1
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024; 28:875-894. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Catalyst- and solvent-free coupling of 2-methyl quinazolinones and 3-(trifluoroacetyl)coumarins: An environmentally benign access of quinazolinone derivatives. JOURNAL OF SAUDI CHEMICAL SOCIETY 2023. [DOI: 10.1016/j.jscs.2023.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Design, Catalyst-Free Synthesis of New Novel α-Trifluoromethylated Tertiary Alcohols Bearing Coumarins as Potential Antifungal Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010260. [PMID: 36615454 PMCID: PMC9822406 DOI: 10.3390/molecules28010260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
A new method for the synthesis of α-trifluoromethylated tertiary alcohols bearing coumarins is described. The reaction of 3-(trifluoroacetyl)coumarin and pyrrole provided the target compounds with high yields under catalyst-free, mild conditions. The crystal structure of compound 3fa was investigated by X-ray diffraction analysis. The biological activities, such as in vitro antifungal activity of the α-trifluoromethylated tertiary alcohols against Fusarium graminearum, Fusarium oxysporum, Fusarium moniliforme, Rhizoctonia solani Kuhn, and Phytophthora parasitica var nicotianae, were investigated. The bioassay results indicated that compounds 3ad, 3gd, and 3hd showed broad-spectrum antifungal activity in vitro. Compound 3cd exhibited excellent fungicidal activity against Rhizoctonia solani Kuhn, with an EC50 value of 10.9 μg/mL, which was comparable to that of commercial fungicidal triadimefon (EC50 = 6.1 μg/mL). Furthermore, molecular docking study suggested that 3cd had high binding affinities with 1W9U, like argifin.
Collapse
|
5
|
Lu M, Zhang H, Yin S, Jiang H, Wang X, Yang F. Biomimetic mineralization synthesis of poly(sodium 4‐styrenesulfonate)‐mediated calcium carbonate magnetic microsphere for kallikrein immobilization. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Min Lu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Shi‐Jun Yin
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Hui Jiang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Xu Wang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Feng‐Qing Yang
- School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| |
Collapse
|
6
|
Tao M, Wang A, Guo P, Li W, Zhao L, Tong J, Wang H, Yu Y, He C. Visible‐Light‐Induced Regioselective Deaminative Alkylation of Coumarins via Photoredox Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maoling Tao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
| | - An‐Jun Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
| | - Peng Guo
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
| | - Weipiao Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education School of Pharmacy Zunyi Medical University Zunyi Guizhou People's Republic of China
| | - Jie Tong
- School of Medicine Yale University New Haven Connecticut 06510 United States
| | - Haoyang Wang
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| | - Yanbo Yu
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| | - Chun‐Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Zunyi Medical University Zunyi Guizhou 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education School of Pharmacy Zunyi Medical University Zunyi Guizhou People's Republic of China
| |
Collapse
|
7
|
Xiang F, Wang Y, Cao C, Li Q, Deng H, Zheng J, Liu X, Tan X. The Role of Kallikrein 7 in Tumorigenesis. Curr Med Chem 2021; 29:2617-2631. [PMID: 34525904 DOI: 10.2174/0929867328666210915104537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
Kallikrein 7 (KLK7) is a secreted serine protease with chymotrypsic protease activity. Abnormally high expression of KLK7 is closely related to the occurrence and development of various types of cancer. Therefore, KLK7 has been identified as a potential target for cancer drug development design in recent years. KLK7 mediates various biological and pathological processes in tumorigenesis, including cell proliferation, migration, invasion, angiogenesis, and cell metabolism, by hydrolyzing a series of substrates such as membrane proteins, extracellular matrix proteins, and cytokines. This review mainly introduces the downstream cell signaling pathways involved in the activation of KLK7 and its substrate-related proteins. This review will not only help us to better understand the mechanisms of KLK7 in regulating biological and pathological processes of cancer cells, but also lay a solid foundation for the design of inhibitors targeting KLK7.
Collapse
Affiliation(s)
- Fengyi Xiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Yueqing Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Chunyu Cao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Qingyun Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Hao Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Jun Zheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China.,The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, P.R. China
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| |
Collapse
|
8
|
Role of Kallikrein 7 in Body Weight and Fat Mass Regulation. Biomedicines 2021; 9:biomedicines9020131. [PMID: 33572949 PMCID: PMC7912635 DOI: 10.3390/biomedicines9020131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Increased plasma and adipose tissue protease activity is observed in patients with type 2 diabetes and obesity. It has been proposed that specific proteases contribute to the link between obesity, adipose tissue inflammation and metabolic diseases. We have recently shown that ablation of the serine protease kallikrein-related peptidase 7 (Klk7) specifically in adipose tissue preserves systemic insulin sensitivity and protects mice from obesity-related AT inflammation. Here, we investigated whether whole body Klk7 knockout (Klk7-/-) mice develop a phenotype distinct from that caused by reduced Klk7 expression in adipose tissue. Compared to littermate controls, Klk7-/- mice gain less body weight and fat mass both under chow and high fat diet (HFD) feeding, are hyper-responsive to exogenous insulin and exhibit preserved adipose tissue function due to adipocyte hyperplasia and lower inflammation. Klk7-/- mice exhibit increased adipose tissue thermogenesis, which is not related to altered thyroid function. These data strengthen our recently proposed role of Klk7 in the regulation of body weight, energy metabolism, and obesity-associated adipose tissue dysfunction. The protective effects of Klk7 deficiency in obesity are likely linked to a significant limitation of adipocyte hypertrophy. In conclusion, our data indicate potential application of specific KLK7 inhibitors to regulate KLK7 activity in the development of obesity and counteract obesity-associated inflammation and metabolic diseases.
Collapse
|
9
|
Carneiro A, Matos MJ, Uriarte E, Santana L. Trending Topics on Coumarin and Its Derivatives in 2020. Molecules 2021; 26:501. [PMID: 33477785 PMCID: PMC7832358 DOI: 10.3390/molecules26020501] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Coumarins are naturally occurring molecules with a versatile range of activities. Their structural and physicochemical characteristics make them a privileged scaffold in medicinal chemistry and chemical biology. Many research articles and reviews compile information on this important family of compounds. In this overview, the most recent research papers and reviews from 2020 are organized and analyzed, and a discussion on these data is included. Multiple electronic databases were scanned, including SciFinder, Mendeley, and PubMed, the latter being the main source of information. Particular attention was paid to the potential of coumarins as an important scaffold in drug design, as well as fluorescent probes for decaging of prodrugs, metal detection, and diagnostic purposes. Herein we do an analysis of the trending topics related to coumarin and its derivatives in the broad field of drug discovery.
Collapse
Affiliation(s)
- Aitor Carneiro
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| |
Collapse
|