1
|
Salvatori N, Moreno M, Zotti M, Iuorio A, Cartenì F, Bonanomi G, Mazzoleni S, Giannino F. Process based modelling of plants-fungus interactions explains fairy ring types and dynamics. Sci Rep 2023; 13:19918. [PMID: 37963907 PMCID: PMC10646123 DOI: 10.1038/s41598-023-46006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Many mushroom-forming fungi can develop circular colonies affecting the vegetation in a phenomenon named fairy rings. Since the nineteenth century, several hypotheses have been proposed to explain how fairy ring fungi form ring-like shapes instead of disks and why they produce negative or positive effects on the surrounding vegetation. In this context, we present a novel process-based mathematical model aimed at reproducing the mycelial spatial configuration of fairy rings and test different literature-supported hypotheses explaining the suppressive and stimulating effects of fungi on plants. Simulations successfully reproduced the shape of fairy rings through the accumulation of fungal self-inhibitory compounds. Moreover, regarding the negative effects of fungi on vegetation, results suggest that fungal-induced soil hydrophobicity is sufficient to reproduce all observed types of fairy rings, while the potential production of phytotoxins is not. In relation to the positive effects of fungi on plants, results show that the release of phytostimulants is needed to reproduce the vegetation patterns associated to some fairy ring types. Model outputs can guide future experiments and field work to corroborate the considered hypotheses and provide more information for further model improvements.
Collapse
Affiliation(s)
- Nicole Salvatori
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
- 1DI4A, Department of Agri-Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Mauro Moreno
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Maurizio Zotti
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy.
| | - Annalisa Iuorio
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
- Parthenope University of Naples, Department of Engineering, Centro Direzionale-Isola C4, 80143, Naples, Italy
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| |
Collapse
|
2
|
Kotajima M, Choi JH, Suzuki H, Suzuki T, Wu J, Hirai H, Nelson DC, Ouchi H, Inai M, Dohra H, Kawagishi H. Identification of Biosynthetic and Metabolic Genes of 2-Azahypoxanthine in Lepista sordida Based on Transcriptomic Analysis. JOURNAL OF NATURAL PRODUCTS 2023; 86:710-718. [PMID: 36802627 DOI: 10.1021/acs.jnatprod.2c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
2-Azahypoxanthine was isolated from the fairy ring-forming fungus Lepista sordida as a fairy ring-inducing compound. 2-Azahypoxanthine has an unprecedented 1,2,3-triazine moiety, and its biosynthetic pathway is unknown. The biosynthetic genes for 2-azahypoxanthine formation in L. sordida were predicted by a differential gene expression analysis using MiSeq. The results revealed that several genes in the purine and histidine metabolic pathways and the arginine biosynthetic pathway are involved in the biosynthesis of 2-azahypoxanthine. Furthermore, nitric oxide (NO) was produced by recombinant NO synthase 5 (rNOS5), suggesting that NOS5 can be the enzyme involved in the formation of 1,2,3-triazine. The gene encoding hypoxanthine-guanine phosphoribosyltransferase (HGPRT), one of the major phosphoribosyltransferases of purine metabolism, increased when 2-azahypoxanthine content was the highest. Therefore, we hypothesized that HGPRT might catalyze a reversible reaction between 2-azahypoxanthine and 2-azahypoxanthine-ribonucleotide. We proved the endogenous existence of 2-azahypoxanthine-ribonucleotide in L. sordida mycelia by LC-MS/MS for the first time. Furthermore, it was shown that recombinant HGPRT catalyzed reversible interconversion between 2-azahypoxanthine and 2-azahypoxanthine-ribonucleotide. These findings demonstrate that HGPRT can be involved in the biosynthesis of 2-azahypoxanthine via 2-azahypoxanthine-ribonucleotide generated by NOS5.
Collapse
Affiliation(s)
| | | | | | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Hitoshi Ouchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | | |
Collapse
|
3
|
Takemura H, Choi JH, Fushimi K, Narikawa R, Wu J, Kondo M, Nelson DC, Suzuki T, Ouchi H, Inai M, Hirai H, Kawagishi H. Role of hypoxanthine-guanine phosphoribosyltransferase in the metabolism of fairy chemicals in rice. Org Biomol Chem 2023; 21:2556-2561. [PMID: 36880328 DOI: 10.1039/d3ob00026e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Fairy chemicals (FCs), 2-azahypoxanthine (AHX), imidazole-4-carboxamide (ICA), and 2-aza-8-oxohypoxanthine (AOH), are molecules with many diverse functions in plants. The defined biosynthetic pathway for FCs is a novel purine metabolism in which they are biosynthesized from 5-aminoimidazole-4-carboxamide. Here, we show that one of the purine salvage enzymes, hypoxanthine-guanine phosphoribosyltransferase (HGPRT), recognizes AHX and AOH as substrates. Two novel compounds, AOH ribonucleotide and its ribonucleoside which are the derivatives of AOH, were enzymatically synthesized. The structures were determined by mass spectrometry, 1D and 2D NMR spectroscopy, and X-ray single-crystal diffraction analysis. This report demonstrates the function of HGPRT and the existence of novel purine metabolism associated with the biosynthesis of FCs in rice.
Collapse
Affiliation(s)
- Hirohide Takemura
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Jae-Hoon Choi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Keiji Fushimi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Rei Narikawa
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Mitsuru Kondo
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 Minemachi, Tochigi 321-8505, Japan
| | - Hitoshi Ouchi
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
4
|
Kotajima M, Choi JH, Suzuki T, Wu J, Hirai H, Nelson DC, Ouchi H, Inai M, Dohra H, Kawagishi H. The role of xanthine dioxygenase in the biosynthetic pathway of 2-aza-8-oxohypoxanthine of Lepista sordida. Biosci Biotechnol Biochem 2023; 87:420-425. [PMID: 36756780 DOI: 10.1093/bbb/zbad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
2-Azahypoxanthine (AHX) and 2-aza-8-oxohypoxanthine (AOH), discovered as causal substances of fairy rings are known to be endogenous in the fairy ring-forming Lepista sordida. In this study, we showed that xanthine dioxygenase, an a-ketoglutarate-dependent dioxygenase, might catalyze the conversion of AHX to AOH in the fungus. Furthermore, this enzyme is the first reported molybdopterin-independent protein of hypoxanthine metabolism.
Collapse
Affiliation(s)
- Mihaya Kotajima
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
| | - Jae-Hoon Choi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
| | - Tomohiro Suzuki
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, Japan
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Hitoshi Ouchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Hideo Dohra
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
5
|
Kobori H, Wu J, Takemura H, Choi JH, Tada N, Kawagishi H. Utilization of Corn Steep Liquor for the Production of Fairy Chemicals by Lepista sordida Mycelia. J Fungi (Basel) 2022; 8:1269. [PMID: 36547602 PMCID: PMC9783885 DOI: 10.3390/jof8121269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
There are various potential practical uses of fairy chemicals (FCs) in the fields of agriculture, cosmetics, and medicine; however, the production costs of FCs are very high. To enable the practical use of FCs, more efficient and inexpensive methods of culturing the mycelia of FCs-producing fungi and producing FCs need to be developed. The purpose of the present study was to determine methods of reducing the production costs of FCs and mycelia of the FCs-producing fungus Lepista sordida. We investigated the effects of four food industrial by-products, i.e., corn steep liquor (CSL), rice bran, wheat bran, and Japanese liquor lees, as nutritional additives in the liquid culture medium of the fungus. We found that CSL was more effective than the other tested additives in increasing the production of FCs and mycelia. Medium containing 1% CSL was optimal for increasing the mycelial yield while medium containing 6% CSL was optimal for increasing the production of FCs. The reason for this difference in the optimal CSL concentration was considered to be related to the stress on the mycelia caused by the amount of nutrients in the liquid medium. These results are expected to facilitate the practical use of FCs and the mycelia of FCs-producing fungi.
Collapse
Affiliation(s)
- Hajime Kobori
- Iwade Research Institute of Mycology Co., Ltd., 1-9 Suehiro, Tsu 514-0012, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jing Wu
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirohide Takemura
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Naoto Tada
- Iwade Research Institute of Mycology Co., Ltd., 1-9 Suehiro, Tsu 514-0012, Japan
| | - Hirokazu Kawagishi
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
6
|
Soil Chemical Properties, Metabolome, and Metabarcoding Give the New Insights into the Soil Transforming Process of Fairy Ring Fungi Leucocalocybe mongolica. J Fungi (Basel) 2022; 8:jof8070680. [PMID: 35887438 PMCID: PMC9324422 DOI: 10.3390/jof8070680] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
A unique ecological landscape distributed in the Mongolian Plateau, called fairy rings, caused by the growth of the fungus Leucocalocybe mongolica (LM) in the soil could promote plant growth without fertilization. Therefore, this landscape can alleviate fertilizer use and has excellent value for agricultural production. The previous studies only investigated several parameters of the fairy rings, such as soil microbial diversity and some soil chemical properties, thus conclusions based on the studies on fairy rings lack comprehension. Therefore, the present study systematically investigated the chemical properties, metabolome, and metabarcoding of LM-transformed soil. We analyzed fairy ring soils from DARK (FR) and OUT (CK) zone correlated growth promotion with ten soil chemical properties, including N, nitrate-N, inorganic-P, cellulose, available boron, available sulfur, Fe, Mn, Zn, and Cu, which were identified as important markers to screen fairy ring landscapes. Metabolomics showed that the accumulation of 17 carbohydrate-dominated metabolites was closely associated with plant growth promotion. Finally, metabarcoding detected fungi as the main components affecting soil conversion. Among the various fungi at the family level, Lasiosphaeriaceae, unidentified_Auriculariales_sp, and Herpotrichiellaceae were markers to screen fairy ring. Our study is novel and systematically reveals the fairy ring soil ecology and lists the key factors promoting plant growth. These findings lay a theoretical foundation for developing the fairy ring landscape in an agricultural system.
Collapse
|
7
|
Wang Q, Wang C, Wei Y, Yao W, Lei Y, Sun Y. Soil Microbes Drive the Flourishing Growth of Plants From Leucocalocybe mongolica Fairy Ring. Front Microbiol 2022; 13:893370. [PMID: 35668763 PMCID: PMC9164162 DOI: 10.3389/fmicb.2022.893370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Fairy ring is a natural phenomenon in which fungal fruiting bodies occur as a ring on a spot. This ring is produced due to spore ejection by Basidiomycetous fungi and forms a lush growing plant belt. However, the drivers for such formations and the potential plant growth-promoting rhizobacteria in fairy ring soils remain unknown. Fairy rings formed by Leucocalocybe mongolica were selected in this study. Soil characteristics and microbial (bacteria and fungi) community structures between beneath and outside the fairy rings were compared through high-throughput sequencing. Beneficial bacterial resources were excavated using dependent culturable methods. Soil electrical conductivity and available potassium were higher in the soil beneath the ring than outside it. These parameters were positively correlated with the dominant microbial community, but microbial diversity was lower. In the soil beneath the fairy ring, Bacteroidetes and Basidiomycota were more abundant, whereas Verrucomicrobia was less prevalent. Bacillus pumilus (strain BG-5) was isolated from the soil beneath the ring. Strain BG-5 can solubilize phosphorus and produce indole-3-acetic acid, NH4 +, and siderophores. Furthermore, strain BG-5 enhanced salt tolerance and promoted the growth of Arabidopsis thaliana, wheat (Triticum aestivum), and cotton (Gossypium hirsutum) seedlings. This study indicated the presence of abundant beneficial microbes driving the flourishing growth of plants in the fairy ring soil and provided bio-resources for agricultural growth-promoting agents.
Collapse
Affiliation(s)
- Qiqi Wang
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi University, Shihezi, China
| | - Chong Wang
- Ürümqi Customs Technique Center, Ürümqi, China
| | - Yumei Wei
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi University, Shihezi, China
| | - Weiqin Yao
- Ürümqi Customs Technique Center, Ürümqi, China
| | - Yonghui Lei
- Department of Plant protection, College of Agriculture, Shihezi University, Shihezi, China
| | - Yanfei Sun
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
Ito A, Choi JH, Yokoyama-Maruyama W, Kotajima M, Wu J, Suzuki T, Terashima Y, Suzuki H, Hirai H, Nelson DC, Tsunematsu Y, Watanabe K, Asakawa T, Ouchi H, Inai M, Dohra H, Kawagishi H. 1,2,3-Triazine formation mechanism of the fairy chemical 2-azahypoxanthine in the fairy ring-forming fungus Lepista sordida. Org Biomol Chem 2022; 20:2636-2642. [PMID: 35293930 DOI: 10.1039/d2ob00328g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Azahypoxanthine (AHX) was first isolated from the culture broth of the fungus Lepista sordida as a fairy ring-inducing compound. It has since been found that a large number of plants and mushrooms produce AHX endogenously and that AHX has beneficial effects on plant growth. The AHX molecule has an unusual, nitrogen-rich 1,2,3-triazine moiety of unknown biosynthetic origin. Here, we establish the biosynthetic pathway for AHX formation in L. sordida. Our results reveal that the key nitrogen sources that are responsible for the 1,2,3-triazine formation are reactive nitrogen species (RNS), which are derived from nitric oxide (NO) produced by NO synthase (NOS). Furthermore, RNS are also involved in the biochemical conversion of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5'-monophosphate (AICAR) to AHX-ribotide (AHXR), suggesting that a novel biosynthetic route that produces AHX exists in the fungus. These findings demonstrate a physiological role for NOS in AHX biosynthesis as well as in biosynthesis of other natural products containing a nitrogen-nitrogen bond.
Collapse
Affiliation(s)
- Akinobu Ito
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Waki Yokoyama-Maruyama
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Mihaya Kotajima
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 Minemachi, Tochigi 321-8505, Japan
| | - Yurika Terashima
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hyogo Suzuki
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomohiro Asakawa
- Marine Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka City, Kanagawa 259-1292, Japan
| | - Hitoshi Ouchi
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideo Dohra
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
9
|
Inoue C, Yasuma T, D’Alessandro-Gabazza CN, Toda M, Fridman D’Alessandro V, Inoue R, Fujimoto H, Kobori H, Tharavecharak S, Takeshita A, Nishihama K, Okano Y, Wu J, Kobayashi T, Yano Y, Kawagishi H, Gabazza EC. The Fairy Chemical Imidazole-4-Carboxamide Inhibits the Expression of Axl, PD-L1, and PD-L2 and Improves Response to Cisplatin in Melanoma. Cells 2022; 11:cells11030374. [PMID: 35159184 PMCID: PMC8834508 DOI: 10.3390/cells11030374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
The leading cause of death worldwide is cancer. Many reports have proved the beneficial effect of mushrooms in cancer. However, the precise mechanism is not completely clear. In the present study, we focused on the medicinal properties of biomolecules released by fairy ring-forming mushrooms. Fairy chemicals generally stimulate or inhibit the growth of surrounding vegetation. In the present study, we evaluated whether fairy chemicals (2-azahypoxanthine, 2-aza-8-oxohypoxanthine, and imidazole-4-carboxamide) exert anticancer activity by decreasing the expression of Axl and immune checkpoint molecules in melanoma cells. We used B16F10 melanoma cell lines and a melanoma xenograft model in the experiments. Treatment of melanoma xenograft with cisplatin combined with imidazole-4-carboxamide significantly decreased the tumor volume compared to untreated mice or mice treated cisplatin alone. In addition, mice treated with cisplatin and imidazole-4-carboxamide showed increased peritumoral infiltration of T cells compared to mice treated with cisplatin alone. In vitro studies showed that all fairy chemicals, including imidazole-4-carboxamide, inhibit the expression of immune checkpoint molecules and Axl compared to controls. Imidazole-4-carboxamide also significantly blocks the cisplatin-induced upregulation of PD-L1. These observations point to the fairy chemical imidazole-4-carboxamide as a promising coadjuvant therapy with cisplatin in patients with cancer.
Collapse
Affiliation(s)
- Chisa Inoue
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Taro Yasuma
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Valeria Fridman D’Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Ryo Inoue
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (H.F.); (T.K.)
| | - Hajime Kobori
- Iwade—Research Institute of Mycology Co., Ltd., Tsu 514-0012, Japan;
| | - Suphachai Tharavecharak
- Department of Agriculture, Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
| | - Atsuro Takeshita
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Yuko Okano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (H.F.); (T.K.)
| | - Yutaka Yano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Hirokazu Kawagishi
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
- Correspondence:
| |
Collapse
|
10
|
Wang X, Fu J, Mo J, Tian Y, Liu C, Tang H, Sun Z, Pan Y. Assembly of 5‐Aminoimidazoles via Palladium‐Catalysed Double Isocyanide Insertion Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Jin‐Ping Fu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Jia‐Hui Mo
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Yu‐Hong Tian
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Chun‐You Liu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zi‐Jun Sun
- Research Centre for Materials Science and Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
11
|
Guo J, Yang W, Zhang D, Wang SG, Wang X. Mechanistic Insights into Formation of All-Carbon Quaternary Centers via Scandium-Catalyzed C-H Alkylation of Imidazoles with 1,1-Disubstituted Alkenes. J Org Chem 2021; 86:4598-4606. [PMID: 33686862 DOI: 10.1021/acs.joc.0c03054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This density functional theory (DFT) study reveals a detailed plausible mechanism for the Sc-catalyzed C-H cycloaddition of imidazoles to 1,1-disubstituted alkenes to form all-carbon quaternary stereocenters. The Sc complex binds the imidazole substrate to enable deprotonative C2-H bond activation by the Sc-bound α-carbon to afford the active species. This complex undergoes intramolecular cyclization (C═C into Sc-imidazolyl insertion) with exo-selectivity, generating a β-all-carbon-substituted quaternary center in the polycyclic imidazole derivative. The Sc-bound α-carbon deprotonates the imidazole C2-H bond to deliver the product and regenerate the active catalyst, which is the rate-determining step. Calculations illuminate the electronic effect of the ancillary Cp ligand on the catalyst activity and reveal the steric bias caused by using a chiral catalyst that induce the enantioselectivity. The insights can have implications for advancing rare-earth metal-catalyzed C-H functionalization of imidazoles.
Collapse
Affiliation(s)
- Jiandong Guo
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Wu Yang
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Dongju Zhang
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shou-Guo Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 1733, Denver, Colorado 80217-3364, United States
| |
Collapse
|
12
|
Kawagishi H. Chemical studies on bioactive compounds related to higher fungi. Biosci Biotechnol Biochem 2021; 85:1-7. [PMID: 33577664 DOI: 10.1093/bbb/zbaa072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022]
Abstract
Hericium erinaceus (Yamabushitake in Japan) is a well-known edible and medicinal mushroom. We discovered antidementia compounds, hericenones C to H, from the fruiting bodies and erinacine A to I from the cultured mycelia of the fungus. Based on the data of the compounds, several clinical experiments were performed using the fungus. "Fairy rings" is a phenomenon that turfgrass grows more prolific or inhibited than the surrounding area as a ring and then occasionally mushrooms develop on the ring. We found fairy-ring causing principles "fairy chemicals" and the biosynthetic routes of the compounds on the purine metabolic pathway in plants and mushrooms.
Collapse
Affiliation(s)
- Hirokazu Kawagishi
- Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| |
Collapse
|