1
|
Li YP, Li Y, Gao WJ, Fang CH, Lv MJ, Yue JM, Yu JH. Jatrophane and ingenane diterpenoids with anti-inflammatory activity from Euphorbia esula. PHYTOCHEMISTRY 2025; 232:114369. [PMID: 39706542 DOI: 10.1016/j.phytochem.2024.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
A phytochemical investigation into the plants of Euphorbia esula L. has yielded 19 diterpenoids, comprising 17 jatrophane-type (1-7 and 9-18) and two ingenane-type (8 and 19). The structures of these compounds were elucidated by a combination of spectrum elucidations, quantum chemical calculations, and X-ray single crystal diffraction. Biological evaluations demonstrated that compounds 6, 8, 18, and 19 show significant anti-inflammatory activity with IC50 values within 10 μM, without displaying any morphological signs of cytotoxicity. Further biological analysis revealed that euphoresulin A (8) is involved in the suppression of inflammatory response by blocking the activation of NF-κB/MAPK and activating Nrf2/HO-1 singling pathways.
Collapse
Affiliation(s)
- Yu-Peng Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Ying Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Wen-Jing Gao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Chu-Hong Fang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Ming-Jun Lv
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Jian-Min Yue
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Jin-Hai Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| |
Collapse
|
2
|
Chen L, Liu L, Li Y, Guan S, Fan L, Qin X, Di Y, Tang L, Luo R, Yan Y. Macrocyclic Diterpenoids from Euphorbia peplus Possessing Activity Towards Autophagic Flux. Int J Mol Sci 2024; 26:299. [PMID: 39796156 PMCID: PMC11719499 DOI: 10.3390/ijms26010299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Euphjatrophanes H-L (1-5), four new jatrophane-type and one new lathyrane-type diterpenoid, were isolated from Euphorbia peplus, along with eight known diterpenoids (6-13). Their structures were established on the basis of extensive spectroscopic analysis and X-ray crystallographic experiments. All compounds were subjected to bioactivity evaluation using flow cytometry in autophagic flux assays with HM mCherry-GFP-LC3 cells, the human microglia cells which stably expressed the tandem monomeric mCherry-GFP-tagged LC3. Compounds 1-3, 5-10, and 12 significantly increase autophagic flux, and compounds 1 and 12 displayed relatively high BBB permeability, with logPe values of -4.853 and -5.017, respectively. These findings indicated that jatrophane diterpenoids could serve as a valuable source for innovative autophagy inducers.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Lulan Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Yingyao Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China (Y.D.)
| | - Shipeng Guan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China (Y.D.)
| | - Lingling Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Xujie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China (Y.D.)
| | - Yingtong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China (Y.D.)
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Rongcan Luo
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, and Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| |
Collapse
|
3
|
Peng MY, Zhang X, Li QD, Feng EM, Chen L, Yang HC, Guo B, Di YT, Tang L, Luo RC, Yan Y. Two new jatrophane diterpenoids from Euphorbia helioscopia with activity towards autophagic flux. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:900-909. [PMID: 38753580 DOI: 10.1080/10286020.2024.2345181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Nine jatrophane diterpenoids were isolated from the whole plant Euphorbia helioscopia, including two new ones, helioscopnins A (1) and B (2). Comprehensive spectroscopic data analysis and ECD calculations elucidated their structures, including absolute configurations. All compounds were evaluated for bioactivity towards autophagic flux by flow cytometry using HM mCherry-GFP-LC3 cells. Compounds 1, 3, 4, 5, 8, and 9 significantly increased autophagic flux.
Collapse
Affiliation(s)
- Ming-You Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Xiong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Qin-Dan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - En-Ming Feng
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Lu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Hu-Cheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550014, China
| | - Ying-Tong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Rong-Can Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, and Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| |
Collapse
|
4
|
Li Y, Yu ZP, Li YP, Yu JH, Yue JM. Diterpenoids from Euphorbia peplus possessing cytotoxic and anti-inflammatory activities. Bioorg Chem 2024; 145:107194. [PMID: 38367429 DOI: 10.1016/j.bioorg.2024.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Phytochemical investigation into the medium polar fraction of the ethanol extract of Euphorbia peplus led to the identification of 32 diterpenoids with five structural types. Compounds 1-5 and 7-11 are reported for the first time, while the configuration of 6,7-epoxy group of 6 was revised to be β-oriented. Compounds 1-5 feature a rare structural variation of the double bond at Δ1 migrating to Δ1(10) in the tigliane-type diterpenoid family. Biologically, compound 21 was found to be the only one to show moderate cytotoxic activity, associated with the presence of a benzoyloxy residue at C-16. Besides, compounds 4, 8, 12, 13, 16, and 19 show significant inhibitory activities against NO production induced by LPS in RAW264.7 macrophage cells, with IC50 values within 2-5 μM. Structure-activity relationship (SAR) analysis revealed that the ingenane-type diterpenoids have the best anti-inflammatory activity, and the esterification at 3-OH or 5-OH is crucial. Further biological researches demonstrated that 13, the predominant metabolite in this plant, exerts anti-inflammatory effects by blocking the activation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Ying Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
| | - Zhi-Pu Yu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China. Qingdao 266003, People's Republic of China
| | - Yu-Peng Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
| | - Jin-Hai Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China.
| | - Jian-Min Yue
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China.
| |
Collapse
|
5
|
Jadranin M, Savić D, Lupšić E, Podolski-Renić A, Pešić M, Tešević V, Milosavljević S, Krstić G. LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:4181. [PMID: 38140508 PMCID: PMC10747863 DOI: 10.3390/plants12244181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Euphorbia seguieriana ssp. seguieriana Necker (ES) and Euphorbia cyparissias (EC) with a habitat in the Deliblato Sands were the subject of this examination. The latexes of these so far insufficiently investigated species of the Euphorbia genus are used in traditional medicine for the treatment of wounds and warts on the skin. To determine their chemical composition, non-targeted screening of the latexes' chloroform extracts was performed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry employing an electrospray ionization source (LC-ESI QTOF MS). The analysis of the obtained results showed that the latexes of ES and EC represent rich sources of diterpenes, tentatively identified as jatrophanes, ingenanes, tiglianes, myrsinanes, premyrsinanes, and others. Examination of the anticancer activity of the ES and EC latex extracts showed that both extracts significantly inhibited the growth of the non-small cell lung carcinoma NCI-H460 and glioblastoma U87 cell lines as well as of their corresponding multi-drug resistant (MDR) cell lines, NCI-H460/R and U87-TxR. The obtained results also revealed that the ES and EC extracts inhibited the function of P-glycoprotein (P-gp) in MDR cancer cells, whose overexpression is one of the main mechanisms underlying MDR.
Collapse
Affiliation(s)
- Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Danica Savić
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Ema Lupšić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (E.L.); (A.P.-R.); (M.P.)
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (E.L.); (A.P.-R.); (M.P.)
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (E.L.); (A.P.-R.); (M.P.)
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (V.T.); (S.M.)
| | - Slobodan Milosavljević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (V.T.); (S.M.)
- Serbian Academy of Science and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
| | - Gordana Krstić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (V.T.); (S.M.)
| |
Collapse
|
6
|
Duy Khang NV, Hong Dao DT, Thanh Mai NT, Le Quan T, Thi Y Nhi N. Cytotoxicity, anti-diabeticity, and phytocomposition investigation of Vietnamese Euphorbia tithymaloides Linn. (Euphorbiaceae). RSC Adv 2023; 13:29141-29151. [PMID: 37800131 PMCID: PMC10548532 DOI: 10.1039/d3ra05637f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
In this study, the aerial parts of mature Vietnamese Euphorbia tithymaloides plants were put through cytotoxic, anti-diabetic, and phytocompositional evaluations. Specifically, four extracts (petroleum ether (PE), ethyl acetate (EA), methanol (Me), and aqueous (W)) were prepared by maceration at room temperature. All extracts, together with some isolated compounds, were investigated for cytotoxicity against some human normal and cancer cell lines (fibroblasts, HeLa, NCI-H460, HepG2, MCF-7, and Jurkat) using the standardized modified sulforhodamine B (SRB) assay. Additionally, the anti-diabetic activity of extracts and compounds was evaluated via their α-glucosidase inhibitory capacity. The obtained results indicated that Vietnamese E. tithymaloides extracts exhibited moderate cytotoxic activity, among which the PE extract possessed the highest values, on the NCI-H460 cell line. Second, the aqueous extract was revealed to possess very high α-glucosidase inhibitory activity (IC50 = 113.75 ± 14.02 μg ml-1). From the PE extract, three new jatrophane diterpenoids (named tithymal A, tithymal B, and tithymal C) and two known ones were isolated and structurally elucidated using NMR and MS spectroscopies. Noticeably, tithymal A exhibited significantly high inhibitory activity against α-glucosidase (IC50 = 10.71 ± 0.52 μg ml-1). These observations have significantly highlighted the medicinal potential of Vietnamese E. tithymaloides and expanded its scientific fascination.
Collapse
Affiliation(s)
- Nguyen Vu Duy Khang
- University of Science - Ho Chi Minh City - Vietnam 227 Nguyen Van Cu Street, Ward 4, District 5 70000 Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh City Vo Truong Toan Street, Linh Trung District, Thu Duc City 70000 Ho Chi Minh City Vietnam
| | - Dinh Thi Hong Dao
- University of Science - Ho Chi Minh City - Vietnam 227 Nguyen Van Cu Street, Ward 4, District 5 70000 Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh City Vo Truong Toan Street, Linh Trung District, Thu Duc City 70000 Ho Chi Minh City Vietnam
| | - Nguyen Thi Thanh Mai
- University of Science - Ho Chi Minh City - Vietnam 227 Nguyen Van Cu Street, Ward 4, District 5 70000 Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh City Vo Truong Toan Street, Linh Trung District, Thu Duc City 70000 Ho Chi Minh City Vietnam
- Research Lab for Drug Discovery and Development, University of Science - Ho Chi Minh City - Vietnam 227 Nguyen Van Cu Street, Ward 4, District 5 70000 Ho Chi Minh City Vietnam
| | - Tran Le Quan
- University of Science - Ho Chi Minh City - Vietnam 227 Nguyen Van Cu Street, Ward 4, District 5 70000 Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh City Vo Truong Toan Street, Linh Trung District, Thu Duc City 70000 Ho Chi Minh City Vietnam
| | - Nguyen Thi Y Nhi
- University of Science - Ho Chi Minh City - Vietnam 227 Nguyen Van Cu Street, Ward 4, District 5 70000 Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh City Vo Truong Toan Street, Linh Trung District, Thu Duc City 70000 Ho Chi Minh City Vietnam
| |
Collapse
|
7
|
Dong J, Yuan L, Hu C, Cheng X, Qin JJ. Strategies to overcome cancer multidrug resistance (MDR) through targeting P-glycoprotein (ABCB1): An updated review. Pharmacol Ther 2023; 249:108488. [PMID: 37442207 DOI: 10.1016/j.pharmthera.2023.108488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is one of the leading threats encountered currently in many chemotherapeutic agents. The overexpression of the ATP-binding cassette (ABC) transporters is involved in MDR. P-glycoprotein (P-gp)/ABCB1 is a member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells. Therefore, targeting P-gp with small molecule inhibitors is an effective therapeutic strategy to overcome MDR. Over the past four decades, diverse compounds with P-gp inhibitory activity have been identified to sensitize drug-resistant cells, but none of them has been proven clinically useful to date. Research efforts continue to discover an effective approach for circumventing MDR. This review has provided an overview of the most recent advances (last three years) in various strategies for circumventing MDR mediated by P-gp. It may be helpful for the scientists working in the field of drug discovery to further synthesize and discover new chemical entities/therapeutic modalities with less toxicity and more efficacies to overcome MDR in cancer chemotherapy.
Collapse
Affiliation(s)
- Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Li Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Can Hu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
8
|
Zhu H, Ren X, Huang Y, Su T, Yang L. Chemical Constituents of Euphorbia stracheyi Boiss (Euphorbiaceae). Metabolites 2023; 13:852. [PMID: 37512559 PMCID: PMC10384431 DOI: 10.3390/metabo13070852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Euphorbia stracheyi Boiss was used for hemostasis, analgesia, and muscular regeneration in traditional Chinese medicine. To study the chemical constituents of E. stracheyi, the ethyl acetate part of the methanol extract of the whole plant was separated by silica gel, sephadex LH-20 column chromatography, and semi-preparative HPLC. The isolation led to the characterization of a new lathyrane type diterpenoid, euphostrachenol A (1), as well as eleven known compounds (2-11), including a lathyrane, three ingenane-type and two abietane-type diterpenoids, two ionones, and two flavonoids. The structures of these compounds were established using 1D- and 2D-NMR experiments, mass spectrometry, and X-ray crystallographic experiments. The MTT method was used to determine the cytotoxic activity of five cancer cell lines (Leukemia HL-60, lung cancer A-549, liver cancer SMMC-7721, breast cancer MCF-7, and colon cancer SW480) on the isolated compounds. However, only compound 4 showed moderate cytotoxicity against these cell lines, with IC50 values ranging from 10.28 to 29.70 μM, while the others were inactive. Our chemical investigation also confirmed the absence of jatrophane-type diterpenoids in the species, which may be related to its special habitat.
Collapse
Affiliation(s)
- Hui Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Enviroment, Nanjing Forestry University, Nanjing 210037, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xiangxiang Ren
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Enviroment, Nanjing Forestry University, Nanjing 210037, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yanbo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Enviroment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
9
|
Zhao Y, Hua C, Sha YO, Wu PQ, Liu QF, Lu L, Zhou B, Jiang SB, Fan YY, Yue JM. Diterpenoids from Euphorbia lactea and their anti-HIV-1 activity. PHYTOCHEMISTRY 2023:113745. [PMID: 37277012 DOI: 10.1016/j.phytochem.2023.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Nine undescribed diterpenoids, euphlactenoids A-I (1-9), including four ingol-type diterpenoids (1-4) with a 5/3/11/3-tetracyclic framework and five ent-pimarane-type diterpenoids (5-9), together with thirteen known diterpenoids (10-22), were identified from the leaves and stems of Euphorbia lactea Haw. The structures and absolute configurations of compounds 1-9 were unequivocally elucidated on the basis of spectroscopic analysis, ECD calculations and single crystal X-ray diffraction. Compounds 3 and 16 showed anti-HIV-1 effects with IC50 values of 1.17 μM (SI = 16.54) and 13.10 μM (SI = 1.93), respectively.
Collapse
Affiliation(s)
- Ye Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Chen Hua
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Biosafety Level 3 Laboratory, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Ou Sha
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Biosafety Level 3 Laboratory, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Pei-Qian Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qun-Fang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Lu Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Biosafety Level 3 Laboratory, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai, 201203, China
| | - Shi-Bo Jiang
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Biosafety Level 3 Laboratory, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Yao-Yue Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Jian-Min Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai, 201203, China.
| |
Collapse
|
10
|
Yan Y, Zhou Q, Ran X, Lu Q, Zhang C, Peng M, Tang L, Luo R, Di Y, Hao X. Jatrophane Diterpenoids from Euphorbia peplus Linn. as Activators of Autophagy and Inhibitors of Tau Pathology. Int J Mol Sci 2023; 24:ijms24021088. [PMID: 36674604 PMCID: PMC9863522 DOI: 10.3390/ijms24021088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Ten jatrophane diterpenoids were isolated from the whole plant Euphorbia peplus Linn. including seven new ones, named euphjatrophanes A-G (labeled compounds 1, 2, 4-8). Their structures were elucidated with a combination of spectroscopic and single-crystal X-ray crystallography, enabling the identification of compounds 3, 9, and 10 as the previously published euphpepluones G, K, and L, respectively. All compounds were evaluated for their bioactivity with flow cytometry in assays of autophagic flux in HM Cherry-GFP-LC3 (human microglia cells stably expressing the tandem monomeric mCherry-GFP-tagged LC3) cells. Euphpepluone K (9) significantly activated autophagic flux, an effect that was verified with confocal analysis. Moreover, cellular assays showed that euphpepluone K (9) induced autophagy and inhibited Tau pathology.
Collapse
Affiliation(s)
- Ying Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Qi Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xiaoqian Ran
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
| | - Qingyun Lu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Cuishan Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Mingyou Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
| | - Rongcan Luo
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Correspondence: (R.L.); (Y.D.)
| | - Yingtong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Correspondence: (R.L.); (Y.D.)
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
11
|
Zhao H, Sun L, Kong C, Mei W, Dai H, Xu F, Huang S. Phytochemical and pharmacological review of diterpenoids from the genus Euphorbia Linn (2012-2021). JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115574. [PMID: 35944737 DOI: 10.1016/j.jep.2022.115574] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia is one of the major genera in angiosperms, which is widely distributed all over the world, including Asia, Africa and Central and South America. The roots or tubers of Euphorbia are famous for medicinal purposes, especially in China. Many of them, such as Euphorbia pekinensis Rupr, Euphorbia fischeriana Steud and Euphorbia Kansui S.L.Liou ex S.B.Ho. . are used as Chinese herbal medicines. AIM OF THE STUDY This paper reviews the diterpenoids isolated from the genus Euphorbia species and the pharmacological activities of these compounds to evaluate its traditional use and potential future development. MATERIALS AND METHODS Information on the studies of the genus Euphorbia Linn was collected from scientific journals, books and reports via library and electronic data search (Scifinder, Web of Science, PubMed, Elsevier, Scopus, Google Scholar, Springer, Science Direct, Wiley, ACS, CNKI and Kew Plants of the Word Online). Meanwhile, it was also obtained from published works of material medica, folk records, ethnophmacological literatures, Ph.D. and Masters dissertations. RESULTS Known as the main constituents of the genus Euphorbia Linn, Diterpenoids possess many pharmacological properties such as anti-inflammation, antiviral activities and cytotoxicity. To date, various types of diterpenoids were identified from this genus, including isopimarane, rosane, abietane, ent-kaurane, ent-atisane. cembrane, casbane, lathyrane, myrsinane, jatropholane, tigliane, ingenane, jatrophane, paraliane, pepluane, and euphoractin. CONCLUSIONS This review describes 14 types of diterpenoid isolated from 45 Euphorbia species from 2012 to 2021, a total of 615 compounds. Among them, mainly include jatrophane (171), lathyrane (92), myrsinane (62), abietane (70), ent-atisane (36), ent-kaurane (7), tigliane (26) and ingenane (19). The possible biological pathways of these compounds were presumed. At the same time, more than 10 biological activities of these compounds were summarized, such as anti-inflammation, antiviral activities and cytotoxicity.
Collapse
Affiliation(s)
- Huan Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - ChuiHao Kong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - WenLi Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - HaoFu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - FengQing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces, Hefei, 230012, PR China.
| | - ShengZhuo Huang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China.
| |
Collapse
|
12
|
Wang Y, Zhu M, Liang J, Zhang N, Sun D, Li H, Chen L. Diterpenoids from the whole plant of Euphorbia wallichii and their protective effects on H2O2-induced BV-2 microglial cells injury. Bioorg Chem 2022; 128:106067. [DOI: 10.1016/j.bioorg.2022.106067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/06/2023]
|
13
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2021. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:905-924. [PMID: 36111695 DOI: 10.1080/10286020.2022.2117169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The new natural products reported in 2021 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2021 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Zhan ZJ, Li S, Chu W, Yin S. Euphorbia diterpenoids: isolation, structure, bioactivity, biosynthesis, and synthesis (2013-2021). Nat Prod Rep 2022; 39:2132-2174. [PMID: 36111621 DOI: 10.1039/d2np00047d] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2013 to 2021As the characteristic metabolites of Euphorbia plants, Euphorbia diterpenoids have always been a hot topic in related science communities due to their intriguing structures and broad bioactivities. In this review, we intent to provide an in-depth and extensive coverage of Euphorbia diterpenoids reported from 2013 to the end of 2021, including 997 new Euphorbia diterpenoids and 78 known ones with latest progress. Multiple aspects will be summarized, including their occurrences, chemical structures, bioactivities, and syntheses, in which the structure-activity relationship and biosynthesis of this class will be discussed for the first time.
Collapse
Affiliation(s)
- Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | - Wang Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| |
Collapse
|
15
|
Xiang ZN, Tong QL, Su JC, Hu ZF, Zhao N, Xia RF, Wu JL, Chen C, Chen JC, Wan LS. Diterpenoids with Rearranged 9(10→11)- abeo-10,12-Cyclojatrophane Skeleton and the First (15 S)-Jatrophane from Euphorbia helioscopia: Structural Elucidation, Biomimetic Conversion, and Their Immunosuppressive Effects. Org Lett 2022; 24:697-701. [PMID: 34965138 DOI: 10.1021/acs.orglett.1c04145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two novel diterpenoids, one with a rearranged trans,trans-fused tricyclo[10.3.0.04,6]pentadecane framework (1) and the other with an unprecedented 15S configuration (2), were isolated from Euphorbia helioscopia. Their structures were elucidated by extensive analysis of HR-ESI-MS, NMR, quantum-chemical calculation, and X-ray crystallographic data. Biosynthetically, 1 has a unique "cyclopropane-shift-like" biogenesis involving an oxa-di-π-methane (ODPM) rearrangement, which inspired us to accomplish the biomimetic conversion of 3 to 1. Moreover, compound 1 displayed a potent immunosuppressive effect by inhibiting Kv1.3 voltage-gated channels.
Collapse
Affiliation(s)
- Zhi-Nan Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qi-Lin Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jun-Cheng Su
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Zhuo-Fan Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ning Zhao
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Ru-Feng Xia
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia-Le Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chen Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia-Chun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Pharmacy Department of Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
16
|
Hasan A, Tang D, Nijat D, Yang H, Aisa HA. Diterpenoids from Euphorbia glomerulans with potential reversal activities against P-glycoprotein-mediated multidrug resistance. Bioorg Chem 2021; 117:105442. [PMID: 34742027 DOI: 10.1016/j.bioorg.2021.105442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
The development of collateral sensitivity agents that are able to modulate P-glycoprotein (P-gp) is the most promising approaches to overcome multidrug resistance (MDR) in cancer. In this study, eight new diterpenoids of jatrophane and ingenane type, 1-8, and three known ones (9-11) were isolated from Euphorbia glomerulans. Their structures were elucidated by spectroscopic analysis and electronic circular dichroism (ECD) calculations. The MDR reversal activity evaluation of these isolates on breast cancer MCF-7/ADR cells demonstrated the four potent MDR modulators (3, 4, 5, and 9) with great chemoreversal ability and low cytotoxicity. The structure-activity relationship (SAR) analysis indicated that the presence of isobutanoyloxy group at C-8 significantly enhance reversal efficiency. Compound 5 exhibited high efficacy (EC50 = 159.5 nM) in reversing MDR resistance, being stronger than verapamil (EC50 = 302.9 nM). The MDR reversal mechanism assays revealed that 5 could promote the accumulation of Rh123 and DOX in drug-resistant cells in a certain dose-dependent manner, and inhibit P-gp transport function. In addition, the possible recognition mechanism of compound 5 and verapamil (VRP) with P-gp was predicted by molecular docking.
Collapse
Affiliation(s)
- Aobulikasimu Hasan
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Dan Tang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Dilaram Nijat
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Hequn Yang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - H A Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
17
|
|