clinical burden and epidemiology of these severe neonatal CNS infections, outline the novel antiviral and vaccines in the pipeline and suggest future research studies which could help develop new therapeutics.
Collapse
Affiliation(s)
- Movin Abeywickrema
- Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Dominic Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Seilesh Kadambari
- Department of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,University College London, Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
6
|
Liao Y, Ye Y, Liu M, Liu Z, Wang J, Li B, Huo L, Zhuang Y, Chen L, Chen J, Gao Y, Ning X, Li S, Liu S, Song G. Identification of N- and C-3-Modified Laudanosoline Derivatives as Novel Influenza PA N Endonuclease Inhibitors. J Med Chem 2023; 66:188-219. [PMID: 36521178 DOI: 10.1021/acs.jmedchem.2c00857] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Influenza PAN inhibitors are of particular importance in current efforts to develop a new generation of antiviral drugs due to the growing emergence of highly pathogenic influenza viruses and the resistance to existing antiviral inhibitors. Herein, we design and synthesize a set of 1,3-cis-N-substituted-1,2,3,4-tetrahydroisoquinoline derivatives to enhance their potency by further exploiting the pockets 3 and 4 in the PAN endonuclease based on the hit d,l-laudanosoline. Particularly, the lead compound 35 exhibited potent and broad anti-influenza virus effects with EC50 values ranging from 0.43 to 1.12 μM in vitro and good inhibitory activity in a mouse model. Mechanistic studies demonstrated that 35 could bind tightly to the PAN endonuclease of RNA-dependent RNA polymerase, thus blocking the viral replication to exert antiviral activity. Overall, our study might establish the importance of 1,2,3,4-tetrahydroisoquinoline-6,7-diol-based derivatives for the development of novel PAN inhibitors of influenza viruses.
Collapse
Affiliation(s)
- Yixian Liao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yilu Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Baixi Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Lijian Huo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yilian Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Liye Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongfeng Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyun Ning
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Sumei Li
- College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Kingston NJ, Shegdar M, Snowden JS, Fox H, Groppelli E, Macadam A, Rowlands DJ, Stonehouse NJ. Thermal stabilization of enterovirus A 71 and production of antigenically stabilized empty capsids. J Gen Virol 2022; 103:001771. [PMID: 35997623 PMCID: PMC10019091 DOI: 10.1099/jgv.0.001771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/18/2022] [Indexed: 01/11/2023] Open
Abstract
Enterovirus A71 (EVA71) infection can result in paralysis and may be fatal. In common with other picornaviruses, empty capsids are produced alongside infectious virions during the viral lifecycle. These empty capsids are antigenically indistinguishable from infectious virus, but at moderate temperatures they are converted to an expanded conformation. In the closely related poliovirus, native and expanded antigenic forms of particle have different long-term protective efficacies when used as vaccines. The native form provides long-lived protective immunity, while expanded capsids fail to generate immunological protection. Whether this is true for EVA71 remains to be determined. Here, we selected an antigenically stable EVA71 virus population using successive rounds of heating and passage and characterized the antigenic conversion of both virions and empty capsids. The mutations identified within the heated passaged virus were dispersed across the capsid, including at key sites associated with particle expansion. The data presented here indicate that the mutant sequence may be a useful resource to address the importance of antigenic conformation in EVA71 vaccines.
Collapse
Affiliation(s)
- Natalie J. Kingston
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mona Shegdar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph S. Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Helen Fox
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK
| | - Elisabetta Groppelli
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Present address: Institute for Infection and Immunity, St George’s University of London, Tooting, London, UK
| | - Andrew Macadam
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK
| | - David J. Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nicola J. Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Li D, Zhang L. Structure Prediction and Potential Inhibitors Docking of Enterovirus 2C Proteins. Front Microbiol 2022; 13:856574. [PMID: 35572704 PMCID: PMC9100428 DOI: 10.3389/fmicb.2022.856574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Human enterovirus infections are mostly asymptomatic and occasionally could be severe and life-threatening. The conserved non-structural 2C from enteroviruses protein is a promising target in antiviral therapies against human enteroviruses. Understanding of 2C-drug interactions is crucial for developing the potential antiviral agents. While functions of enterovirus 2C proteins have been widely studied, three-dimensional structure information of 2C is limited. In this study, the structures of 2C proteins from 20 enteroviruses were simulated and reconstructed using I-TASSER programs. Subsequent docking studies of the known 22 antiviral inhibitors for 2C proteins were performed to uncover the inhibitor-binding characteristics of 2C. Among the potential inhibitors, the compound hydantoin exhibited the highest broad-spectrum antiviral activities with binding to 2C protein. The anti-enteroviral activity of GuaHCL, compound 19b, R523062, compound 12a, compound 12b, quinoline analogs 12a, compound 19d, N6-benzyladenosine, dibucaine derivatives 6i, TBZE-029, fluoxetine analogs 2b, dibucaine, 2-(α-hydroxybenzyl)-benzimidazole (HBB), metrifudil, pirlindole, MRL-1237, quinoline analogs 10a, zuclopenthixol, fluoxetine, fluoxetine HCl, and quinoline analogs 12c showed a trend of gradual decrease. In addition, the free energy with 22 compounds binding to EV 2C ranged from −0.35 to −88.18 kcal/mol. Our in silico studies will provide important information for the development of pan-enterovirus antiviral agents based on 2C.
Collapse
Affiliation(s)
- Daoqun Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Leiliang Zhang
| |
Collapse
|
9
|
Wang J, Hu Y, Zheng M. Enterovirus A71 antivirals: Past, present, and future. Acta Pharm Sin B 2022; 12:1542-1566. [PMID: 35847514 PMCID: PMC9279511 DOI: 10.1016/j.apsb.2021.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a significant human pathogen, especially in children. EV-A71 infection is one of the leading causes of hand, foot, and mouth diseases (HFMD), and can lead to neurological complications such as acute flaccid myelitis (AFM) in severe cases. Although three EV-A71 vaccines are available in China, they are not broadly protective and have reduced efficacy against emerging strains. There is currently no approved antiviral for EV-A71. Significant progress has been made in developing antivirals against EV-A71 by targeting both viral proteins and host factors. However, viral capsid inhibitors and protease inhibitors failed in clinical trials of human rhinovirus infection due to limited efficacy or side effects. This review discusses major discoveries in EV-A71 antiviral development, analyzes the advantages and limitations of each drug target, and highlights the knowledge gaps that need to be addressed to advance the field forward.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
A Comparative and Comprehensive Review of Antibody Applications in the Treatment of Lung Disease. Life (Basel) 2022; 12:life12010130. [PMID: 35054524 PMCID: PMC8778790 DOI: 10.3390/life12010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Antibodies are a type of protein produced by active B cells in response to antigen stimulation. A series of monoclonal antibodies and neutralizing antibodies have been invented and put into clinical use because of their high therapeutic effect and bright developing insight. Patients with cancer, infectious diseases, and autoimmune diseases can all benefit from antibody therapy. However, the targeting aspects and potential mechanisms for treating these diseases differ. In the treatment of patients with infectious diseases such as COVID-19, neutralizing antibodies have been proposed as reliable vaccines against COVID-19, which target the ACE2 protein by preventing virus entry into somatic cells. Monoclonal antibodies can target immune checkpoints (e.g., PD-L1 and CTLA-4), tyrosine kinase and subsequent signaling pathways (e.g., VEGF), and cytokines in cancer patients (e.g. IL-6 and IL-1β). It is debatable whether there is any connection between the use of antibodies in these diseases. It would be fantastic to discover the related points and explain the burden for the limitation of cross-use of these techniques. In this review, we provided a comprehensive overview of the use of antibodies in the treatment of infectious disease and cancer patients. There are also discussions of their mechanisms and history. In addition, we discussed our future outlook on the use of antibodies.
Collapse
|
11
|
Real-Hohn A, Blaas D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021; 13:1784. [PMID: 34578365 PMCID: PMC8473194 DOI: 10.3390/v13091784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Rhinoviruses (RVs) are the main cause of recurrent infections with rather mild symptoms characteristic of the common cold. Nevertheless, RVs give rise to enormous numbers of absences from work and school and may become life-threatening in particular settings. Vaccination is jeopardised by the large number of serotypes eliciting only poorly cross-neutralising antibodies. Conversely, antivirals developed over the years failed FDA approval because of a low efficacy and/or side effects. RV species A, B, and C are now included in the fifteen species of the genus Enteroviruses based upon the high similarity of their genome sequences. As a result of their comparably low pathogenicity, RVs have become a handy model for other, more dangerous members of this genus, e.g., poliovirus and enterovirus 71. We provide a short overview of viral proteins that are considered potential drug targets and their corresponding drug candidates. We briefly mention more recently identified cellular enzymes whose inhibition impacts on RVs and comment novel approaches to interfere with infection via aggregation, virus trapping, or preventing viral access to the cell receptor. Finally, we devote a large part of this article to adding the viral RNA genome to the list of potential drug targets by dwelling on its structure, folding, and the still debated way of its exit from the capsid. Finally, we discuss the recent finding that G-quadruplex stabilising compounds impact on RNA egress possibly via obfuscating the unravelling of stable secondary structural elements.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
12
|
Yang YJ, Liu JN, Pan XD. Synthesis and antiviral activity of lycorine derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1188-1196. [PMID: 33176482 DOI: 10.1080/10286020.2020.1844674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
There are no effective antiviral drugs to treat hand, foot, and mouth disease. In this study, a series of lycorine derivatives were synthesized and evaluated against enterovirus 71 and coxsackievirus A16 in vitro. Derivatives 7c-m with the phenoxyacyl group at the C-1 position showed higher efficacy and lower toxicity than lycorine. In addition, derivative 7e enhanced the survival rate to 40% in the mouse model of the lethal EV71 infection.
Collapse
Affiliation(s)
- Ya-Jun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug ability Evaluation Institute of Material Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiang-Ning Liu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xian-Dao Pan
- Beijing Key Laboratory of Active Substance Discovery and Drug ability Evaluation Institute of Material Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
13
|
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that causes respiratory illnesses mainly in children. In severe cases, it can lead to neurological complications such as acute flaccid myelitis (AFM). EV-D68 belongs to the enterovirus genera of the Picornaviridae family, which also includes many other significant human pathogens such as poliovirus, enterovirus A71, and rhinovirus. There are currently no vaccines or antivirals against EV-D68. In this review, we present the current understanding of the link between EV-D68 and AFM, the mechanism of viral replication, and recent progress in developing EV-D68 antivirals by targeting various viral proteins and host factors that are essential for viral replication. The future directions of EV-D68 antiviral drug discovery and the criteria for drugs to reach clinical trials are also discussed.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| |
Collapse
|